Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones
Abstract
:1. Introduction
2. Soy and Isoflavones
3. Rodent Mammary Tumor Models
4. Timing of Soy Exposure
5. Mammary Tumor Development Following Postnatal Soy Isoflavone Administration
6. Mammary Tumor Development Following Lifetime Soy Isoflavone Administration
7. Mammary Tumor Development Following Perinatal Soy Isoflavone Administration
8. Conclusions and Future Considerations
Funding
Conflicts of Interest
References
- Danaei, G.; Vander Hoorn, S.; Lopez, A.D.; Murray, C.J.; Ezzati, M.; Comparative Risk Assessment collaborating, g. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2005, 366, 1784–1793. [Google Scholar] [CrossRef]
- Wu, A.H.; Lee, E.; Vigen, C. Soy isoflavones and breast cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 2013, 102–106. [Google Scholar] [CrossRef]
- Qin, L.Q.; Xu, J.Y.; Wang, P.Y.; Hoshi, K. Soyfood intake in the prevention of breast cancer risk in women: A meta-analysis of observational epidemiological studies. J. Nutr. Sci. Vitamin 2006, 52, 428–436. [Google Scholar] [CrossRef]
- Trock, B.J.; Hilakivi-Clarke, L.; Clarke, R. Meta-analysis of soy intake and breast cancer risk. J. Natl. Cancer Inst. 2006, 98, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Enderlin, C.A.; Coleman, E.A.; Stewart, C.B.; Hakkak, R. Dietary soy intake and breast cancer risk. Oncol. Nurs. Forum 2009, 36, 531–539. [Google Scholar] [CrossRef]
- Dong, J.Y.; Qin, L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: A meta-analysis of prospective studies. Breast Cancer Res. Treat. 2011, 125, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Rao, Y.; Zheng, Y.; Wei, S.; Li, Y.; Guo, T.; Yin, P. Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: A meta-analysis of epidemiological studies. PLoS ONE 2014, 9, e89288. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, M.L.; Qin, Y.; Zhang, Q.Y.; Xu, H.X.; Zhou, Y.; Mi, M.T.; Zhu, J.D. Isoflavone consumption and risk of breast cancer: A dose-response meta-analysis of observational studies. Asia Pac. J. Clin. Nutr. 2013, 22, 118–127. [Google Scholar] [CrossRef]
- Zhao, T.T.; Jin, F.; Li, J.G.; Xu, Y.Y.; Dong, H.T.; Liu, Q.; Xing, P.; Zhu, G.L.; Xu, H.; Miao, Z.F. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clin. Nutr. 2019, 38, 136–145. [Google Scholar] [CrossRef]
- McNally, S.; Stein, T. Overview of Mammary Gland Development: A Comparison of Mouse and Human. Methods Mol. Biol. 2017, 1501, 1–17. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Wellings, S.R. The comparative pathology of human and mouse mammary glands. J. Mammary Gland Biol. Neoplasia 1999, 4, 105–122. [Google Scholar] [CrossRef]
- Barnes, S. Effect of genistein on in vitro and in vivo models of cancer. J. Nutr. 1995, 125, 777S–783S. [Google Scholar] [CrossRef]
- Messina, M.; Wu, A.H. Perspectives on the soy-breast cancer relation. Am. J. Clin. Nutr. 2009, 89, 1673S–1679S. [Google Scholar] [CrossRef]
- Murkies, A.L.; Wilcox, G.; Davis, S.R. Clinical review 92: Phytoestrogens. J. Clin. Endocrinol. Metab. 1998, 83, 297–303. [Google Scholar] [CrossRef]
- Price, K.R.; Fenwick, G.R. Naturally occurring oestrogens in foods—a review. Food Addit. Contam. 1985, 2, 73–106. [Google Scholar] [CrossRef]
- Krizova, L.; Dadakova, K.; Kasparovska, J.; Kasparovsky, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- An, J.; Tzagarakis-Foster, C.; Scharschmidt, T.C.; Lomri, N.; Leitman, D.C. Estrogen receptor β-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J. Biol. Chem. 2001, 276, 17808–17814. [Google Scholar] [CrossRef]
- Margeat, E.; Bourdoncle, A.; Margueron, R.; Poujol, N.; Cavailles, V.; Royer, C. Ligands differentially modulate the protein interactions of the human estrogen receptors α and β. J. Mol. Biol. 2003, 326, 77–92. [Google Scholar] [CrossRef]
- Kostelac, D.; Rechkemmer, G.; Briviba, K. Phytoestrogens modulate binding response of estrogen receptors α and β to the estrogen response element. J. Agric. Food Chem. 2003, 51, 7632–7635. [Google Scholar] [CrossRef]
