Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Identification of Grape Gibberellin Oxidase Genes GA2ox, GA3ox, and GA20ox
2.3. Phylogenetic Analysis of Systems
2.4. Codon Usage Bias Analysis and Selective Pressure Analysis
2.5. Analysis of the Cis-Acting Element, Subcellular Localization, and Secondary Structure
2.6. Acquisition and Analysis of Chip Expression Data in Grape
2.7. RNA Extraction, qRT-PCR and Statistical Analysis
3. Results
3.1. Identification of GA2ox, GA3ox, and GA20ox Genes in Grape
3.2. Structural Analysis of GA2ox, GA3ox, and GA20ox Genes
3.3. Codon Usage Bias Analysis
3.4. Subcellular Localization and Secondary Structure Analysis
3.5. Gene Chip Expression Profile Analysis
3.6. Gene Cis-Element Analysis of GA2ox, GA3ox, and GA20ox
3.7. Effects of GA3 and Uniconazole Influence the Expression of GA2ox, GA3ox, and GA20ox
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GA | Gibberellic Acid |
GAs | Gibberellin |
GA2ox | GA2-oxidases |
GA3ox | GA3-oxidases |
GA20ox | GA20-oxidases |
VvGA2ox | GA2-oxidases of Vitus vinifera |
VvGA3ox | GA3-oxidases of Vitus vinifera |
VvGA20ox | GA20-oxidases of Vitus vinifera |
GAoxs | Gibberellin oxidases |
Gene ID | Gene Identification Number |
GEO | Gene Expression Omnibus |
2-ODD | 2-oxoglutarate-dependent dioxygenases |
JAs | Jasmonates |
MeJA | Methyl jasmonate |
GS | modified B5 solid medium |
ABA | Abscisic Acid |
GA3 | gibberellin 3 |
NJ | Neighbor-joining method |
CDS | coding sequence length |
NC | Number of codons |
FOP | frequency of optimal codons |
CAI | codon adaptation index |
CBI | codon bias index |
RSCU | relative synonymous codon usage |
Ks | Synonymous |
Ka | Nonsynonymous |
MW | Molecular Weight |
PI | Isoelectric Point |
GRAVY | grand average of hydropathicity |
I.I | instability index |
A.I | aliphatic index |
qRT-PCR | Quantitative real-time-PCR |
References
- Peters, R.J. Gibberellin phytohormone metabolism. In Isoprenoid Synthesis in Plants and Microorganisms; Rohmer, M., Bach, T., Eds.; Springer: New York, NY, USA, 2013; pp. 233–249. [Google Scholar]
- Hedden, P.; Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2002, 444, 11–25. [Google Scholar] [CrossRef]
- Sponsel, V.M.; Hedden, P. Gibberellin biosynthesis and inactivation. In Plant Hormones Biosynthesis, Signal Transduction, Action; Davies, P.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 63–94. [Google Scholar]
- Yamaguchi, S. Gibberellin metabolism and its regulation. J. Plant Growth Regul. 2001, 20, 317–318. [Google Scholar] [CrossRef]
- Giacomelli, L.; Rota-Stabelli, O.; Masuero, D.; Acheampong, A.K.; Moretto, M.; Caputi, L.; Vrhovsek, U.; Moser, C. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: Functional characterization and evolution of grapevine gibberellin oxidases. J. Exp. Bot. 2013, 64, 4403–4419. [Google Scholar] [CrossRef]
- Olszewski, N.; Sun, T.P.; Gubler, F. Supplement: Signal Transduction||Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 2002, 14, 61–80. [Google Scholar] [CrossRef]
- Webster, A.D. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Horticulturae. 2004, 658, 29–41. [Google Scholar] [CrossRef]
