A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology
Abstract
:1. Introduction
2. Zebrafish: Characteristics and Relevance to Human Blood Malignancies
2.1. AML Models of Zebrafish
2.1.1. Spi-1: MYST3/NCOA2-EGFP
2.1.2. hsp70: AML1-ETO
2.1.3. MYCN: HSE: EGFP
2.1.4. FLT3-ITD and NPM1c+ Models in Zebrafish
2.1.5. Spi-1: CREB-EGFP
2.1.6. Spi-1: SOX4-EGFP
2.1.7. IDH 1/2 Mutation
3. Rodent Models
3.1. Rats
Transplantable Rat Models
3.2. Mice
3.2.1. Chemically-Induced Model
3.2.2. Radiation-Induced Model
RF Model
SJL/J Model
C3H/He and CBA Models (CBA/Ca, CBA/Cne, and CBA/H)
3.2.3. Virally Induced Leukemia Models
3.2.4. Transposon Models
3.2.5. Transgenic Models: Single Mutation
PML-RARα t(15;17)
AML1-Eight-Twenty One Oncoprotein
CBFB-MYH11
Mutant Nucleophosmin-1 (NPM1c+)
Fms-Related Tyrosine Kinase 3 Internal Tandem Repeats
Mixed Lineage Leukemia (MLL)
IDH 1/2
3.2.6. Transgenic Models: Compound Transgenic Mouse Models
K-RAS-G12D + PML-RARα
N-RASD12 + BCL-2
Mixed Lineage Leukemia-Partial Tandem Duplication + FLT3-ITD
NUP98-HOXD13 + FLT3-ITD
NPM1c+/FLT3
N-RAS-G12D + CBFB-MYH11
NPM1c + N-RAS-G12D
WT1-R394W + FLT3-ITD
3.2.7. Humanized Models
SCID Mice
NOD/SCID Mice
NSG Mice
Zebrafish Model | Zebrafish Manipulation | Model Features and Major Findings | References |
---|---|---|---|
spi-1: MYST3/NCOA2-EGFP | Transgenic expression of human MYST3/NCOA2 fusion under the spi-1/pu.1 promoter | First AML model in zebrafish 1.1% of transgenic fishes expressing the transgene developed AML after long latency | [29] |
hsp70: AML1-ETO | Transgenic expression of human AML1-ETO fusion under hsp70 promoter | A phenotype similar to human AML Disruption of definitive hematopoiesis: the switch of cell fates from erythroid to myeloid through gata1 downregulation and pu.1 overexpression AML1-ETOs effects on HPCs differentiation was mediated through Cycloxygenase-2 (COX-2) and β-catenin signaling pathways | [36,37] |
mRNA: NPMc+ | mRNAs injection into 1-cell–stage embryos followed by morpholinos (MOs) targeting npm1a and npm1b | Perturbation of primitive and definitive hematopoiesis Alterations in the expression of major transcription factors (pu.1+, mpx+, csf1r+, c-myb, CD41, RUNX1) | [52] |
HSE-MYCN-EGFP | Induction of murine N-myc gene through heat-shock promoter | AML development with high incidence and rapid onset Enhancement of primitive hematopoiesis through alteration of transcription factors (pu.1, gata1, scl, lmo2, p27kip and p21cip1) Activation of major cancer signaling pathways | [41] |
IDH1/2 mutants | Knockdown of zebrafish idh1 and idh2 (zidh1 and zidh2) by morpholino knockdown and Transcription activator-like effector nuclease (TALEN-)mediated mutagenesis | zidh1 suppression/deletion is correlated with a blockage of differentiation of the myeloid lineage zidh1 effects definitive hematopoiesis exclusively zidh2 affects primitive hematopoiesis exclusively | [63] |
Transgenic expression of human IDH1 mutation | Embryos recapitulated the features of human AML | ||
FLT3-ITD-2A-EGFP spi-1: NPM1-Mut-PA spi-1: | Transgenic expression of human FLT3-ITD or/and NPM1 mutations under the spi-1 promoter | Myeloproliferative neoplasm (MPN) development as a result of a single mutation. 66.6% of double mutant transgenic fish showed increased precursor cells in the kidney marrow along with dedifferentiated myeloid blasts. | [53] |
spi-1: CREB-EGFP | Expression of CREB-EGFP under spi-1 promoter in myeloid lineage | Alteration of primitive hematopoiesis in embryos AML development in 79% of adult fishes by 9–14 months Aberrant expression of 20 genes diagnosed in pediatric AML | [57] |
Spi-1: SOX4-EGFP | Expression of SOX4 protein downstream the spi-1 promoter | Increase in the number of myeloid progenitor cells and blast cells in the kidney marrow Distortion of the kidney structure | [59] |
Mouse Model | Manipulation | Outcomes and Major Findings | References | ||
---|---|---|---|---|---|
Chemically-Induced Model | Transplantable AML models were generated using the L1210 and p388 cell lines, isolated from DBA/2 mice chemically exposed to the carcinogen 3-methylcholantrene. | Provide a platform for testing chemotherapeutic drugs, studying their kinetics, and evaluating their anti-leukemic effectiveness (mainly Cytarabine) | [83,84,90] | ||
Radiation- Induced Model | RF model | Myeloid leukemia was developed following exposure to fission neutron irradiation or γ irradiation | FLT3-ITD mutations were identified in 10% of RF-AML mice which correlates with the occurrence of mutation of human AML | [98,100,101] | |
SJL/J model | The radiation induced AML (RI-AML) in this model, is similar to the secondary human AML occurring after irradiation of Hodgkin disease patients | The efficient development of AML in this model was achieved by adding promoting factors, corticosteroids and growth factors like colony stimulating factor CSF-1, known to be high in AML patients | [103,104] | ||
C3H/He and CBA models (CBA/Ca, CBA/Cne, and CBA/H) | These models were generated by cross breeding Bragg albino with DBA mice | CBA model is considered the most favorable model in RI-AML High incidence of AML after exposure to radiation or benzene with lower latency compared to other models, Mimics human AML at the cytological, histopathological, and molecular levels. | [107,108,234] | ||
Virally-induced leukemia models MuLV | Murine leukemia viruses (MuLV) induce non-B and non-T cell leukemia in mice | Same infection of MuLV induces several subtypes of AMLthat resembles FAB classification Identifies unknown oncogenes contributing to leukemogenesis. | [112,113,116,117] + Table 2 | ||
Transposon models | Sleeping Beauty (SB) transposon is another insertional mutagenesis system, allowing overexpression or inactivation of specific genes depending on the transposon orientation and integration site | Identification of mutations in leukemia genes, which provided new pathogenetic insights and potential therapeutic targets in NPM1c+ AML | [118,119,121] | ||
Trans-genic models | Single mutation | Promyelocytic Leukemia protein (PML)-RARα t(15;17) | Expressing PML-RARα under CD11b promoter | Abnormal myelopoiesis and increased radiation sensitivity No AML development | [124] |
Expressing PML-RARα under human cathepsin G (HCG) promoter | APL phenotype after long latency period Remission seen after All Trans Retinoic Acid (ATRA) treatment in APL | [125] | |||
Expressing PML-RARα under human MRP8 (hMRP8) promoter | APL phenotype after long latency period Remission seen after ATRA treatment in APL | [126] | |||
AML1- Eight-Twenty One oncoprotein (ETO) | Knock-in of AML1-ETO into mouse embryos (AML1-ETO/+) | Absence of liver-derived definitive hematopoiesis Embryonic lethality | [127,128] | ||
Expressing AML1-ETO in adult bone marrow progenitor cells | Abnormal maturation and proliferation of progenitor cells No AML development | [130,131] | |||
Expressing AML1-ETO under human MRP8 (hMRP8) promoter | AML development after exposure to N-ethyl-N-nitrosourea | [132] | |||
CBFB-MYH11 | Knock-in embryonic mice (Cbfb+/Cbfb-MYH11) | Lack of definitive hematopoiesis Embryonic lethality | [138] | ||
Chemical/ retroviral mutagens on heterozygous CBFB-MYH11 adults | AML development | [138,139] | |||
Conditional knock-in adult mice (Cbfb+/56M) | AML development in 90% of mice after 5 months | [140] | |||
Mutant Nucleophosmin-1 (NPM1c+) | Knock-in mice expressing NPM1 with mutation A (NPM1c+) | Homozygotes encountered embryonic lethality 1/3 of the heterozygotes (Npm1wt/c+) developed fetal myeloproliferative disease but not AML | [143] | ||
Expression of NPM1 with mutation A (NPM1c+) under the pCAG promoter | 1/3 of the transgenic mice developed leukemia after a long period of latency | [144] | |||
Expression of humanized NPM1c+ in the hematopoietic stem cells | HOX overexpression Enhanced self-renewal Expanded myelopoiesis | [121] | |||
Fms-related tyrosine kinase 3 internal tandem repeats (FLT3-ITD) | Expressing FLT3-ITD under the vav hematopoietic promoter | Myeloproliferative syndrome (MPS) Megakaryocytic hyperplasia and thrombocytosis No AML development | [146] | ||
FLT3-ITD knock-in mice with lost FLT3 wild-type allele | Myeloid expansion and aggressiveness of the MPS disease No AML development | [147] | |||
Mixed Lineage Leukemia (MLL) | Embryonic stem cell formed by in-frame fusion of AF9 with exon 8 of mouse MLL | AML development | [152] | ||
Conditional expression of MLL-AF9 using programmed interchromosomal recombination | AML development | [153] | |||
Conditional expression of MLL-AF9 in LT-HSC | Aggressive AML Extensive tissue infiltration Chemoresistance Expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers | [154] | |||