- Rietjens, I.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Morito, K.; Hirose, T.; Kinjo, J.; Hirakawa, T.; Okawa, M.; Nohara, T.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull. 2001, 24, 351–356. [Google Scholar] [CrossRef]
- Mazur, W.; Adlercreutz, H. Overview of naturally occurring endocrine-active substances in the human diet in relation to human health. Nutrition 2000, 16, 654–658. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 2005, 63, 272–283. [Google Scholar] [CrossRef]
- Lippman, M.E.; Krueger, K.A.; Eckert, S.; Sashegyi, A.; Walls, E.L.; Jamal, S.; Cauley, J.A.; Cummings, S.R. Indicators of lifetime estrogen exposure: Effect on breast cancer incidence and interaction with raloxifene therapy in the multiple outcomes of raloxifene evaluation study participants. J. Clin. Oncol. 2001, 19, 3111–3116. [Google Scholar] [CrossRef]
- Messina, M.; McCaskill-Stevens, W.; Lampe, J.W. Addressing the soy and breast cancer relationship: Review, commentary, and workshop proceedings. J. Natl. Cancer Inst. 2006, 98, 1275–1284. [Google Scholar] [CrossRef]
- Setchell, K.D. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 1998, 68, 1333S–1346S. [Google Scholar] [CrossRef]
- Kladna, A.; Berczynski, P.; Kruk, I.; Piechowska, T.; Aboul-Enein, H.Y. Studies on the antioxidant properties of some phytoestrogens. Luminescence 2016, 31, 1201–1206. [Google Scholar] [CrossRef]
- Chae, H.S.; Xu, R.; Won, J.Y.; Chin, Y.W.; Yim, H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. Int. J. Mol. Sci. 2019, 20, 2420. [Google Scholar] [CrossRef]
- Fotsis, T.; Pepper, M.S.; Montesano, R.; Aktas, E.; Breit, S.; Schweigerer, L.; Rasku, S.; Wahala, K.; Adlercreutz, H. Phytoestrogens and inhibition of angiogenesis. Baillieres Clin. Endocrinol. Metab. 1998, 12, 649–666. [Google Scholar] [CrossRef]
- Mukund, V.; Saddala, M.S.; Farran, B.; Mannavarapu, M.; Alam, A.; Nagaraju, G.P. Molecular docking studies of angiogenesis target protein HIF-1alpha and genistein in breast cancer. Gene 2019, 701, 169–172. [Google Scholar] [CrossRef]
- Berndt, S.; Issa, M.E.; Carpentier, G.; Cuendet, M. A Bivalent Role of Genistein in Sprouting Angiogenesis. Planta Med. 2018, 84, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, S.; Demay, F.; Ferriere, F.; Pakdel, F. Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Zhao, X.; Lindley, S.L.; Heubi, J.E.; King, E.C.; Messina, M.J. Soy isoflavone phase II metabolism differs between rodents and humans: Implications for the effect on breast cancer risk. Am. J. Clin. Nutr. 2011, 94, 1284–1294. [Google Scholar] [CrossRef]
- van der Velpen, V.; Hollman, P.C.; van Nielen, M.; Schouten, E.G.; Mensink, M.; Van’t Veer, P.; Geelen, A. Large inter-individual variation in isoflavone plasma concentration limits use of isoflavone intake data for risk assessment. Eur. J. Clin. Nutr. 2014, 68, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Choue, R. Plasma pharmacokinetics and urinary excretion of isoflavones after ingestion of soy products with different aglycone/glucoside ratios in South Korean women. Nutr. Res. Pract. 2013, 7, 393–399. [Google Scholar] [CrossRef]
- Peiroten, A.; Bravo, D.; Landete, J.M. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit. Rev. Food Sci. Nutr. 2019, 4, 1–16. [Google Scholar] [CrossRef]
- Rowlands, J.C.; Berhow, M.A.; Badger, T.M. Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food Chem. Toxicol. 2002, 40, 1767–1774. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Hernandez-Ledesma, B.; Jeong, H.J.; Park, J.H.; de Lumen, B.O. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS ONE 2010, 5, e8890. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Huser, S.; Guth, S.; Joost, H.G.; Soukup, S.T.; Kohrle, J.; Kreienbrock, L.; Diel, P.; Lachenmeier, D.W.; Eisenbrand, G.; Vollmer, G.; et al. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation. Arch. Toxicol. 2018, 92, 2703–2748. [Google Scholar] [CrossRef]