- Zhou, P.; Ren, B.; Zhang, X.M.; Wang, Y.; Wei, C.H.; Li, Y. Stable ex-pression of rice dwarf virus Pns10 suppresses the post-transcriptional gene silencing in transgenic Nicotiana benthamiana plants. Acta Virol. 2010, 54, 99–104. [Google Scholar] [CrossRef]
- El-Sharkawy, I.; Kayal, W.; Prasath, D.; Fernandez, H.; Bouzayen, M.; Svircev, A.M.; Jayasankar, S. Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J. Exp. Bot. 2012, 63, 1225–1239. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, I.C.; Kim, K.J.; Kim, D.S.; Na, H.J.; Lee, I.J.; Sang-Mo Kang, S.M.; Jeon, H.W.; Le, P.L.; Ko, J.H. Expression of gibberellin 2-oxidase 4 from Arabidopsis under the Control of a Senescence-associated Promoter Results in a Dominant Semi-Dwarf Plant with Normal Flowering. J. Plant Biol. 2014, 57, 106–116. [Google Scholar] [CrossRef]
- Fukazawa, J.; Mori, M.; Watanabe, S.; Miyamoto, C.; Ito, T.; Takahashi, Y. DELLA-GAF1 Complex Is a Main Component in Gibberellin Feedback Regulation of GA20 Oxidase 2. Plant Physiol. 2017, 175, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Hedden, P.; Phillips, A.L. Manipulation of hornmone biosynthetic genes in transgenic plants. Curr. Opin. Biotechnol. 2000, 11, 130–137. [Google Scholar] [CrossRef]
- Hedden, P.; Phillips, A.L. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci. 2000, 5, 523–530. [Google Scholar] [CrossRef]
- Griggs, D.L.; Hedden, P.; Lazarus, C.M. Partial-purification of 2 gibberellin 2b-hydroxylases from cotyledons of Phaseolus vulgaris. Phytochemistry 1991, 30, 2507–2512. [Google Scholar] [CrossRef]
- Wuddineh, W.A.; Mazarei, M.; Zhang, J.Y.; Poovaiah, C.R.; Mann, D.G.J.; Ziebell, A.; Sykes, R.W.; Davis, M.F.; Udvardi, M.K.; Stewart, C.N.J. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture andreduced biomass recalcitrance. Plant Biotechnol. J. 2015, 13, 636–647. [Google Scholar] [CrossRef]
- Thomas, S.G.; Phillips, A.L.; Hedden, P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Nat. Acad. Sci. USA 1999, 96, 4698–4703. [Google Scholar] [CrossRef]
- Martin, D.N.; Proebsting, W.M.; Hedden, P. The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol. 1999, 121, 775–781. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kamiya, N.; Ueguchi-Tanaka, M.; Iwahori, S.; Matsuoka, M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001, 15, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Busov, V.B.; Meilan, R.; Pearce, D.W.; Ma, C.; Rood, S.B.; Strauss, S.H. Activation tagging of a dominant gibberellin catabolism gene (GA 2- oxidase) from poplar that regulates tree stature. Plant Physiol. 2003, 132, 1283–1291. [Google Scholar] [CrossRef]
- Lee, D.J.; Zeevaart, J.A. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol. 2005, 138, 243–254. [Google Scholar] [CrossRef]
- Dayan, J.; Schwarzkopf, M.; Avni, A.; Aloni, R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 2010, 8, 425–435. [Google Scholar] [CrossRef]
- Schomburg, F.M.; Bizzell, C.M.; Lee, D.J.; Zeevaart, J.A.D.; Amasino, R.M. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 2003, 15, 151–163. [Google Scholar] [CrossRef]