Early introduction of MLL | Abnormalities of myeloid cell proliferation and differentiation | [155] | |||
IDH 1/2 | Expressing IDH1/2 under the vav promoter (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice) | Increased number of early hematopoietic progenitors Splenomegaly Anemia Extramedullary hematopoiesis, characteristics of a dysfunctional BM niche and partial blockage in myeloid differentiation Induction of leukemic DNA methylation signature in mouse model | [167] | ||
Compound mutations | K-RAS-G12D + PML-RARα | Constitutive expression of K-RAS and PML-RARα | Rapid-onset and highly penetrant, lethal APL-like disease | [170] | |
N-RAS12D + BCL-2 | MMTVtTA /TBCL-2/NRASD12 Expression of hBCL2 in a primitive compartment by mouse mammary tumor virus–long terminal repeat | MDS development Expanded leukemic stem cell (Lin−/Sca-1+/c-Kit+) populations Increased apoptosis Malignant disease with a penetrance of around 80% and a latency period of 3 to 6 months | [175] | ||
MRP8 [BCL-2/NRASD12] Constitutive expression of BCL-2 under human MRP8 promoter | AML development Expanded leukemic stem cell (Lin−/Sca-1+/c-Kit+) populations No apoptotic cells Malignant disease with a penetrance of around 80% and a latency period of 3 to 6 months | [175] | |||
MLL-PTD + FLT3-ITD | Expressing MLL-PTD and FLT3-ITD under their respective endogenous promoters | Latent AML with a short life span, extensive extramedullary involvement and increased aggressiveness Normal chromosomal structures Reduced MLL-WT expression Loss of FLT3-WT and increased total FLT3 expression Increased HOXA9 transcript levels | [179] | ||
NUP98-HOXD13 + FLT3-ITD | Expressing FLT3-ITD and NHD13 (HOXD13) under their respective endogenous promoters | Myeloid leukemia with minimal differentiation Overexpression of several HOX genes Spontaneous loss of heterozygosity with a high frequency, resulting in the loss of WT FLT3 allele | [186] | ||
NPM1c+ - FLT3 | Crossing conditional Npm1flox−cA/+ with constitutive Flt3ITD/+ mice | AML development Lethality by the age of 31-68 days Modified blood cell counts Immature blasts in BM Myeloid cells infiltration into organs Splenomegaly and hepatomegaly | [191] | ||
N-RAS-G12D + CBFB-MYH11 | Allelic expression of oncogenic N-RASG12D and CBFB-MYH11 | Leukemia development in a cell-autonomous manner with a short median latency High leukemia-initiating cell activity Increased survival of pre-leukemic short-term HSCs and myeloid progenitor cells with blocked differentiation Leukemic cells were sensitive to MEK/ERK inhibitors | [192] | ||
NPM1c + N-RAS-G12D | Conditional expression of NPM1c+ and N-RAS-G12D | AML-like myeloid differentiation bias Hematopoietic progenitors with high penetrance and enhanced self-renewal capacity Frequent amplification of the mutant N-RAS-G12D allele Somatic mutations in AML driver genes Overexpression of HOX genes | [193] | ||
WT1-R394W + FLT3-ITD | Crossing Flt3+/ITD mice with Wt1+/R394W mice | MDS/MPN development Shortened survival Myeloid expansion in the BM, Anemia Erythroid dysplasia | [197] | ||
Xenograft/humanized models | SCID mice | Autosomal recessive mutation | Lack of B and T cells Retained innate immunity and cytokines Identification of leukemia initiating cells (LIC) Poor engraftment of human AML cells in the BM | [200] | |
NOD/SCID mice | NOD/SCID model: Express additional mutations | Impairment of NK activity Reduced mature macrophages Total lack of B and T cells Fractionation of LIC into subpopulations | [211] | ||
NSS model (N/S-S/GM/3): variant of NOD/SCID mice expressing SF, GM-CSF and IL-3 | Better host for a subset of AML | [222,223] | |||
NSG mice | Deletion or truncation of the γ chain of IL-2R | Defective production of major interleukins and IFN-γ Impairment of dendritic cells Complete abolishment of the NK cell activity Higher engraftment capacity of human AML cells than previous models | [224] |
MuLV Virus | Mouse Strain | AML Subtype | FAB Classification | Major Gene Discoveries | References |
---|---|---|---|---|---|
CasBrM-MuLV | NFS | Granulocytic | M1 or M2 | His-1 | [235,236] |
CasBrE MuLV | NIH Swiss | Myeloid | M1 or M2 | Fli-1 | [237,238,239] |
Endogenous ecotropic MuLV | AKXD-23 | Granulocytic | M1 or M2 | Evi-1 | [240,241] |
Friend-MuLV | C57BL/6 | Granulocytic | M1 or M2 | Ccnd1 | [237,242,243] |
Friend-MuLV | DBA/2 | Myeloblastic | M1 or M2 | Evi-1, & c-myb | [244,245,246] |
M-MuLV | BALB/c | Promonocytic | M5 | c-myb | [246,247] |
B ecotropic MuLV | BXH-2 | Myelomonocytic | M4 | c-myb, HOXa7, HOXa9, Meis1, CBFa1, SOX4, Hhex, Rarg, Sharp1, Ccnd3, Cdc25l, RASGRP, Clabp, Hmgcr, Nf1, & Il17r | [248,249,250,251,252,253,254,255] |
4. Drosophila Melanogaster
AML1-ETO
Author Contributions
Funding
Conflicts of Interest
References
- Lowenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med. 1999, 341, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.F.; Goodman, M.T. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997–2002. Cancer Causes Control 2008, 19, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Maynadie, M.; Girodon, F.; Manivet-Janoray, I.; Mounier, M.; Mugneret, F.; Bailly, F.; Favre, B.; Caillot, D.; Petrella, T.; Flesch, M.; et al. Twenty-five years of epidemiological recording on myeloid malignancies: Data from the specialized registry of hematologic malignancies of Cote d’Or (Burgundy, France). Haematologica 2011, 96, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Lowenberg, B.; Suciu, S.; Archimbaud, E.; Haak, H.; Stryckmans, P.; de Cataldo, R.; Dekker, A.W.; Berneman, Z.N.; Thyss, A.; van der Lelie, J.; et al. Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy—The value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukemia in the elderly: Final report. European Organization for the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group. J. Clin. Oncol. 1998, 16, 872–881. [Google Scholar] [PubMed]
- Bennett, J.M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Vardiman, J.W.; Harris, N.L.; Brunning, R.D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002, 100, 2292–2302. [Google Scholar] [CrossRef]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Dohner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Stuart, G.W.; McMurray, J.V.; Westerfield, M. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 1988, 103, 403–412. [Google Scholar] [PubMed]
- Hwang, W.Y.; Fu, Y.; Reyon, D.; Maeder, M.L.; Tsai, S.Q.; Sander, J.D.; Peterson, R.T.; Yeh, J.R.; Joung, J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 227–229. [Google Scholar] [CrossRef]
- Rasighaemi, P.; Basheer, F.; Liongue, C.; Ward, A.C. Zebrafish as a model for leukemia and other hematopoietic disorders. J. Hematol. Oncol. 2015, 8, 35. [Google Scholar] [CrossRef]
- Macrae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Pruvot, B.; Jacquel, A.; Droin, N.; Auberger, P.; Bouscary, D.; Tamburini, J.; Muller, M.; Fontenay, M.; Chluba, J.; Solary, E. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 2011, 96, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.; Hild, M.; Bauer, H.; Imai, Y.; Maifeld, H.; Schier, A.F.; Talbot, W.S.; Bouwmeester, T.; Hammerschmidt, M. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 2000, 127, 343–354. [Google Scholar] [PubMed]
- Schmid, B.; Fürthauer, M.; Connors, S.A.; Trout, J.; Thisse, B.; Thisse, C.; Mullins, M.C. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000, 127, 957–967. [Google Scholar] [PubMed]
- Kishimoto, Y.; Lee, K.H.; Zon, L.; Hammerschmidt, M.; Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 1997, 124, 4457–4466. [Google Scholar] [PubMed]
- Paik, E.J.; Zon, L.I. Hematopoietic development in the zebrafish. Int. J. Dev. Boil. 2010, 54, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Carapeti, M.; Aguiar, R.C.; Goldman, J.M.; Cross, N.C. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 1998, 91, 3127–3133. [Google Scholar]
- Coulthard, S.; Chase, A.; Watmore, A.; Swirsky, D.M.; Orchard, K.; Vora, A.; Goldman, J.M. Two cases of inv(8)(p11q13) in AML with erythrophagocytosis: A new cytogenetic variant. Br. J. Haematol. 1998, 100, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, R.C.; Chase, A.; Coulthard, S.; Macdonald, D.H.; Carapeti, M.; Reiter, A.; Sohal, J.; Lennard, A.; Goldman, J.M.; Cross, N.C. Abnormalities of chromosome band 8p11 in leukemia: Two clinical syndromes can be distinguished on the basis of MOZ involvement. Blood 1997, 90, 3130–3135. [Google Scholar]
- Liang, J.; Prouty, L.; Williams, B.J.; Dayton, M.A.; Blanchard, K.L. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 1998, 92, 2118–2122. [Google Scholar]
- Zhuravleva, J.; Paggetti, J.; Martin, L.; Hammann, A.; Solary, E.; Bastie, J.-N.; Delva, L. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br. J. Haematol. 2008, 143, 378–382. [Google Scholar] [CrossRef]