- Barnes, S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat. Res. Biol. 2010, 8, 89–98. [Google Scholar] [CrossRef]
- Setchell, K.D.; Cole, S.J. Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. J. Agric. Food Chem. 2003, 51, 4146–4155. [Google Scholar] [CrossRef]
- Fang, N.; Yu, S.; Badger, T.M. Comprehensive phytochemical profile of soy protein isolate. J. Agric. Food Chem. 2004, 52, 4012–4020. [Google Scholar] [CrossRef]
- Rogers, A.E.; Lee, S.Y. Chemically-induced mammary gland tumors in rats: Modulation by dietary fat. Prog. Clin. Biol. Res. 1986, 222, 255–282. [Google Scholar]
- Russo, J.; Gusterson, B.A.; Rogers, A.E.; Russo, I.H.; Wellings, S.R.; van Zwieten, M.J. Comparative study of human and rat mammary tumorigenesis. Lab. Invest 1990, 62, 244–278. [Google Scholar]
- Sukumar, S.; Notario, V.; Martin-Zanca, D.; Barbacid, M. Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 1983, 306, 658–661. [Google Scholar] [CrossRef]
- Zarbl, H.; Sukumar, S.; Arthur, A.L.; Martin-Zanca, D.; Barbacid, M. Activation of H-ras-1 oncogenes by chemical carcinogens. Basic Life Sci. 1986, 38, 385–397. [Google Scholar]
- Zarbl, H.; Sukumar, S.; Arthur, A.V.; Martin-Zanca, D.; Barbacid, M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 1985, 315, 382–385. [Google Scholar] [CrossRef]
- Dandekar, S.; Sukumar, S.; Zarbl, H.; Young, L.J.; Cardiff, R.D. Specific activation of the cellular Harvey-ras oncogene in dimethylbenzanthracene-induced mouse mammary tumors. Mol. Cell Biol. 1986, 6, 4104–4108. [Google Scholar] [CrossRef]
- Abba, M.C.; Zhong, Y.; Lee, J.; Kil, H.; Lu, Y.; Takata, Y.; Simper, M.S.; Gaddis, S.; Shen, J.; Aldaz, C.M. DMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations. Oncotarget 2016, 7, 64289–64299. [Google Scholar] [CrossRef]
- Choi, Y.W.; Henrard, D.; Lee, I.; Ross, S.R. The mouse mammary tumor virus long terminal repeat directs expression in epithelial and lymphoid cells of different tissues in transgenic mice. J. Virol. 1987, 61, 3013–3019. [Google Scholar] [Green Version]
- Wagner, K.U.; McAllister, K.; Ward, T.; Davis, B.; Wiseman, R.; Hennighausen, L. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 2001, 10, 545–553. [Google Scholar] [CrossRef]
- Yang, G.; Park, S.; Cao, G.; Goltsov, A.; Ren, C.; Truong, L.D.; Demayo, F.; Thompson, T.C. MMTV promoter-regulated caveolin-1 overexpression yields defective parenchymal epithelia in multiple exocrine organs of transgenic mice. Exp. Mol. Pathol. 2010, 89, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Muller, W.J.; Sinn, E.; Pattengale, P.K.; Wallace, R.; Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988, 54, 105–115. [Google Scholar] [CrossRef]
- Bouchard, L.; Lamarre, L.; Tremblay, P.J.; Jolicoeur, P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 1989, 57, 931–936. [Google Scholar] [CrossRef]
- Guy, C.T.; Cardiff, R.D.; Muller, W.J. Activated neu induces rapid tumor progression. J. Biol. Chem. 1996, 271, 7673–7678. [Google Scholar] [CrossRef]
- Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007, 8, R76. [Google Scholar] [CrossRef]
- Truss, M.; Bartsch, J.; Mows, C.; Chavez, S.; Beato, M. Chromatin structure of the MMTV promoter and its changes during hormonal induction. Cell Mol. Neurobiol. 1996, 16, 85–101. [Google Scholar] [CrossRef]
- Cato, A.C.; Henderson, D.; Ponta, H. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 1987, 6, 363–368. [Google Scholar] [CrossRef]
- Ham, J.; Thomson, A.; Needham, M.; Webb, P.; Parker, M. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res. 1988, 16, 5263–5276. [Google Scholar] [CrossRef] [Green Version]
- Truss, M.; Chalepakis, G.; Beato, M. Interplay of steroid hormone receptors and transcription factors on the mouse mammary tumor virus promoter. J. Steroid Biochem. Mol. Biol. 1992, 43, 365–378. [Google Scholar] [CrossRef]