- Ngo, P.; Ozga, J.A.; Reinecke, D.M. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol. Biol. 2002, 49, 439–448. [Google Scholar] [CrossRef]
- Xiao, Z.; Fu, R.P.; Li, J.Y.; Fan, Z.Q.; Yin, H.F. Overexpression of the Gibberellin 2-Oxidase Gene from Camellia Lipoensis Induces Dwarfism and Smaller Flowers in Nicotiana tabacum. Plant Mol. Biol. Rep. 2016, 34, 182–191. [Google Scholar] [CrossRef]
- Rieu, I.; Eriksson, S.; Stephen, J.; Powers, S.J.; Gong, F.; Griffiths, J.; Woolley, L.; ReyesBenlloch, R.; Nilsson, O.; Thomas, S.G.; et al. Genetic Analysis Reveals That C19-GA 2-Oxidation Is a Major Gibberellin Inactivation Pathway in Arabidopsis. Plant Cell 2008, 20, 2420–2436. [Google Scholar] [CrossRef]
- Sun, T.P.; Gubler, F. Molecular mechanism of gibberellin signaling in plants. Annu. Rev Plant Biol. 2004, 55, 197–223. [Google Scholar] [CrossRef]
- Davière, J.M.; Achard, P. Gibberellin signaling in plants. Development 2013, 140, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Rademacher, W. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Mol. Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef]
- Cheng, C.X.; Jiao, C.; Singer, S.D.; Gao, M.; Xu, X.Z.; Zhou, Y.M.; Li, Z.; Fei, Z.J.; Wang, Y.J.; Wang, X.P. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 2015, 16, 128. [Google Scholar] [CrossRef]
- Kimura, P.H.; Okamoto, G.; Hirano, K. Effects of gibberellic acid and streptomycin on pollen germination and ovule and seed development in Muscat Bailey A. Am. J. Enol. Vitic. 1996, 47, 152–156. [Google Scholar]
- Cheng, C.X.; Xu, X.Z.; Singer, S.D.; Li, J.; Zhang, H.J.; Gao, M.; Wang, L.; Song, J.Y.; Wang, X.P. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE 2013, 8, e80044. [Google Scholar] [CrossRef]
- Okamoto, G.; Miura, K. Effect of pre-bloom GA application on pollen tube growth in cv. Del. Grapevine Pistils. Vitis. 2005, 44, 157. [Google Scholar]
- Yamauchi, Y.; Ogawa, M.; Kuwahara, A.; Hanada, A.; Kamiya, Y.; Yamaguchi, S. Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana Seeds. Plant Cell 2004, 16, 367–378. [Google Scholar] [CrossRef]
- Lv, S.F.; Yu, D.Y.; Sun, Q.Q.; Jiang, J. Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings. Plant Growth Regul. 2018, 84, 225–236. [Google Scholar] [CrossRef]
- Shan, C.; Mei, Z.; Duan, J.; Chen, H.; Feng, H.; Cai, W. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS ONE 2014, 9, e87110. [Google Scholar] [CrossRef]
- Han, F.M.; Zhu, B.G. Evolutionary analysis of three gibberellin oxidase genesin rice, Arabidopsis, and soybean. Gene 2011, 473, 23–35. [Google Scholar] [CrossRef]
- Huang, M.; Fang, Y.; Liu, Y.; Jin, Y.L.; Sun, J.L.; Tao, X.; Ma, X.R.; He, K.Z.; Zhao, H. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata). BMC Biotechnol. 2015, 15, 81. [Google Scholar] [CrossRef]
- Iwahori, S.; Weaver, R.J.; Pool, R.M. Gibberellin-like activity in berries of seeded and seedless Tokay grapes. Plant Physiol. 1968, 43, 333–337. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Zhao, X.; Ge, H.; Chai, L.; Chen, S.; Perl, A.; Ma, H. Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Proteomics 2012, 12, 86–94. [Google Scholar] [CrossRef]