- Hsu, K.; Traver, D.; Kutok, J.L.; Hagen, A.; Liu, T.-X.; Paw, B.H.; Rhodes, J.; Berman, J.N.; Zon, L.I.; Kanki, J.P.; et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004, 104, 1291–1297. [Google Scholar] [CrossRef]
- Voso, M.T.; Burn, T.C.; Wulf, G.; Lim, B.; Leone, G.; Tenen, D.G. Inhibition of hematopoiesis by competitive binding of transcription factor PU. Proc. Natl. Acad. Sci. USA 1994, 91, 7932–7936. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 1973, 16, 109–112. [Google Scholar] [PubMed]
- Erickson, P.; Gao, J.; Chang, K.S.; Look, T.; Whisenant, E.; Raimondi, S.; Lasher, R.; Trujillo, J.; Rowley, J.; Drabkin, H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992, 80, 1825–1831. [Google Scholar] [PubMed]
- Miyoshi, H.; Shimizu, K.; Kozu, T.; Maseki, N.; Kaneko, Y.; Ohki, M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 1991, 88, 10431–10434. [Google Scholar] [CrossRef] [PubMed]
- Nisson, P.E.; Watkins, P.C.; Sacchi, N. Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet. Cytogenet. 1992, 63, 81–88. [Google Scholar] [CrossRef]
- Yeh, J.R.; Munson, K.M.; Chao, Y.L.; Peterson, Q.P.; Macrae, C.A.; Peterson, R.T. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 2008, 135, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-R.J.; Munson, K.M.; Elagib, K.E.; Goldfarb, A.N.; Sweetser, D.A.; Peterson, R.T. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Methods 2009, 5, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirvonen, H.; Hukkanen, V.; Salmi, T.T.; Mäkelä, T.P.; Pelliniemi, T.T.; Knuutila, S.; Alitalo, R. Expression of L-myc and N-myc proto-oncogenes in human leukemias and leukemia cell lines. Blood 1991, 78, 3012–3020. [Google Scholar] [PubMed]
- Hirvonen, H.; Hukkanen, V.; Salmi, T.T.; Pelliniemi, T.T.; Alitalo, R. L-myc and N-myc in hematopoietic malignancies. Leuk Lymphoma 1993, 11, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.E.; Mahfouz, R.; Onciu, M.; Liu, H.-C.; Zhou, X.; Song, G.; Shurtleff, S.A.; Pounds, S.; Cheng, C.; Ma, J.; et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004, 104, 3679–3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.J.; Chen, F.Y.; Zhang, Y.; Cao, L.F.; Kuang, Y.; Zhong, M.; Wang, T.; Zhong, H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS ONE 2013, 8, e59070. [Google Scholar] [CrossRef] [PubMed]
- Mackarehtschian, K.; Hardin, J.D.; Moore, K.A.; Boast, S.; Goff, S.P.; Lemischka, I.R. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995, 3, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Carow, C.E.; Levenstein, M.; Kaufmann, S.H.; Chen, J.; Amin, S.; Rockwell, P.; Witte, L.; Borowitz, M.J.; Civin, C.I.; Small, D. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996, 87, 1089–1096. [Google Scholar] [PubMed]
- Rosnet, O.; Bühring, H.J.; Marchetto, S.; Rappold, I.; Lavagna, C.; Sainty, D.; Arnoulet, C.; Chabannon, C.; Kanz, L.; Hannum, C.; et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996, 10, 238–248. [Google Scholar] [PubMed]
- Kiyoi, H.; Ohno, R.; Ueda, R.; Saito, H.; Naoe, T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002, 21, 2555–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiike, S.; Yokota, S.; Nakao, M.; Iwai, T.; Sasai, Y.; Kaneko, H.; Taniwaki, M.; Kashima, K.; Fujii, H.; Abe, T.; et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997, 11, 1442–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyoi, H.; Naoe, T.; Nakano, Y.; Yokota, S.; Minami, S.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Jinnai, I.; Shimazaki, C.; et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999, 93, 3074–3080. [Google Scholar]
- Yu, Y.; Maggi, L.B.; Brady, S.N.; Apicelli, A.J.; Dai, M.-S.; Lu, H.; Weber, J.D. Nucleophosmin Is Essential for Ribosomal Protein L5 Nuclear Export. Mol. Cell. Boil. 2006, 26, 3798–3809. [Google Scholar] [CrossRef] [Green Version]
- Savkur, R. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res. 1998, 26, 4508–4515. [Google Scholar] [CrossRef] [Green Version]
- Falini, B.; Mecucci, C.; Tiacci, E.; Alcalay, M.; Rosati, R.; Pasqualucci, L.; La Starza, R.; Diverio, D.; Colombo, E.; Santucci, A.; et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 2005, 352, 254–266. [Google Scholar] [CrossRef]
- He, B.-L.; Shi, X.; Man, C.H.; Ma, A.C.H.; Ekker, S.C.; Chow, H.C.H.; So, C.W.E.; Choi, W.W.L.; Zhang, W.; Zhang, Y.; et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 2014, 123, 2518–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolli, N.; Payne, E.M.; Grabher, C.; Lee, J.S.; Johnston, A.B.; Falini, B.; Kanki, J.P.; Look, A.T. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 2010, 115, 3329–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.-W.; Hou, H.-A.; Hsieh, M.-S.; Tien, H.-F.; Lin, L.-I. Overexpression of FLT3-ITD driven by spi-1 results in expanded myelopoiesis with leukemic phenotype in zebrafish. Leukemia 2016, 30, 2098–2101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Kinjo, K.; Judelson, D.R.; Chang, J.; Wu, W.S.; Schmid, I.; Shankar, D.B.; Kasahara, N.; Stripecke, R.; Bhatia, R.; et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood 2008, 111, 1182–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, K.; Sandoval, S.; Sakamoto, K.M.; Shankar, D.B. The Role of CREB as a Proto-oncogene in Hematopoiesis. Cell Cycle 2005, 4, 1134–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crans, H.N.; Sakamoto, K.M. Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia 2001, 15, 313–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tregnago, C.; Manara, E.; Zampini, M.; Bisio, V.; Borga, C.; Bresolin, S.; Aveic, S.; Germano, G.; Basso, G.; Pigazzi, M. CREB engages C/EBPdelta to initiate leukemogenesis. Leukemia 2016, 30, 1887–1896. [Google Scholar] [CrossRef]
- Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [Google Scholar] [CrossRef]
- Lu, J.W.; Hsieh, M.S.; Hou, H.A.; Chen, C.Y.; Tien, H.F.; Lin, L.I. Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J. 2017, 7, e593. [Google Scholar] [CrossRef]
- Zhang, H.; Alberich-Jorda, M.; Amabile, G.; Yang, H.; Staber, P.B.; Di Ruscio, A.; Welner, R.S.; Ebralidze, A.; Zhang, J.; Levantini, E.; et al. Sox4 is a key oncogenic target in C/EBPalpha mutant acute myeloid leukemia. Cancer Cell 2013, 24, 575–588. [Google Scholar] [CrossRef]
- Fung, T.K.; Leung, A.Y.; So, C.W. Sox4you: A new player in C/EBPalpha leukemia. Cancer Cell 2013, 24, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Paschka, P.; Schlenk, R.F.; Gaidzik, V.I.; Habdank, M.; Krönke, J.; Bullinger, L.; Späth, D.; Kayser, S.; Zucknick, M.; Götze, K.; et al. IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia with NPM1 Mutation Without FLT3 Internal Tandem Duplication. J. Clin. Oncol. 2010, 28, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; He, B.-L.; Ma, A.C.H.; Guo, Y.; Chi, Y.; Man, C.H.; Zhang, W.; Zhang, Y.; Wen, Z.; Cheng, T.; et al. Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. Blood 2015, 125, 2974–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guryev, V.; Koudijs, M.J.; Berezikov, E.; Johnson, S.L.; Plasterk, R.H.; van Eeden, F.J.; Cuppen, E. Genetic variation in the zebrafish. Genome Res. 2006, 16, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svejda, J.; Kossey, P.; Hlavayova, E.; Svec, F. Histological picture of the transplantable rat leukaemia induced by x-irradiation and methylcholanthrene. Neoplasma 1958, 5, 123–131. [Google Scholar] [PubMed]
- Huggins, C.B.; Sugiyama, T. Induction of leukemia in rat by pulse doses of 7,12-dimethylbenz(a)anthracene. Proc. Natl. Acad. Sci. USA 1966, 55, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Huggins, C.B.; Grand, L.; Ueda, N. Specific induction of erythroleukemia and myelogenous leukemia in Sprague-Dawley rats. Proc. Natl. Acad. Sci. USA 1982, 79, 5411–5414. [Google Scholar] [CrossRef] [PubMed]
- Somfai, S.; Szentirmay, Z.; Gál, F. Transplantable Myeloid Rat Leukaemia Induced by 7,12-Dimethylbenz(a)anthracene. Acta Haematol. 1973, 49, 281–290. [Google Scholar]
- Bekkum, D.W.; van Hagenbeek, A. Relevance of the BN leukemia as a model for human acute myeloid leukemia. Blood Cells Mol. Dis. 1977, 3, 565–579. [Google Scholar]
- Van Bekkum, D.W.; Van Oosterom, P.; Dicke, K.A. In vitro colony formation of transplantable rat leukemias in comparison with human acute myeloid leukemia. Cancer Res. 1976, 36, 941–946. [Google Scholar]
- Hagenbeek, A.; van Bekkum, D.W. Comparitive evaluation of the L5222 and the BNML rat leukaemia models and their relavance to human acute leukaemia. Leuk. Res. 1977, 1, 75–256. [Google Scholar] [CrossRef]