- Maroulakou, I.G.; Anver, M.; Garrett, L.; Green, J.E. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. USA 1994, 91, 11236–11240. [Google Scholar] [CrossRef]
- Tornell, J.; Rymo, L.; Isaksson, O.G. Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int. J. Cancer 1991, 49, 114–117. [Google Scholar] [CrossRef]
- Jones, R.A.; Campbell, C.I.; Gunther, E.J.; Chodosh, L.A.; Petrik, J.J.; Khokha, R.; Moorehead, R.A. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2007, 26, 1636–1644. [Google Scholar] [CrossRef]
- Watson, K.L.; Stalker, L.; Jones, R.A.; Moorehead, R.A. High levels of dietary soy decrease mammary tumor latency and increase incidence in MTB-IGFIR transgenic mice. BMC Cancer 2015, 15, 37. [Google Scholar] [CrossRef]
- Franks, S.E.; Campbell, C.I.; Barnett, E.F.; Siwicky, M.D.; Livingstone, J.; Cory, S.; Moorehead, R.A. Transgenic IGF-IR overexpression induces mammary tumors with basal-like characteristics while IGF-IR independent mammary tumors express a claudin-low gene signature. Oncogene 2012, 31, 3298–3309. [Google Scholar] [CrossRef]
- Jones, R.A.; Watson, K.L.; Campbell, C.I.; Moorehead, R.A. IGF-IR mediated mammary tumorigenesis is enhanced during pubertal development. PLoS ONE 2014, 9, e108781. [Google Scholar] [CrossRef]
- Manjanatha, M.G.; Shelton, S.; Bishop, M.E.; Lyn-Cook, L.E.; Aidoo, A. Dietary effects of soy isoflavones daidzein and genistein on 7,12-dimethylbenz[a]anthracene-induced mammary mutagenesis and carcinogenesis in ovariectomized Big Blue transgenic rats. Carcinogenesis 2006, 27, 2555–2564. [Google Scholar] [CrossRef]
- Zhang, X.; Cook, K.L.; Warri, A.; Cruz, I.M.; Rosim, M.; Riskin, J.; Helferich, W.; Doerge, D.; Clarke, R.; Hilakivi-Clarke, L. Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin. Cancer Res. 2017, 23, 814–824. [Google Scholar] [CrossRef]
- Sahin, K.; Tuzcu, M.; Sahin, N.; Akdemir, F.; Ozercan, I.; Bayraktar, S.; Kucuk, O. Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr. Cancer 2011, 63, 1279–1286. [Google Scholar] [CrossRef]
- Hakkak, R.; Shaaf, S.; Jo, C.H.; Macleod, S.; Korourian, S. Effects of high-isoflavone soy diet vs. casein protein diet and obesity on DMBA-induced mammary tumor development. Oncol. Letters 2011, 2, 29–36. [Google Scholar] [CrossRef]
- Pugalendhi, P.; Manoharan, S. Chemopreventive potential of genistein and daidzein in combination during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague-Dawley rats. Pak. J. Biol. Sci. 2010, 13, 279–286. [Google Scholar] [CrossRef]
- Park, K.; Choi, K.; Kim, H.; Kim, K.; Lee, M.H.; Lee, J.H.; Kim Rim, J.C. Isoflavone-deprived soy peptide suppresses mammary tumorigenesis by inducing apoptosis. Exp. Mol. Med. 2009, 41, 371–381. [Google Scholar] [CrossRef]
- Qin, L.Q.; Xu, J.Y.; Tezuka, H.; Wang, P.Y.; Hoshi, K. Commercial soy milk enhances the development of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. In Vivo 2007, 21, 667–671. [Google Scholar]
- Mukhopadhyay, S.; Ballard, B.R.; Mukherjee, S.; Kabir, S.M.; Das, S.K. Beneficial effects of soy protein in the initiation and progression against dimethylbenz [a] anthracene-induced breast tumors in female rats. Mol. Cell Biochem. 2006, 290, 169–176. [Google Scholar] [CrossRef]
- Gallo, D.; Giacomelli, S.; Cantelmo, F.; Zannoni, G.F.; Ferrandina, G.; Fruscella, E.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Mancuso, S.; et al. Chemoprevention of DMBA-induced mammary cancer in rats by dietary soy. Breast Cancer Res. Treat. 2001, 69, 153–164. [Google Scholar] [CrossRef]
- Appelt, L.C.; Reicks, M.M. Soy induces phase II enzymes but does not inhibit dimethylbenz[a]anthracene-induced carcinogenesis in female rats. J. Nutr. 1999, 129, 1820–1826. [Google Scholar] [CrossRef]
- Constantinou, A.I.; Lantvit, D.; Hawthorne, M.; Xu, X.; van Breemen, R.B.; Pezzuto, J.M. Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. Nutr. Cancer 2001, 41, 75–81. [Google Scholar] [CrossRef]
- Kijkuokool, P.; Parhar, I.S.; Malaivijitnond, S. Genistein enhances N-nitrosomethylurea-induced rat mammary tumorigenesis. Cancer Lett. 2006, 242, 53–59. [Google Scholar] [CrossRef]