- Boss, P.K.; Thomas, M.R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 2002, 416, 847–850. [Google Scholar] [CrossRef]
- Agüero, C.; Vigliocco, A.; Abdala, G.; Tizio, R. Effect of gibberellic acid and uniconazol on embryo abortion in the stenospermocarpic grape cultivars Emperatriz and Perlon. Plant Growth Regul. 2000, 30, 9–16. [Google Scholar] [CrossRef]
- Vargas, A.M.; Cunff, L.; This, P.; Iba’n˜ez, J.; Andrés, M.T. VvGAI1polymorphisms associate with variation for berry traits in grapevine. Euphytica 2013, 191, 85–98. [Google Scholar] [CrossRef]
- Nicolas, S.D.; Péros, J.P.; Lacombe, T.; Launay, A.; Le Paslier, M.C.; Bérard, A.; Mangin, B.; Valière, S.; Martins, F.; Cunff, L.L.; et al. Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L.) diversity panel newly designed for association studies. BMC Plant Biol. 2016, 16, 74. [Google Scholar] [CrossRef]
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.F.; Berard, A.; Chauveau, A.; de Andrés, M.T.; Hausmann, L.; Le Paslier, M.C. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef]
- Guo, D.L.; Zhao, H.L.; Li, Q.; Zhang, G.H.; Jiang, J.F.; Liu, C.H.; Yu, Y.H. Genome-wide association study of berryrelated traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic. Res. 2019, 6, 11. [Google Scholar] [CrossRef]
- Murcia, G.; Pontin, M.; Piccoli, P. Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening. Plant Growth Regul. 2018, 84, 275–283. [Google Scholar] [CrossRef]
- Jung, C.J.; Hur, Y.Y.; Jung, S.M.; Noh, J.H.; Do, G.R.; Park, S.J.; Nam, J.C.; Park, K.S.; Hwang, H.S.; Choi, D.; et al. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development. J. Plant Res. 2014, 127, 359–371. [Google Scholar] [CrossRef]
- Huang, Y.; Xi Wang, X.; Ge, S.; Rao, G.Y. Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evol. Biol. 2015, 15, 207. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2011, 40, D302–D305. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [Google Scholar] [CrossRef]
- Larracuente, A.M.; Sackton, T.B.; Greenberg, A.J.; Wong, A.; Singh, N.D.; Sturgill, D.; Zhang, Y.; Oliver, B.; Clark, A.G. Evolution of protein-coding genes in Drosophila. Trends Genet. 2008, 24, 114–123. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nature reviews. Genetics 2011, 12, 32–42. [Google Scholar]
- Guo, Y.; Liu, J.; Zhang, J.; Liu, S.; Du, J. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica. Plant J. 2017, 91, 34–44. [Google Scholar] [CrossRef]
- Wang, P.F.; Su, L.; Gao, H.H.; Jiang, X.; Wu, X.Y.; Li, Y.; Zhang, Q.Q.; Wang, Y.M.; Ren, F.S. Genome-Wide Characterization of bHLH Genes in Grape and Analysis of their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis. Front. Plant Sci. 2018, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Wang, P.; Gao, C.; Bian, X.; Zhao, S.; Zhao, C.; Xia, H.; Song, H.; Hou, L.; Wan, S.; Wang, X. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferase and demethylase families in wild and cultivated peanut. Front. Plant Sci. 2016, 7, 7. [Google Scholar] [CrossRef]