- Nooter, K.; Sonneveld, P.; Deurloo, J.; Oostrum, R.; Schultz, F.; Martens, A.; Hagenbeek, A. Repeated daunomycin administration in rats. Cancer Chemother. Pharmacol. 1984, 12, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Van Bekkum, D.W. Different distribution of adriamycin in normal and leukaemic rats. Br. J. Cancer 1981, 43, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colly, L.P.; Van Bekkum, D.W.; Hagenbeek, A. Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelocytic leukemia. Leuk. Res. 1984, 8, 953–963. [Google Scholar] [CrossRef]
- Aglietta, M.; Sonneveld, P. The relevance of cell kinetics for optimal scheduling of 1-beta-D-arabinofuranosyl cytosine and methotrexate in a slow growing acute myeloid leukemia (BNML). Cancer Chemother. Pharmacol. 1978, 1, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Hagenbeek, A.; Martens, A.C. AMSA: In vivo log cell kill for leukemic clonogenic cells versus toxicity for normal hemopoietic stem cells in a rat model for human acute myelocytic leukemia (BNML). Eur. J. Cancer Clin. Oncol. 1986, 22, 1255–1258. [Google Scholar] [CrossRef]
- Ermens, A.A.; Kroes, A.C.; Lindemans, J.; Abels, J. 5-Fluorouracil treatment of rat leukemia and a reappraisal of its application in human leukemia. Anticancer Res. 1986, 6, 797–800. [Google Scholar] [PubMed]
- Kroes, A.C.M.; Lindemans, J.; Schoester, M.; Abels, J. Enhanced therapeutic effect of methotrexate in experimental rat leukemia after inactivation of cobalamin (vitamin B12) by nitrous oxide. Cancer Chemother. Pharmacol. 1986, 17, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Holcenberg, J.; Van Bekkum, D. Effect of succinylated Acinetobacter glutaminase-asparaginase treatment on an acute myeloid leukemia in the rat (BNML). Eur. J. Cancer (1965) 1979, 15, 1061–1063. [Google Scholar] [CrossRef]
- Arkesteijn, G.J.A.; Martens, A.C.M.; Jonker, R.R.; Hagemeijer, A.; Hagenbeek, A. Bivariate flow karyotyping of acute myelocytic leukemia in the BNML rat model. Cytometry 1987, 8, 618–624. [Google Scholar] [CrossRef]
- Martens, A.C.M.; Hagenbeek, A. Detection of minimal disease in acute leukemia using flow cytometry: Studies in a rat model for human acute leukemia. Cytometry 1985, 6, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.C.M.; Van Bekkum, D.W.; Hagenbeek, A. Minimal residual disease in leukemia: Studies in an animal model for acute myelocytic leukemia (bnml). Stem Cells 1990, 8, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Law, L.W.; Taormina, V.; Boyle, P.J. Response of acute lymphocytic leukemias to the purine antagonist 6-mercaptopurine. Ann. N. Y. Acad. Sci. 1954, 60, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Skipper, H.E.; Perry, S. Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy. Cancer Res. 1970, 30, 1883–1897. [Google Scholar] [PubMed]
- Casazza, A.M.; Pratesi, G.; Giuliani, F.; Di Marco, A. Antileukemic Activity of 4-Demethoxydaunorubicin in Mice. Tumori J. 1980, 66, 549–564. [Google Scholar] [CrossRef]
- Law, L.W.; Dunn, T.B.; Boyle, P.J.; Miller, J.H. Observations on the Effect of a Folic-Acid Antagonist on Transplantable Lymphoid Leukemias in Mice. J. Natl. Cancer Inst. 1949, 10, 179–192. [Google Scholar]
- Kline, I.; Venditti, J.M.; Mead, J.A.; Tyrer, D.D.; Goldin, A. The antileukemic effectiveness of 5-fluorouracil and methotrexate in the combination chemotherapy of advanced leukemia L1210 in mice. Cancer Res. 1966, 26, 848–852. [Google Scholar] [PubMed]
- Kline, I.; Venditti, J.M.; Tyrer, D.D.; Mantel, N.; Goldin, A. Chemotherapy of leukemia L1210 in mice with 1-beta-D-arabinofuranosylcytosine hydrochloride. II. Effectiveness against intracerebrally and subcutaneously inoculated leukemic cells. Cancer Res. 1966, 26, 1930–1937. [Google Scholar] [PubMed]
- Jensen, P.B.; Roed, H.; Skovsgaard, T.; Friche, E.; Spang-Thomsen, M. Antitumor activity of the two epipodophyllotoxin derivatives VP-16 and VM-26 in preclinical systems: A comparison of in vitro and in vivo drug evaluation. Cancer Chemother. Pharmacol. 1990, 27, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Skipper, H.E.; Schabel, F.M.; Wilcox, W.S. Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer Chemother. Rep. 1967, 51, 125–165. [Google Scholar] [PubMed]
- Kawasaki, Y.; Hirabayashi, Y.; Kaneko, T.; Kanno, J.; Kodama, Y.; Matsushima, Y.; Ogawa, Y.; Saitoh, M.; Sekita, K.; Uchida, O.; et al. Benzene-Induced Hematopoietic Neoplasms Including Myeloid Leukemia in Trp53-Deficient C57BL/6 and C3H/He Mice. Toxicol. Sci. 2009, 110, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Preston, D.L.; Kusumi, S.; Tomonaga, M.; Izumi, S.; Ron, E.; Kuramoto, A.; Kamada, N.; Dohy, H.; Matsuo, T.; Matsui, T.; et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 1994, 137 (Suppl. 2), S68–S97. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.A.; Boice, J.D.; Muirhead, C.R.; Little, M.P.; Darby, S.C.; Day, N.E. Risks of Leukemia in Japanese Atomic Bomb Survivors, in Women Treated for Cervical Cancer, and in Patients Treated for Ankylosing Spondylitis. Radiat. Res. 1999, 152, 280. [Google Scholar]
- Tomonaga, M. Leukaemia in Nagasaki atomic bomb survivors from 1945 through 1959. Bull. World Health Organ. 1962, 26, 619–631. [Google Scholar] [PubMed]
- Finch, S.C. Radiation-induced leukemia: Lessons from history. Best Pract. Res. Clin. Haematol. 2007, 20, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Silver, A.; Moody, J.; Dunford, R.; Clark, D.; Ganz, S.; Bulman, R.; Bouffler, S.; Finnon, P.; Meijne, E.; Huiskamp, R.; et al. Molecular mapping of chromosome 2 deletions in murine radiation-induced AML localizes a putative tumor suppressor gene to a 1.0 cM region homologous to human chromosome segment 11p11–12. Genes Chromosome Cancer 1999, 24, 95–104. [Google Scholar] [CrossRef]
- Furth, J.; Seibold, H.R.; Rathbone, R.R. Experimental studies on lymphomatosis. Am. J. Cancer 1933, 19, 521–604. [Google Scholar]
- Ullrich, R.L.; Preston, R.J. Myeloid leukemia in male RFM mice following irradiation with fission spectrum neutrons or gamma rays. Radiat. Res. 1987, 109, 165–170. [Google Scholar] [CrossRef]
- Wolman, S.R.; McMorrow, L.E.; Cohen, M.W. Animal model of human disease: Myelogenous leukemia in the RF mouse. Am. J. Pathol. 1982, 107, 280–284. [Google Scholar]
- Finnon, R.; Brown, N.; Moody, J.; Badie, C.; Olme, C.-H.; Huiskamp, R.; Meijne, E.; Sutmuller, M.; Rosemann, M.; Bouffler, S.D. Flt3-ITD mutations in a mouse model of radiation-induced acute myeloid leukaemia. Leukemia 2012, 26, 1445–1446. [Google Scholar] [CrossRef]
- Small, D. FLT3 mutations: Biology and treatment. Hematol. Am. Soc. Hematol. Educ. Program 2006, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dunn, T.B. Normal and Pathologic Anatomy of the Reticular Tissue in Laboratory Mice, With a Classification and Discussion of Neoplasms. J. Natl. Cancer Inst. 1954, 14, 1281–1433. [Google Scholar] [PubMed]
- Pedersen-Bjergaard, J.; Philip, P.; Pedersen, N.T.; Hou-Jensen, K.; Svejgaard, A.; Jensen, G.; Nissen, N.I. Acute nonlymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome secondary to treatment of other malignant diseases. II. Bone marrow cytology, cytogenetics, results of HLA typing, response to antileukemic chemotherapy, and survival in a total series of 55 patients. Cancer 1984, 54, 452–462. [Google Scholar] [PubMed]
- Haran-Ghera, N.; Krautghamer, R.; Lapidot, T.; Peled, A.; Dominguez, M.G.; Stanley, E.R. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood 1997, 89, 2537–2545. [Google Scholar] [PubMed]
- Chia, R.; Achilli, F.; Festing, M.F.W.; Fisher, E.M.C. The origins and uses of mouse outbred stocks. Nat. Genet. 2005, 37, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.; Kai, M.; Kusama, T. Chromosome Aberrations in Bone Marrow Cells of C3H/He Mice at an Early Stage after Whole-Body Irradiation. J. Radiat. Res. 1997, 38, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Rithidech, K.; Dunn, J.J.; Bond, V.P.; Gordon, C.R.; Cronkite, E.P. Characterization of genetic instability in radiation- and benzene-induced murine acute leukemia. Mutat. Res. Mol. Mech. Mutagen. 1999, 428, 33–39. [Google Scholar] [CrossRef]
- Cleary, H. Allelic loss on chromosome 4 (Lyr2/TLSR5) is associated with myeloid, B-lympho-myeloid, and lymphoid (B and T) mouse radiation-induced leukemias. Blood 2001, 98, 1549–1554. [Google Scholar] [CrossRef]
- Giotopoulos, G.; McCormick, C.; Cole, C.; Zanker, A.; Jawad, M.; Brown, R.; Plumb, M. DNA methylation during mouse hemopoietic differentiation and radiation-induced leukemia. Exp. Hematol. 2006, 34, 1462–1470. [Google Scholar] [CrossRef]
- Siegler, R.; Rich, M.A. Pathogenesis of Virus-Induced Myeloid Leukemia in Mice. J. Natl. Cancer Inst. 1967, 38, 31–50. [Google Scholar]