- Ono, M.; Koga, T.; Ueo, H.; Nakano, S. Effects of dietary genistein on hormone-dependent rat mammary carcinogenesis induced by ethyl methanesulphonate. Nutr. Cancer 2012, 64, 1204–1210. [Google Scholar] [CrossRef]
- Kaga, C.; Takagi, A.; Kano, M.; Kado, S.; Kato, I.; Sakai, M.; Miyazaki, K.; Nanno, M.; Ishikawa, F.; Ohashi, Y.; et al. Lactobacillus casei Shirota enhances the preventive efficacy of soymilk in chemically induced breast cancer. Cancer Sci. 2013, 104, 1508–1514. [Google Scholar] [CrossRef]
- Zhang, G.P.; Han, D.; Liu, G.; Gao, S.G.; Cai, X.Q.; Duan, R.H.; Feng, X.S. Effects of soy isoflavone and endogenous oestrogen on breast cancer in MMTV-erbB2 transgenic mice. J. Int. Med. Res. 2012, 40, 2073–2082. [Google Scholar] [CrossRef]
- Davis, V.L.; Shaikh, F.; Gallagher, K.M.; Villegas, M.; Rea, S.L.; Cline, J.M.; Hughes, C.L. Inhibition of Neu-induced mammary carcinogenesis in transgenic mice expressing ERDelta3, a dominant negative estrogen receptor alpha variant. Horm. Cancer 2012, 3, 227–239. [Google Scholar] [CrossRef]
- Thomsen, A.R.; Mortensen, A.; Breinholt, V.M.; Lindecrona, R.H.; Penalvo, J.L.; Sorensen, I.K. Influence of Prevastein, an isoflavone-rich soy product, on mammary gland development and tumorigenesis in Tg.NK (MMTV/c-neu) mice. Nutr. Cancer 2005, 52, 176–188. [Google Scholar] [CrossRef]
- Yang, X.; Edgerton, S.M.; Kosanke, S.D.; Mason, T.L.; Alvarez, K.M.; Liu, N.; Chatterton, R.T.; Liu, B.; Wang, Q.; Kim, A.; et al. Hormonal and dietary modulation of mammary carcinogenesis in mouse mammary tumor virus-c-erbB-2 transgenic mice. Cancer Res. 2003, 63, 2425–2433. [Google Scholar]
- Jin, Z.; MacDonald, R.S. Soy isoflavones increase latency of spontaneous mammary tumors in mice. J. Nutr. 2002, 132, 3186–3190. [Google Scholar] [CrossRef]
- Rahal, O.M.; Machado, H.L.; Montales, M.T.; Pabona, J.M.; Heard, M.E.; Nagarajan, S.; Simmen, R.C. Dietary suppression of the mammary CD29(hi)CD24(+) epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice. Stem Cell Res. 2013, 11, 1149–1162. [Google Scholar] [CrossRef]
- Paul, B.; Li, Y.; Tollefsbol, T.O. The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation. Int. J. Mol. Sci. 2018, 19, 1754. [Google Scholar] [CrossRef]
- Hickey, J.; Bartke, A.; Winters, T.; Henry, N.; Banz, W. Effects of soy protein and soy phytochemicals on mammary tumor development in female transgenic mice overexpressing human pituitary growth hormone. J. Med. Food 2005, 8, 556–559. [Google Scholar] [CrossRef]
- Luijten, M.; Thomsen, A.R.; van den Berg, J.A.; Wester, P.W.; Verhoef, A.; Nagelkerke, N.J.; Adlercreutz, H.; van Kranen, H.J.; Piersma, A.H.; Sorensen, I.K.; et al. Effects of soy-derived isoflavones and a high-fat diet on spontaneous mammary tumor development in Tg.NK (MMTV/c-neu) mice. Nutr. Cancer 2004, 50, 46–54. [Google Scholar] [CrossRef]
- Lamartiniere, C.A.; Cotroneo, M.S.; Fritz, W.A.; Wang, J.; Mentor-Marcel, R.; Elgavish, A. Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. J. Nutr. 2002, 132, 552S–558S. [Google Scholar] [CrossRef]
- Simmen, R.C.; Eason, R.R.; Till, S.R.; Chatman, L., Jr.; Velarde, M.C.; Geng, Y.; Korourian, S.; Badger, T.M. Inhibition of NMU-induced mammary tumorigenesis by dietary soy. Cancer Lett. 2005, 224, 45–52. [Google Scholar] [CrossRef]
- Su, Y.; Eason, R.R.; Geng, Y.; Till, S.R.; Badger, T.M.; Simmen, R.C. In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis. Carcinogenesis 2007, 28, 1046–1051. [Google Scholar] [CrossRef]
- Chiesa, G.; Rigamonti, E.; Lovati, M.R.; Disconzi, E.; Soldati, S.; Sacco, M.G.; Cato, E.M.; Patton, V.; Scanziani, E.; Vezzoni, P.; et al. Reduced mammary tumor progression in a transgenic mouse model fed an isoflavone-poor soy protein concentrate. Mol. Nutr. Food Res. 2008, 52, 1121–1129. [Google Scholar] [CrossRef]