- Grimplet, J.; Pimentel, D.; Agudelo-Romero, P.; Martinez-Zapater, J.M.; Fortes, M. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: Genome-wide characterization and expression analyses during developmental processes and stress responses. Sci. Rep. 2017, 7, 15968. [Google Scholar] [CrossRef]
- Fasoli, M.; Dal Santo, S.; Zenoni, S.; Tornielli, G.B.; Farina, L.; Zamboni, A.; Porceddu, A.; Venturini, L.; Bicego, M.; Murino, V.; et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 2012, 24, 3489–3505. [Google Scholar] [CrossRef]
- Willems, E.; Leyns, L.; Vandesompele, J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal. Biochem. 2008, 37, 127–129. [Google Scholar] [CrossRef]
- Richards, D.E.; King, K.E.; Ait-ali, T.; Harberd, N.P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 67–88. [Google Scholar] [CrossRef]
- Kaneko, M.; Itoh, H.; Inukai, Y.; Sakamoto, T.; Ueguchi-Tanaka, M.; Ashikari, M.; Matsuoka, M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 2003, 35, 104–115. [Google Scholar] [CrossRef]
- Sakamoto, T.; Miura, K.; Itoh, H.; Tatsumi, T.; Ueguchi-Tanaka, M.; Ishiyama, K.; Kobayashi, M.; Agrawal, G.K.; Takeda, S.; Abe, K.; et al. An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice. Plant Physiol. 2004, 134, 1642–1653. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Pang, B.Y.; Yan, J.; Wang, T.; Wang, L.N.; Chen, C.H.; Li, Q.; Ren, Z.H. Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of CsGA20ox1 in Root Development in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 3135. [Google Scholar] [CrossRef]
- Helaakoski, T.; Annunen, P.; Vuori, K.; MacNeil, I.A.; Pihlajaniemi, T.; Kivirikko, K.I. Cloning, baculovirus expression, and characterization of a second mouse prolyl 4-hydroxylase α-subunit isoform: Formation of an α 2 β 2 tetramer with the protein disulfide-isomerase/β subunit. Proc. Nat. Acad. Sci. USA 1995, 92, 4427–4431. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol. 2001, 2, research0007.1–research0007.8. [Google Scholar] [CrossRef]
- Kusaba, S.; Honda, C.; Kano-Murakami, Y. Isolation and expression of gibberellin 20-oxidase homologous in apple. J. Exp. Bot. 2001, 52, 375–376. [Google Scholar] [CrossRef]
- Qin, X.; Liu, J.H.; Zhao, W.S.; Chen, X.J.; Guo, Z.J.; Peng, Y.L. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol. Plant Microbe Interact. 2013, 26, 227–239. [Google Scholar] [CrossRef]
- Wu, J.M.; Chen, R.F.; Huang, X.; Qiu, L.H.; Li, Y.R. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant. Biotechnol. Bull. 2016, 32, 1–12. [Google Scholar]
Gene Name | Gene Accession No. | Position | Location | CDS (bp) | Peptide (aa) | Mw (kD) | GRAVY | pI | II | AI |
---|---|---|---|---|---|---|---|---|---|---|
VvGA2ox1 | GSVIVT01000687001 | 15,497,729–15,499,650 | 19 | 972 | 323 | 36.11644 | −0.193 | 6.54 | 51.22 | 83.90 |
VvGA2ox2 | GSVIVT01000689001 | 15,603,207–15,604,930 | 19 | 999 | 333 | 37.29584 | −0.221 | 8.22 | 35.93 | 88.08 |
VvGA2ox3 | GSVIVT01001966001 | 5,864,698–5,871,371 | 19 | 990 | 329 | 37.80599 | −0.304 | 5.85 | 47.92 | 82.64 |
VvGA2ox4 | GSVIVT01010228001 | 17,965,019–17,966,964 | 1 | 1173 | 391 | 44.33751 | −0.389 | 6.11 | 45.12 | 75.29 |