- McGarry, M.P.; Steeves, R.A.; Eckner, R.J.; Mirand, E.A.; Trudel, P.J. Isolation of a myelogenous leukemia-inducing virus from mice infected with the friend virus complex. Int. J. Cancer 1974, 13, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Rein, A. Murine Leukemia Viruses: Objects and Organisms. Adv. Virol. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, L. Development and serial cellfree passage of a highly potent strain of mouse leukemia virus. Proc. Soc. Exp. Biol. Med. 1957, 94, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Linemeyer, D.L.; Menke, J.G.; Ruscetti, S.K.; Evans, L.H.; Scolnick, E.M. Envelope gene sequences which encode the gp52 protein of spleen focus-forming virus are required for the induction of erythroid cell proliferation. J. Virol. 1982, 43, 223–233. [Google Scholar] [PubMed]
- Ruscetti, S.; Wolff, L. Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector. Science 1985, 228, 1549–1552. [Google Scholar]
- Perkins, A.S. The Pathology of Murine Myelogenous Leukemias. Curr. Top. Microbiol. Immunol. 1989, 149, 3–21. [Google Scholar]
- Largaespada, D.A. Genetic heterogeneity in acute myeloid leukemia: Maximizing information flow from MuLV mutagenesis studies. Leukemia 2000, 14, 1174–1184. [Google Scholar] [CrossRef]
- Dupuy, A.J. Transposon-based screens for cancer gene discovery in mouse models. Semin. Cancer Biol. 2010, 20, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Largaespada, D.A. Transposon-mediated mutagenesis of somatic cells in the mouse for cancer gene identification. Methods 2009, 49, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Collier, L.S.; Adams, D.J.; Hackett, C.S.; Bendzick, L.E.; Akagi, K.; Davies, M.N.; Diers, M.D.; Rodriguez, F.J.; Bender, A.M.; Tieu, C.; et al. Whole-body Sleeping Beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res. 2009, 69, 8429–8437. [Google Scholar] [CrossRef]
- Vassiliou, G.S.; Cooper, J.L.; Rad, R.; Li, J.; Rice, S.; Uren, A.; Rad, L.; Ellis, P.; Andrews, R.; Banerjee, R.; et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat. Genet. 2011, 43, 470–475. [Google Scholar] [PubMed]
- Kakizuka, A.; Miller, W.H.; Umesono, K.; Warrell, R.P.; Frankel, S.R.; Murty, V.V.; Dmitrovsky, E.; Evans, R.M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991, 66, 663–674. [Google Scholar] [CrossRef]
- De Thé, H.; Lavau, C.; Marchio, A.; Chomienne, C.; Degos, L.; Dejean, A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991, 66, 675–684. [Google Scholar] [CrossRef]
- Early, E.; Moore, M.A.; Kakizuka, A.; Nason-Burchenal, K.; Martin, P.; Evans, R.M.; Dmitrovsky, E. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc. Natl. Acad. Sci. USA 1996, 93, 7900–7904. [Google Scholar] [CrossRef] [PubMed]
- Grisolano, J.L.; Wesselschmidt, R.L.; Pelicci, P.G.; Ley, T.J. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997, 89, 376–387. [Google Scholar] [PubMed]
- Brown, D.; Kogan, S.; Lagasse, E.; Weissman, I.; Alcalay, M.; Pelicci, P.G.; Atwater, S.; Bishop, J.M. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997, 94, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Stacy, T.; Binder, M.; Marin-Padilla, M.; Sharpe, A.H.; Speck, N.A. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 1996, 93, 3444–3449. [Google Scholar] [CrossRef]
- Okuda, T.; Van Deursen, J.; Hiebert, S.W.; Grosveld, G.; Downing, J.R. AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis. Cell 1996, 84, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Okuda, T.; Cai, Z.; Yang, S.; Lenny, N.; Lyu, C.J.; Van Deursen, J.M.; Harada, H.; Downing, J.R. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998, 91, 3134–3143. [Google Scholar]
- Rhoades, K.L.; Hetherington, C.J.; Harakawa, N.; Yergeau, D.A.; Zhou, L.; Liu, L.Q.; Little, M.T.; Tenen, D.G.; Zhang, D.E. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000, 96, 2108–2115. [Google Scholar]
- Higuchi, M.; O’Brien, D.; Kumaravelu, P.; Lenny, N.; Yeoh, E.-J.; Downing, J.R. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002, 1, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhou, L.; Miyamoto, T.; Iwasaki, H.; Harakawa, N.; Hetherington, C.J.; Burel, S.A.; Lagasse, E.; Weissman, I.L.; Akashi, K.; et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl. Acad. Sci. USA 2001, 98, 10398–10403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nick, H.J.; Kim, H.G.; Chang, C.W.; Harris, K.W.; Reddy, V.; Klug, C.A. Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood 2012, 119, 1522–1531. [Google Scholar] [CrossRef]
- Schessl, C.; Rawat, V.P.; Cusan, M.; Deshpande, A.; Kohl, T.M.; Rosten, P.M.; Spiekermann, K.; Humphries, R.K.; Schnittger, S.; Kern, W.; et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J. Clin. Investig. 2005, 115, 2159–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wang, Q.; Crute, B.E.; Melnikova, I.N.; Keller, S.R.; Speck, N.A. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Boil. 1993, 13, 3324–3339. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.; Kern, W.; Schnittger, S.; Büchner, T.; Hiddemann, W.; Haferlach, T. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 2004, 89, 1082–1090. [Google Scholar] [PubMed]
- Liu, P.; Tarlé, S.; Hajra, A.; Claxton, D.; Marlton, P.; Freedman, M.; Siciliano, M.; Collins, F. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993, 261, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Castilla, L.H.; Garrett, L.; Adya, N.; Orlic, D.; Dutra, A.; Anderson, S.; Owens, J.; Eckhaus, M.; Bodine, D.; Liu, P.P. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat. Genet. 1999, 23, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Castilla, L.H.; Perrat, P.; Martinez, N.J.; Landrette, S.F.; Keys, R.; Oikemus, S.; Flanegan, J.; Heilman, S.; Garrett, L.; Dutra, A.; et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 4924–4929. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.H.; Landrette, S.F.; Heilman, S.A.; Perrat, P.N.; Garrett, L.; Liu, P.P.; Le Beau, M.M.; Kogan, S.C.; Castilla, L.H. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006, 9, 57–68. [Google Scholar] [CrossRef]
- Verhaak, R.G.W. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): Association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005, 106, 3747–3754. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Sportoletti, P.; Ito, K.; Clohessy, J.G.; Teruya-Feldstein, J.; Kutok, J.L.; Pandolfi, P.P. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 2010, 115, 3341–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, S.H.; Ko, B.S.; Chiou, J.S.; Hsu, Y.C.; Tsai, M.H.; Chiu, Y.C.; Yu, I.S.; Lin, S.W.; Hou, H.A.; Kuo, Y.Y.; et al. A knock-in Npm1 mutation in mice results in myeloproliferation and implies a perturbation in hematopoietic microenvironment. PLoS ONE 2012, 7, e49769. [Google Scholar] [CrossRef] [PubMed]
- Mallardo, M.; Caronno, A.; Pruneri, G.; Raviele, P.R.; Viale, A.; Pelicci, P.G.; Colombo, E. NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013, 27, 2248–2251. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, D.G.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.H.; Williams, I.R.; Anastasiadou, E.; Boulton, C.L.; Joseph, S.W.; Amaral, S.M.; Curley, D.P.; Duclos, N.; Huntly, B.J.P.; Fabbro, D.; et al. FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene 2005, 24, 7882–7892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Bailey, E.; Greenblatt, S.; Huso, D.; Small, D. Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood 2011, 118, 4935–4945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.H.; Tothova, Z.; Levine, R.L.; Anderson, K.; Buza-Vidas, N.; Cullen, D.E.; McDowell, E.P.; Adelsperger, J.; Fröhling, S.; Huntly, B.J.; et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007, 12, 367–380. [Google Scholar] [CrossRef]
- Kharazi, S.; Mead, A.J.; Mansour, A.; Hultquist, A.; Böiers, C.; Luc, S.; Buza-Vidas, N.; Ma, Z.; Ferry, H.; Atkinson, D.; et al. Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation. Blood 2011, 118, 3613–3621. [Google Scholar] [CrossRef]
- Iida, S.; Seto, M.; Yamamoto, K.; Komatsu, H.; Tojo, A.; Asano, S.; Kamada, N.; Ariyoshi, Y.; Takahashi, T.; Ueda, R. MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous to MLLT1 on 19p13. Oncogene 1993, 8, 3085–3092. [Google Scholar]
- Nakamura, T.; Alder, H.; Gu, Y.; Prasad, R.; Canaani, O.; Kamada, N.; Gale, R.P.; Lange, B.; Crist, W.M.; Nowell, P.C.; et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc. Natl. Acad. Sci. USA 1993, 90, 4631–4635. [Google Scholar] [CrossRef] [PubMed]
- Corral, J.; Lavenir, I.; Impey, H.; Warren, A.J.; Forster, A.; Larson, T.A.; Bell, S.; McKenzie, A.N.; King, G.; Rabbitts, T.H. An Mll–AF9 Fusion Gene Made by Homologous Recombination Causes Acute Leukemia in Chimeric Mice: A Method to Create Fusion Oncogenes. Cell 1996, 85, 853–861. [Google Scholar] [CrossRef]