- Luijten, M.; Verhoef, A.; Dormans, J.A.; Beems, R.B.; Cremers, H.W.; Nagelkerke, N.J.; Adlercreutz, H.; Penalvo, J.L.; Piersma, A.H. Modulation of mammary tumor development in Tg.NK (MMTV/c-neu) mice by dietary fatty acids and life stage-specific exposure to phytoestrogens. Reprod. Toxicol. 2007, 23, 407–413. [Google Scholar] [CrossRef]
- Lamartiniere, C.A.; Wang, J.; Smith-Johnson, M.; Eltoum, I.E. Daidzein: Bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol. Sci. 2002, 65, 228–238. [Google Scholar] [CrossRef]
- Fritz, W.A.; Coward, L.; Wang, J.; Lamartiniere, C.A. Dietary genistein: Perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis 1998, 19, 2151–2158. [Google Scholar] [CrossRef]
- Hilakivi-Clarke, L.; Onojafe, I.; Raygada, M.; Cho, E.; Skaar, T.; Russo, I.; Clarke, R. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br. J. Cancer 1999, 80, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, A.; Kulling, S.E.; Schwartz, H.; Rowland, I.; Ruefer, C.E.; Rimbach, G.; Cassidy, A.; Magee, P.; Millar, J.; Hall, W.L.; et al. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol. Nutr. Food Res. 2009, 53 (Suppl. 2), S266–S309. [Google Scholar] [CrossRef]
- Soukup, S.T.; Helppi, J.; Muller, D.R.; Zierau, O.; Watzl, B.; Vollmer, G.; Diel, P.; Bub, A.; Kulling, S.E. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: A cross-species and sex comparison. Arch. Toxicol. 2016, 90, 1335–1347. [Google Scholar] [CrossRef]
- Rafii, F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015, 5, 56–73. [Google Scholar] [CrossRef]
- Watanabe, S.; Yamaguchi, M.; Sobue, T.; Takahashi, T.; Miura, T.; Arai, Y.; Mazur, W.; Wahala, K.; Adlercreutz, H. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J. Nutr. 1998, 128, 1710–1715. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [CrossRef]
- Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W.J.; Song, J.M.; et al. Comparisons of percent equol producers between prostate cancer patients and controls: Case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn. J. Clin. Oncol. 2004, 34, 86–89. [Google Scholar] [CrossRef]
- Song, K.B.; Atkinson, C.; Frankenfeld, C.L.; Jokela, T.; Wahala, K.; Thomas, W.K.; Lampe, J.W. Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls. J. Nutr. 2006, 136, 1347–1351. [Google Scholar] [CrossRef]
- Brink, L.; Chintapalli, S.; Mercer, K.; Piccolo, B.; Adams, S.; Bowlin, A.; Matazel, K.; Shankar, K.; Badger, T.; Andres, A.; et al. Early Postnatal Diet Differentially Affects the Fecal Microbiome and Metabolome (FS04-02-19). Curr. Dev. Nutr. 2019, 3 (Suppl. 1). [Google Scholar] [CrossRef]
- Chang, H.C.; Churchwell, M.I.; Delclos, K.B.; Newbold, R.R.; Doerge, D.R. Mass spectrometric determination of genistein tissue distribution in diet-exposed Sprague-Dawley rats. J. Nutr. 2000, 130, 1963–1970. [Google Scholar] [CrossRef]
Species | Isoflavone Diet/Timing | Tumor Inducer | Main Finding | Refs |
---|---|---|---|---|
rat | 0.25 g/kg or 1 g/kg of daidzein or genistein separately or 1 g/kg of both daidzein and genistein, PND35-EOS | 1 oral dose, 80 mg/kg body weight DMBA at PND50 | No significant difference in tumor incidence or size compared to control diet | [69] |
rat | 500 ppm genistein in diet, PND15–30, PND15–30 and PND55-EOS or PND55-EOS | 1 oral dose, 10 mg DMBA at PND48 | Tumor onset delayed only in group fed genistein PND15–30 and PND55-EOS compared to control diet. No significant difference in tumor incidence | [70] |
rat | 2 mg/kg body weight, genistein orally, PND42-EOS | 1 oral dose, 80 mg/kg body weight DMBA at PND55 | Tumor incidence and size significantly reduced in genistein group compared to controls | [71] |
rat | 3.24 mg total isoflavones/g protein in diet of lean or obese rats, PND42-EOS | 1 oral dose, 65 mg/kg body weight DMBA at PND50 | Tumor incidence significantly reduced in lean soy fed rats vs lean casein fed rats yet tumor incidence significantly higher in obese soy-fed rats vs obese casein fed rats. No significant differences in tumor onset or multiplicity | [72] |