VvGA2ox5 | GSVIVT01012628001 | 190,065–195,087 | 10 | 1266 | 422 | 48.52461 | −0.253 | 6.21 | 49.12 | 80.59 |
VvGA2ox6 | GSVIVT01015671001 | 15,307,070–15,312,521 | 3 | 1059 | 352 | 39.12278 | −0.245 | 6.11 | 40.48 | 89.12 |
VvGA2ox7 | GSVIVT01021468001 | 5,846,741–5,848,388 | 10 | 1002 | 333 | 37.26860 | −0.288 | 5.42 | 45.89 | 83.33 |
VvGA2ox8 | GSVIVT01028169001 | 4,377,203–4,380,857 | 7 | 1005 | 335 | 37.36711 | −0.140 | 7.00 | 51.07 | 91.61 |
VvGA2ox9 | GSVIVT01031814001 | 4,642,801–4,644,279 | 3 | 1029 | 343 | 39.34553 | −0.529 | 5.67 | 30.82 | 81.25 |
VvGA2ox10 | GSVIVT01031826001 | 4,723,791–4,725,151 | 3 | 1029 | 343 | 39.31948 | −0.549 | 5.92 | 33.28 | 80.96 |
VvGA2ox11 | GSVIVT01034945001 | 343,990–346,779 | 5 | 1020 | 339 | 37.34141 | −0.213 | 5.40 | 46.47 | 81.36 |
VvGA3ox1 | GSVIVT01008811001 | 2,346,915–2,348,502 | 18 | 825 | 275 | 31.27474 | −0.469 | 5.17 | 26.40 | 83.96 |
VvGA3ox2 | GSVIVT01017173001 | 4,993,413–4,995,290 | 9 | 1098 | 366 | 40.28499 | −0.141 | 6.15 | 41.52 | 90.85 |
VvGA3ox3 | GSVIVT01017178001 | 5,037,569–5,040,878 | 9 | 1080 | 360 | 39.31305 | −0.050 | 5.14 | 53.05 | 94.31 |
VvGA3ox4 | GSVIVT01020680001 | 3,145,880–3,152,445 | 12 | 2037 | 678 | 75.98287 | −0.246 | 6.17 | 35.26 | 86.95 |
VvGA3ox5 | GSVIVT01026928001 | 19,336,280–19,337,354 | 15 | 987 | 328 | 37.04838 | −0.217 | 5.41 | 50.06 | 80.46 |
VvGA3ox6 | GSVIVT01035796001 | 4,431,413–4,432,859 | 4 | 1068 | 355 | 39.67545 | −0.175 | 6.46 | 45.63 | 89.55 |
VvGA20ox1 | GSVIVT01008782001 | 1,982,673–1,985,445 | 18 | 1233 | 411 | 46.88131 | −0.368 | 6.65 | 30.55 | 75.89 |
VvGA20ox2 | GSVIVT01018453001 | 14,861,395–14,863,190 | 16 | 891 | 297 | 33.30088 | −0.235 | 5.18 | 40.22 | 75.82 |
VvGA20ox3 | GSVIVT01019696001 | 2,527,135–2,532,638 | 2 | 966 | 322 | 36.21120 | −0.287 | 5.74 | 43.11 | 91.27 |
VvGA20ox4 | GSVIVT01026453001 | 23,382,368–23,384,135 | 4 | 1134 | 378 | 42.94017 | −0.418 | 6.28 | 33.70 | 77.38 |
VvGA20ox5 | GSVIVT01026466001 | 23,110,638–23,112,150 | 4 | 1128 | 376 | 42.91282 | −0.353 | 5.20 | 32.02 | 76.22 |
VvGA20ox6 | GSVIVT01027572001 | 15,453,533–15,455,130 | 15 | 897 | 298 | 33.80984 | −0.268 | 6.45 | 42.87 | 76.54 |
VvGA20ox7 | GSVIVT01031837001 | 4,782,181–4,783,671 | 3 | 939 | 313 | 35.72351 | −0.428 | 5.37 | 35.50 | 82.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Liang, G.; Lu, S.; Wang, P.; Liu, T.; Ma, Z.; Zuo, C.; Sun, X.; Chen, B.; Mao, J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.). Genes 2019, 10, 680. https://doi.org/10.3390/genes10090680
He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.). Genes. 2019; 10(9):680. https://doi.org/10.3390/genes10090680
Chicago/Turabian StyleHe, Honghong, Guoping Liang, Shixiong Lu, Pingping Wang, Tao Liu, Zonghuan Ma, Cunwu Zuo, Xiaomei Sun, Baihong Chen, and Juan Mao. 2019. "Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.)" Genes 10, no. 9: 680. https://doi.org/10.3390/genes10090680
APA StyleHe, H., Liang, G., Lu, S., Wang, P., Liu, T., Ma, Z., Zuo, C., Sun, X., Chen, B., & Mao, J. (2019). Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis vinifera L.). Genes, 10(9), 680. https://doi.org/10.3390/genes10090680