- Collins, E.C.; Pannell, R.; Simpson, E.M.; Forster, A.; Rabbitts, T.H. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep. 2000, 1, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulou, V.; Kaspar, S.; Brault, L.; Sanders, M.A.; Juge, S.; Morettini, S.; Tzankov, A.; Iacovino, M.; Lau, I.-J.; Milne, T.A.; et al. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell 2016, 30, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.J.; Chen, W.; Hudson, W.; Yao, Q.; Taylor, M.; Rabbitts, T.H.; Kersey, J.H. Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood 2003, 101, 3229–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayton, P.M.; Cleary, M.L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genome Res. 2003, 17, 2298–2307. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Hofmann, J.; Burmeister, T.; Gröger, D.; Park, T.S.; Emerenciano, M.; Pombo-De-Oliveira, M.D.S.; Renneville, A.; Villarese, P.; MacIntyre, E.; et al. The MLL recombinome of acute leukemias in 2013. Leukemia 2013, 27, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Q.; Hudson, W.A.; Kumar, A.; Kirchhof, N.; Kersey, J.H. A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006, 108, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzler, M.; Förster, A.; Pannell, R.; Arends, M.J.; Daser, A.; Lobato, M.N.; Rabbitts, T.H. A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 2006, 25, 3093–3103. [Google Scholar] [CrossRef] [Green Version]
- Barrett, N.A.; Malouf, C.; Kapeni, C.; Bacon, W.A.; Giotopoulos, G.; Jacobsen, S.E.W.; Huntly, B.J.; Ottersbach, K. Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep. 2016, 16, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Krivtsov, A.V.; Feng, Z.; Lemieux, M.E.; Faber, J.; Vempati, S.; Sinha, A.U.; Xia, X.; Jesneck, J.; Bracken, A.P.; Silverman, L.B.; et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008, 14, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Lavau, C.; Szilvassy, S.J.; Slany, R.; Cleary, M.L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997, 16, 4226–4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisig, B.B.; García-Cuéllar, M.P.; Winkler, T.H.; Slany, R.K. The Oncoprotein MLL–ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 2003, 22, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Zeisig, B.B.; Milne, T.; García-Cuéllar, M.-P.; Schreiner, S.; Martin, M.-E.; Fuchs, U.; Borkhardt, A.; Chanda, S.K.; Walker, J.; Soden, R.; et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol. Cell. Boil. 2004, 24, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.A.; Hope, K.J.; Dick, J.E.; Barabé, F. Modeling the Initiation and Progression of Human Acute Leukemia in Mice. Science 2007, 316, 600–604. [Google Scholar]
- Ugale, A.; Säwén, P.; Dudenhöffer-Pfeifer, M.; Wahlestedt, M.; Norddahl, G.L.; Bryder, D. MLL-ENL-mediated leukemia initiation at the interface of lymphoid commitment. Oncogene 2017, 36, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Knobbe, C.B.; Munger, J.C.; Lind, E.F.; Brenner, D.; Brüstle, A.; Harris, I.S.; Holmes, R.; Wakeham, A.; Haight, J.; et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012, 488, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Callens, C.; Chevret, S.; Cayuela, J.M.; Cassinat, B.; Raffoux, E.; de Botton, S.; Thomas, X.; Guerci, A.; Fegueux, N.; Pigneux, A.; et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): A retrospective study from the European APL Group. Leukemia 2005, 19, 1153–1160. [Google Scholar] [CrossRef]
- Bowen, D.T.; Frew, M.E.; Hills, R.; Gale, R.E.; Wheatley, K.; Groves, M.J.; Langabeer, S.E.; Kottaridis, P.D.; Moorman, A.V.; Burnett, A.K.; et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 2005, 106, 2113–2119. [Google Scholar] [CrossRef] [Green Version]
- Chan, I.T.; Kutok, J.L.; Williams, I.R.; Cohen, S.; Moore, S.; Shigematsu, H.; Ley, T.J.; Akashi, K.; Le Beau, M.M.; Gilliland, D.G. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 2006, 108, 1708–1715. [Google Scholar] [CrossRef]
- Taylor, C.; McGlynn, H.; Carter, G.; Baker, A.H.; Warren, N.; Ridge, S.A.; Owen, G.; Thompson, E.; Thompson, P.W.; Jacobs, A. RAS and FMS mutations following cytotoxic therapy for childhood acute lymphoblastic leukaemia. Leukemia 1995, 9, 466–470. [Google Scholar] [PubMed]
- Padua, R.A.; Guinn, B.-A.; Al-Sabah, A.I.; Smith, M.; Taylor, C.; Pettersson, T.; Ridge, S.; Carter, G.; White, D.; Oscier, D.; et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: A 10-year follow-up. Leukemia 1998, 12, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Karakas, T.; Maurer, U.; Weidmann, E.; Miething, C.C.; Hoelzer, D.; Bergmann, L. High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann. Oncol. 1998, 9, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Benito, A.; Grillot, D.; Nuñez, G.; Fernández-Luna, J.L. Regulation and function of Bcl-2 during differentiation-induced cell death in HL-60 promyelocytic cells. Am. J. Pathol. 1995, 146, 481–490. [Google Scholar] [PubMed]
- Omidvar, N.; Kogan, S.; Beurlet, S.; Le Pogam, C.; Janin, A.; West, R.; Noguera, M.-E.; Reboul, M.; Soulié, A.; Leboeuf, C.; et al. BCL-2 and Mutant NRAS Interact Physically and Functionally in a Mouse Model of Progressive Myelodysplasia. Cancer Res. 2007, 67, 11657–11667. [Google Scholar] [CrossRef] [PubMed]
- Steudel, C.; Wermke, M.; Schaich, M.; Schakel, U.; Illmer, T.; Ehninger, G.; Thiede, C. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 2003, 37, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.Y.; Liang, D.C.; Fu, J.F.; Wu, J.H.; Wang, P.N.; Lin, T.L.; Dunn, P.; Kuo, M.C.; Tang, T.C.; Lin, T.H.; et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 2006, 20, 218–223. [Google Scholar] [CrossRef]
- Whitman, S.P.; Ruppert, A.S.; Marcucci, G.; Mrózek, K.; Paschka, P.; Langer, C.; Baldus, C.D.; Wen, J.; Vukosavljevic, T.; Powell, B.L.; et al. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: A Cancer and Leukemia Group B study. Blood 2007, 109, 5164–5167. [Google Scholar] [CrossRef]
- Zorko, N.A.; Bernot, K.M.; Whitman, S.P.; Siebenaler, R.F.; Ahmed, E.H.; Marcucci, G.G.; Yanes, D.A.; McConnell, K.K.; Mao, C.; Kalu, C.; et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 2012, 120, 1130–1136. [Google Scholar] [CrossRef]
- Whitman, S.P.; Archer, K.J.; Feng, L.; Baldus, C.; Becknell, B.; Carlson, B.D.; Carroll, A.J.; Mrózek, K.; Vardiman, J.W.; George, S.L.; et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A cancer and leukemia group B study. Cancer Res. 2001, 61, 7233–7239. [Google Scholar]
- Whitman, S.P.; Liu, S.; Vukosavljevic, T.; Rush, L.J.; Yu, L.; Liu, C.; Klisovic, M.I.; Maharry, K.; Guimond, M.; Strout, M.P.; et al. The MLL partial tandem duplication: Evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 2005, 106, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Döhner, K.; Tobis, K.; Ulrich, R.; Fröhling, S.; Benner, A.; Schlenk, R.F. Prognostic Significance of Partial Tandem Duplications of the MLL Gene in Adult Patients 16 to 60 Years Old With Acute Myeloid Leukemia and Normal Cytogenetics: A Study of the Acute Myeloid Leukemia Study Group Ulm. J. Clin. Oncol. 2002, 20, 3254–3261. [Google Scholar] [CrossRef] [PubMed]
- Raza-Egilmez, S.Z.; Jani-Sait, S.N.; Grossi, M.; Higgins, M.J.; Shows, T.B.; Aplan, P.D. NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res. 1998, 58, 4269–4273. [Google Scholar] [PubMed]
- Slape, C.; Lin, Y.W.; Hartung, H.; Zhang, Z.; Wolff, L.; Aplan, P.D. NUP98-HOX translocations lead to myelodysplastic syndrome in mice and men. Journal of the National Cancer Institute. Monographs 2008, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, L.; Argiropoulos, B.; Pineault, N.; Abramovich, C.; Sly, L.M.; Krystal, G.; Wan, A.; Humphries, R.K. The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. Blood 2006, 108, 1030–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenblatt, S.; Li, L.; Slape, C.; Nguyen, B.; Novak, R.; Duffield, A.; Huso, D.; Desiderio, S.; Borowitz, M.J.; Aplan, P.; et al. Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model. Blood 2012, 119, 2883–2894. [Google Scholar] [CrossRef] [Green Version]
- Giampaolo, A.; Felli, N.; Diverio, D.; Morsilli, O.; Samoggia, P.; Breccia, M.; Coco, F.L.; Peschle, C.; Testa, U. Expression pattern of HOXB6 homeobox gene in myelomonocytic differentiation and acute myeloid leukemia. Leukemia 2002, 16, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Amsellem, S.; Pflumio, F.; Bardinet, D.; Izac, B.; Charneau, P.; Roméo, P.-H.; Dubart-Kupperschmitt, A.; Fichelson, S. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat. Med. 2003, 9, 1423–1427. [Google Scholar] [CrossRef]