rat | Genistein 20 mg/kg body weight, daidzein 20 mg/kg body weight or genistein + daidzein 20 mg/kg each), oral 1 week before DMBA-EOS | 1 injection, 25 mg DMBA, exact age not defined | Genistein alone, daidzein alone and the combination significantly reduced tumor size compared to control mice. Tumor incidence appeared to be reduced, especially in combination group but no significance was indicated. | [73] |
rat | Isoflavone-deprived soy peptide, PND28-PND56 and PND63-EOS | 1 oral dose, 50 mg/kg body weight DMBA at PND56 | Tumor latency was significantly increased, and tumor size and multiplicity were significantly decreased in isoflavone-deprived soy group vs control group | [74] |
rat | Soy milk PND50-EOS | 1 oral dose, 5 mg DMBA at PND49 | Tumor incidence significantly higher in soy milk group compared to water group; no significant differences in tumor multiplicity or size | [75] |
rat | 20% soy protein, PND25-EOS | 1 oral dose, 80 mg/kg body weight DMBA at PND50 | Tumor onset significantly delayed, and tumor multiplicity significantly reduced in soy group vs control group but no difference in tumor incidence at study endpoint | [76] |
rat | Soy-free diet with 0.35% or 0.7% (w/w) SOYSELECT (12% isoflavones and 35% saponins), PND21-EOS | 1 oral dose, 80 mg/kg body weight DMBA at PND50 | No significant differences observed at study endpoint | [77] |
rat | 0.03, 0.4 or 0.81 mg/g diet isoflavones, PND36-EOS | 1 oral dose, 10 mg DMBA at PND50 | No significant differences in tumor incidence, onset, multiplicity or burden | [78] |
rat | 200 mg/kg diet genistein, 200 mg/kg diet daidzein, 100 mg/kg diet each of genistein + daidzein, 160 g/kg diet SPI or 160 g/kg diet SPI depleted of isoflavones, PND43-EOS | 1 oral dose, 15 mg DMBA at PND50 | Tumor multiplicity significantly reduced in daidzein and both SPI diets; no significant difference in tumor incidence, mean latency or size in any of the diets | [79] |
rat | 1 mg/kg body weight genistein injected daily, PND45-EOS | 1 injection, 40 mg/kg body weight NMU at PND45 | Tumor multiplicity and size significantly elevated in genistein group vs control group | [80] |
rat | 0.03 or 1 mg/g of genistein in soy free diet or soy containing basal diet PND28-EOS | Oral, 10−3 M EMS in drinking water, PND28-PND112 | no significance difference in tumor incidence, size or latency compared to control group | [81] |
rat | 100 g soymilk powder/kg diet alone or with 2 g/kg diet Lactobacillus casei in a high fat diet, PND35-EOS. | oral, 85 mg/kg PhIP, 4 x/week for 2 weeks, PND42–56 | according to Table 2, no significant differences in tumor incidence, multiplicity or size in soymilk vs control, however Figure 1 indicates that tumor multiplicity significantly reduced at study endpoint. The combination of soymilk and Lactobacillus casei significantly reduced tumor multiplicity | [82] |
mouse | Soybean diet (40% soybean meal), PND49-EOS | MMTV-neu, low estrogen (ovariectomy), normal estrogen (untreated), and high estrogen (estradiol injection) | Tumor incidence significantly increased in soy-fed, low estrogen group but tumor incidence significantly reduced in soy-fed, high estrogen group. No significant differences in tumor latency or size | [83] |
mouse | 21.7% soy protein isolate, PND60-EOS | MMTV-neu (did not consider ERΔ3/neu mice) | No significant effect on tumor incidence or latency in soy-fed MMTV-neu mice compared to MMTV-neu mice fed a control diet | [84] |
mouse | 0.004%, 0.02% or 0.06% wt/wt Prevastein (46.19% wt/wt isoflavones), PND25-EOS | MMTV-neu fed a Western diet (high fat, moderate fiber, low calcium) | Significant increase in tumor multiplicity and size in highest isoflavone group compared to control group; no differences in medium or low isoflavone group and no significant differences in tumor incidence between any of the groups | [85] |
mouse | Purina 5001 (soy diet), PND28-EOS | MMTV-neu implanted with 0.5 mg, 60-day constant release estrogen pellet | Tumor onset significantly delayed in soy group for both placebo and estrogen pellet mice vs control mice; no significance different in tumor incidence was reported | [86] |
mouse | 250 mg/kg genistein, 250 mg/kg daidzein, NovaSoy, PND56-EOS | MMTV-neu, 1 pregnancy and 2 weeks of lactation | Tumor latency delayed in all isoflavone groups, tumor growth, incidence, multiplicity and size not affected | [87] |
mouse | Supro 670 with low or high isoflavone (0.2 and 1.81 mg isoflavone/g protein isolate), PND28-EOS | MMTV-neu on high fat diet | No significant difference in tumor incidence, onset, multiplicity or size | [91] |
mouse | 430 mg isoflavones/kg diet, PND21-EOS | MMTV-Wnt1 | Tumor incidence and latency reduced in isoflavone group | [88] |
mouse | 250 mg/kg genistein, PND28-EOS | C(3)1-SV40 | No effect on tumor incidence or growth rate | [89] |
mouse | 32 mg/kg or 972 mg/kg isoflavones, PND22-EOS | MT-hGH | Tumor latency reduced, and tumor size increased in high isoflavone group | [90] |
Species | Isoflavone Diet/Timing | Tumor Inducer | Main Finding | Refs |
---|---|---|---|---|
rat | ISP, gestation day 4-EOS1 | 1 injection of 50 mg/kg body weight NMU at PND50 | Tumor incidence reduced, and latency increased in SPI group; tumor multiplicity not affected | [93] |
rats | ISP, gestation day 4-EOS | 1 injection of 50 mg/kg body weight NMU at PND51 | No significant differences in tumor incidence or multiplicity | [94] |
mice | 90 mg/kg Prevastein (46.19% wt/wt isoflavones) 2 weeks prior to mating-EOS | MMTV-neu on high fat diet with either corn oil or fish oil | Decreased tumor incidence and increased tumor latency in isoflavone group with corn oil but no significant differences in group with fish oil | [96] |
mice | Soy containing 4RF21, breeding-weaning and then 4RF21, SPI or isoflavone poor concentrate, PND21-EOS | MMTV-neu | No difference in tumor incidence | [95] |
mice | 20% ISP, breeding-EOS | MTB-IGFIR (IGF-IR induced at PND45 or PND100) | Tumor onset reduced, and incidence increased in ISP group | [66] |
Species | Isoflavone Diet/Timing | Tumor Inducer | Main Finding | Refs |
---|---|---|---|---|
rat | 250 mg daidzein/kg diet 2 week prior to mating-weaning | 1 oral dose, 40 mg DMBA at PND50 | No significant differences in tumor onset or incidence | [97] |
rat | 25 or 250 mg genistein/kg diet conception-weaning | 1 oral dose, 80 mg/kg DMBA at PND50 | Tumor multiplicity reduced in isoflavone group | [98] |
rat | 20 ug genistein injected on PND7, 10, 14, 17 and 20 | 1 injection, 10 mg DMBA at PND45 | No significant effect on tumor latency or incidence but multiplicity and growth rate significantly lower in genistein group vs control group | [99] |
rats | SPI, gestation day 4-EOS | 1 injection of 50 mg/kg body weight NMU at PND51 | No significant differences in tumor incidence but multiplicity significantly reduced | [94] |
mice | 0, 18, 90 or 270 mg/kg Prevastein (46.19% wt/wt isoflavones), conception-weaning | MMTV-neu on normal or high fat diet | No significant difference in tumor incidence but tumor multiplicity and size significantly increased in medium and high isoflavone group | [91] |
mice | 90 mg/kg Prevastein (46.19% wt/wt isoflavones) 2 weeks prior to mating-weaning | MMTV-neu on high fat diet with either corn oil of fish oil | No differences in tumor incidence or onset | [96] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moorehead, R.A. Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones. Genes 2019, 10, 566. https://doi.org/10.3390/genes10080566
Moorehead RA. Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones. Genes. 2019; 10(8):566. https://doi.org/10.3390/genes10080566
Chicago/Turabian StyleMoorehead, Roger A. 2019. "Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones" Genes 10, no. 8: 566. https://doi.org/10.3390/genes10080566
APA StyleMoorehead, R. A. (2019). Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones. Genes, 10(8), 566. https://doi.org/10.3390/genes10080566