- Soulier, J.; Clappier, E.; Cayuela, J.-M.; Regnault, A.; García-Peydró, M.; Dombret, H.; Baruchel, A.; Toribio, M.-L.; Sigaux, F. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005, 106, 274–286. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Mupo, A.; Celani, L.; Dovey, O.; Cooper, J.L.; Grove, C.; Rad, R.; Sportoletti, P.; Falini, B.; Bradley, A.; Vassiliou, G.S. A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice. Leukemia 2013, 27, 1917–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Pulikkan, J.A.; Valk, P.J.; Castilla, L.H. NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfbeta-SMMHC via activation of MEK/ERK axis. Blood 2014, 124, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Dovey, O.M.; Cooper, J.L.; Mupo, A.; Grove, C.S.; Lynn, C.; Conte, N.; Andrews, R.M.; Pacharne, S.; Tzelepis, K.; Vijayabaskar, M.S.; et al. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 2017, 130, 1911–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellisen, L.W.; Carlesso, N.; Cheng, T.; Scadden, D.T.; Haber, D.A. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001, 20, 1897–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, K.; Stevens, J.; Kakkas, I.; Smith, M.; Smith, L.L.; MacDougall, F.; Cavenagh, J.; Bonnet, D.; Young, B.D.; Lister, T.A.; et al. Wilms’ tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia 2007, 21, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.-A.; Huang, T.-C.; Lin, L.-I.; Liu, C.-Y.; Chen, C.-Y.; Chou, W.-C.; Tang, J.-L.; Tseng, M.-H.; Huang, C.-F.; Chiang, Y.-C.; et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: Stability during disease evolution and implication of its incorporation into a survival scoring system. Blood 2010, 115, 5222–5231. [Google Scholar] [CrossRef]
- Annesley, C.E.; Rabik, C.; Duffield, A.S.; Rau, R.E.; Magoon, D.; Li, L.; Huff, V.; Small, D.; Loeb, D.M.; Brown, P. Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice. Oncotarget 2018, 9, 35313–35326. [Google Scholar] [CrossRef]
- Nara, N.; Miyamoto, T. Direct and serial transplantation of human acute myeloid leukaemia into nude mice. Br. J. Cancer 1982, 45, 778–782. [Google Scholar] [CrossRef]
- Caretto, P.; Forni, M.; d’Orazi, G.; Scarpa, S.; Feraiorni, P.; Jemma, C.; Modesti, A.; Ferrarini, M.; Roncella, S.; Foa, R.; et al. Xenotransplantation in immunosuppressed nude mice of human solid tumors and acute leukemias directly from patients or in vitro cell lines. Res. Clin. Lab. 1989, 19, 231–243. [Google Scholar]
- Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature 1983, 301, 527–530. [Google Scholar] [CrossRef]
- De Lord, C.; Clutterbuck, R.; Titley, J.; Ormerod, M.; Gordon-Smith, T.; Millar, J.; Powles, R. Growth of primary human acute leukemia in severe combined immunodeficient mice. Exp. Hematol. 1991, 19, 991–993. [Google Scholar]
- Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Salomon, O.; McGuirk, J.; Dennig, D.; Fernandez, J.; Jagiello, C.; Nguyen, H.; Collins, N.; Steinherz, P.; O’Reilly, R.J. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice. Blood 1996, 88, 3137–3146. [Google Scholar] [Green Version]
- Lapidot, T.; Pflumio, F.; Doedens, M.; Murdoch, B.; Williams, D.; Dick, J. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992, 255, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Goan, S.R.; Fichtner, I.; Just, U.; Karawajew, L.; Schultze, W.; Krause, K.P.; Von Harsdorf, S.; Von Schilling, C.; Herrmann, F. The severe combined immunodeficient-human peripheral blood stem cell (SCID-huPBSC) mouse: A xenotransplant model for huPBSC-initiated hematopoiesis. Blood 1995, 86, 89–100. [Google Scholar] [PubMed]
- Cashman, J.D.; Lapidot, T.; Wang, J.C.; Doedens, M.; Shultz, L.D.; Lansdorp, P.; Dick, J.E.; Eaves, C.J. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 1997, 89, 4307–4316. [Google Scholar]
- Nonoyama, S.; Smith, F.O.; Bernstein, I.D.; Ochs, H.D. Strain-dependent leakiness of mice with severe combined immune deficiency. J. Immunol. 1993, 150, 3817–3824. [Google Scholar]
- Carroll, A.M.; Hardy, R.R.; Bosma, M.J. Occurrence of mature B (IgM+, B220+) and T (CD3+) lymphocytes in scid mice. J. Immunol. 1989, 143, 1087–1093. [Google Scholar]
- Kudo, T.; Saijyo, S.; Saeki, H.; Sato, N.; Tachibana, T.; Habu, S. Production of a Human Monoclonal Antibody to a Synthetic Peptide by Active In Vivo Immunization Using a SCID Mouse Grafted with Human Lymphocytes. Tohoku J. Exp. Med. 1993, 171, 327–338. [Google Scholar] [CrossRef]
- Shpitz, B.; Chambers, C.A.; Singhal, A.B.; Hozumi, N.; Fernandes, B.J.; Roifman, C.M.; Weiner, L.M.; Roder, J.C.; Gallinger, S. High level functional engraftment of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo GM. J. Immunol. Methods 1994, 169, 1–15. [Google Scholar] [CrossRef]
- Shultz, L.D.; Schweitzer, P.A.; Christianson, S.W.; Gott, B.; Schweitzer, I.B.; Tennent, B.; McKenna, S.; Mobraaten, L.; Rajan, T.V.; Greiner, D.L. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 1995, 154, 180–191. [Google Scholar] [PubMed]
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Ailles, L.E.; Gerhard, B.; Kawagoe, H.; Hogge, D.E. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999, 94, 1761–1772. [Google Scholar] [PubMed]
- Lumkul, R.; Gorin, N.-C.; Malehorn, M.T.; Hoehn, G.T.; Zheng, R.; Baldwin, B.; Small, D.; Gore, S.; Smith, D.; Meltzer, P.S.; et al. Human AML cells in NOD/SCID mice: Engraftment potential and gene expression. Leukemia 2002, 16, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Marx, J. Cancer research. Mutant stem cells may seed cancer. Science 2003, 301, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Zhao, L.; McGirr, C.; Gonda, T.J. MYB down-regulation enhances sensitivity of U937 myeloid leukemia cells to the histone deacetylase inhibitor LBH589 in vitro and in vivo. Cancer Lett. 2014, 343, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Hogge, D.E.; Sutherland, H.J. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR. Blood 1998, 92, 4325–4335. [Google Scholar]
- Blair, A.; Hogge, D.E.; Ailles, L.E.; Lansdorp, P.M.; Sutherland, H.J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997, 89, 3104–3112. [Google Scholar]
- Blair, A.; Sutherland, H.J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp. Hematol. 2000, 28, 660–671. [Google Scholar] [CrossRef]
- Ahmed, F.; Ings, S.J.; Pizzey, A.R.; Blundell, M.P.; Thrasher, A.J.; Ye, H.T.; Fahey, A.; Linch, D.C.; Yong, K.L. Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood 2004, 103, 2079–2087. [Google Scholar] [CrossRef]
- Bonnet, D.; Bhatia, M.; Wang, J.C.Y.; Kapp, U.; Dick, J.E. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant. 1999, 23, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuring-Buske, M.; Gerhard, B.; Cashman, J.; Humphries, R.K.; Eaves, C.J.; Hogge, D.E.; Humphries, R. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003, 17, 760–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunderlich, M.; Chou, F.-S.; Link, K.I.; Mizukawa, B.; Perry, R.L.; Carroll, M.; Mulloy, J.C. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010, 24, 1785–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, B.H.; Smithies, O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA 1989, 86, 8932–8935. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Hiramatsu, H.; Kobayashi, K.; Suzue, K.; Kawahata, M.; Hioki, K.; Ueyama, Y.; Koyanagi, Y.; Sugamura, K.; Tsuji, K.; et al. NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood 2002, 100, 3175–3182. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, F.; Yasukawa, M.; Lyons, B.; Yoshida, S.; Miyamoto, T.; Yoshimoto, G.; Watanabe, T.; Akashi, K.; Shultz, L.D.; Harada, M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005, 106, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Agliano, A.; Martin-Padura, I.; Mancuso, P.; Marighetti, P.; Rabascio, C.; Pruneri, G.; Shultz, L.D.; Bertolini, F. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 2008, 123, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Saland, E.; Boutzen, H.; Castellano, R.; Pouyet, L.; Griessinger, E.; Larrue, C.; de Toni, F.; Scotland, S.; David, M.; Danet-Desnoyers, G.; et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 2015, 5, e297. [Google Scholar] [CrossRef]
- Nabbouh, A.I.; Hleihel, R.S.; Saliba, J.L.; Karam, M.M.; Hamie, M.H.; Wu, H.-C.J.H.-C.J.M.; Berthier, C.P.; Tawil, N.M.; Bonnet, P.-A.A.; Deleuze-Masquefa, C.; et al. Imidazoquinoxaline derivative EAPB0503: A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer 2017, 123, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- El-Houjeiri, L.; Saad, W.; Hayar, B.; Aouad, P.; Tawil, N.; Abdel-Samad, R.; Hleihel, R.; Hamie, M.; Mancinelli, A.; Pisano, C.; et al. Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice. Mol. Cancer Ther. 2017, 16, 2047–2057. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.; Konopleva, M.; Jacamo, R.; Carter, B.Z.; McQueen, T.; Andreeff, M. Comparison of Induction Chemotherapy in NSG and NOD- Rag1 null IL2rg null Mouse Models of FLT3 Mutant AML. Blood 2017, 130, 2692. [Google Scholar]
- Cany, J.; van der Waart, A.B.; Tordoir, M.; Franssen, G.M.; Hangalapura, B.N.; de Vries, J.; Boerman, O.; Schaap, N.; van der Voort, R.; Spanholtz, J.; et al. Natural killer cells generated from cord blood hematopoietic progenitor cells efficiently target bone marrow-residing human leukemia cells in NOD/SCID/IL2Rg(null) mice. PLoS ONE 2013, 8, e64384. [Google Scholar]
- Cany, J.; Roeven, M.W.H.; Hoogstad-van Evert, J.S.; Hobo, W.; Maas, F.; Franco Fernandez, R.; Blijlevens, N.M.A.; van der Velden, W.J.; Huls, G.; Jansen, J.H.; et al. Decitabine enhances targeting of AML cells by CD34(+) progenitor-derived NK cells in NOD/SCID/IL2Rg(null) mice. Blood 2018, 131, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Hayata, I.; Ishihara, T.; Hirashima, K.; Sado, T.; Yamagiwa, J. Partial deletion of chromosome No. 2 in myelocytic leukemias of irradiated C3H/He and RFM mice. J. Natl. Cancer Inst. 1979, 63, 843–848. [Google Scholar] [CrossRef]
- Fredrickson, T.N.; Langdon, W.Y.; Hoffman, P.M.; Hartley, J.W.; Morse, H.C., 3rd. Histologic and cell surface antigen studies of hematopoietic tumors induced by Cas-Br-M murine leukemia virus. J. Natl. Cancer Inst. 1984, 72, 447–454. [Google Scholar] [PubMed]
- Askew, D.S.; Bartholomew, C.; Buchberg, A.M.; Valentine, M.B.; Jenkins, N.A.; Copeland, N.G.; Ihle, J.N. His-1 and His-2: Identification and chromosomal mapping of two commonly rearranged sites of viral integration in a myeloid leukemia. Oncogene 1991, 6, 2041–2047. [Google Scholar] [PubMed]
- Rassart, E.; Houde, J.; Denicourt, C.; Ru, M.; Barat, C.; Edouard, E.; Poliquin, L.; Bergeron, D. Molecular Analysis and Characterization of Two Myeloid Leukemia Inducing Murine Retroviruses. Curr. Top. Microbiol. Immunol. 1996, 211, 201–210. [Google Scholar] [PubMed]
- Bergeron, D.; Poliquin, L.; Houde, J.; Barbeau, B.; Rassart, E. Analysis of proviruses integrated in Fli-1 and Evi-1 regions in Cas-Br-E MuLV-induced non-T-, non-B-cell leukemias. Virology 1992, 191, 661–669. [Google Scholar] [CrossRef]
- Bergeron, D.; Poliquin, L.; Kozak, C.A.; Rassart, E. Identification of a common viral integration region in Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas. J. Virol. 1991, 65, 7–15. [Google Scholar] [Green Version]
- Mucenski, M.L.; Taylor, B.A.; Jenkins, N.A.; Copeland, N.G. AKXD recombinant inbred strains: Models for studying the molecular genetic basis of murine lymphomas. Mol. Cell. Boil. 1986, 6, 4236–4243. [Google Scholar] [CrossRef]
- Mucenski, M.L.; Taylor, B.A.; Ihle, J.N.; Hartley, J.W.; Morse, H.C., 3rd; Jenkins, N.A.; Copeland, N.G. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol. Cell. Biol. 1988, 8, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, T.N.; Silver, J.E. Susceptibility to Friend helper virus leukemias in CXB recombinant inbred mice. J. Exp. Med. 1983, 158, 1693–1702. [Google Scholar]
- Silver, J.; Buckler, C.E. A preferred region for integration of Friend murine leukemia virus in hematopoietic neoplasms is closely linked to the Int-2 oncogene. J. Virol. 1986, 60, 1156–1158. [Google Scholar] [PubMed]
- Chesebro, B.; Portis, J.L.; Wehrly, K.; Nishio, J. Effect of murine host genotype on MCF virus expression, latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology 1983, 128, 221–233. [Google Scholar] [CrossRef]
- Bordereaux, D.; Fichelson, S.; Sola, B.; Tambourin, P.E.; Gisselbrecht, S. Frequent involvement of the fim-3 region in Friend murine leukemia virus-induced mouse myeloblastic leukemias. J. Virol. 1987, 61, 4043–4045. [Google Scholar] [PubMed]
- Nazarov, V.; Wolff, L. Novel integration sites at the distal 3’ end of the c-myb locus in retrovirus-induced promonocytic leukemias. J. Virol. 1995, 69, 3885–3888. [Google Scholar] [PubMed]
- Shen-Ong, G.L.; Wolff, L. Moloney murine leukemia virus-induced myeloid tumors in adult BALB/c mice: Requirement of c-myb activation but lack of v-abl involvement. J. Virol. 1987, 61, 3721–3725. [Google Scholar] [PubMed]
- Bedigian, H.G.; Johnson, D.A.; Jenkins, N.A.; Copeland, N.G.; Evans, R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J. Virol. 1984, 51, 586–594. [Google Scholar] [PubMed]
- Copeland, N.G.; Buchberg, A.M.; Gilbert, D.J.; Jenkins, N.A. Recombinant Inbred Mouse Strains: Models for Studying the Molecular Genetic Basis of Myeloid Tumorigenesis. Curr. Top. Microbiol. Immunol. 1989, 149, 45–57. [Google Scholar]
- Nakamura, T.; Largaespada, D.A.; Shaughnessy, J.D.; Jenkins, N.A.; Copeland, N.G. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat. Genet. 1996, 12, 149–153. [Google Scholar] [CrossRef]
- Moskow, J.J.; Bullrich, F.; Huebner, K.; Daar, I.O.; Buchberg, A.M. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol. Cell. Boil. 1995, 15, 5434–5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Shen, H.; Himmel, K.L.; Dupuy, A.J.; Largaespada, D.A.; Nakamura, T.; Shaughnessy, J.D.; Jenkins, N.A.; Copeland, N.G. Leukaemia disease genes: Large-scale cloning and pathway predictions. Nat. Genet. 1999, 23, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Buchberg, A.M.; Bedigian, H.G.; Jenkins, N.A.; Copeland, N.G. Evi-2, a common integration site involved in murine myeloid leukemogenesis. Mol. Cell. Boil. 1990, 10, 4658–4666. [Google Scholar] [CrossRef] [PubMed]
- Largaespada, D.A.; Brannan, C.I.; Jenkins, N.A.; Copeland, N.G. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat. Genet. 1996, 12, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Tian, E.; Sawyer, J.R.; Largaespada, D.A.; Jenkins, N.A.; Copeland, N.G.; Shaughnessy, J.D. Evi27 encodes a novel membrane protein with homology to the IL17 receptor. Oncogene 2000, 19, 2098–2109. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.F.; Zhang, D.-E. The 8;21 translocation in leukemogenesis. Oncogene 2004, 23, 4255–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozu, T.; Miyoshi, H.; Shimizu, K.; Maseki, N.; Kaneko, Y.; Asou, H.; Kamada, N.; Ohki, M. Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood 1993, 82, 1270–1276. [Google Scholar] [Green Version]
- Tonks, A.; Pearn, L.; Musson, M.; Gilkes, A.; Mills, K.I.; Burnett, A.K.; Darley, R.L. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007, 21, 2495–2505. [Google Scholar] [CrossRef] [Green Version]
- De Guzman, C.G.; Warren, A.J.; Zhang, Z.; Gartland, L.; Erickson, P.; Drabkin, H.; Hiebert, S.W.; Klug, C.A. Hematopoietic Stem Cell Expansion and Distinct Myeloid Developmental Abnormalities in a Murine Model of the AML1-ETO Translocation. Mol. Cell. Boil. 2002, 22, 5506–5517. [Google Scholar] [CrossRef]
- Crozatier, M.; Meister, M. Drosophila haematopoiesis. Cell. Microbiol. 2007, 9, 1117–1126. [Google Scholar] [CrossRef]
- Wildonger, J. The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005, 132, 2263–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebestky, T. Specification of Drosophila Hematopoietic Lineage by Conserved Transcription Factors. Science 2000, 288, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Osman, D.; Gobert, V.; Ponthan, F.; Heidenreich, O.; Haenlin, M.; Waltzer, L. A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc. Natl. Acad. Sci. USA 2009, 106, 12043–12048. [Google Scholar] [CrossRef] [PubMed]
- Breig, O.; Bras, S.; Martinez Soria, N.; Osman, D.; Heidenreich, O.; Haenlin, M.; Waltzer, L. Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 2014, 28, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
Prognostic Group | Genetic Mutations and Abnormalities |
---|---|
Favorable |
|
Intermediate |
|
Adverse |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skayneh, H.; Jishi, B.; Hleihel, R.; Hamieh, M.; Darwiche, N.; Bazarbachi, A.; El Sabban, M.; El Hajj, H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes 2019, 10, 614. https://doi.org/10.3390/genes10080614
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes. 2019; 10(8):614. https://doi.org/10.3390/genes10080614
Chicago/Turabian StyleSkayneh, Hala, Batoul Jishi, Rita Hleihel, Maguy Hamieh, Nadine Darwiche, Ali Bazarbachi, Marwan El Sabban, and Hiba El Hajj. 2019. "A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology" Genes 10, no. 8: 614. https://doi.org/10.3390/genes10080614
APA StyleSkayneh, H., Jishi, B., Hleihel, R., Hamieh, M., Darwiche, N., Bazarbachi, A., El Sabban, M., & El Hajj, H. (2019). A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes, 10(8), 614. https://doi.org/10.3390/genes10080614