DNA Methylation in the Diagnosis of Monogenic Diseases
Abstract
:1. Introduction
2. DNA Methylation Defects and Testing
2.1. Developmental Delay and/or Intellectual Disability Disorders (DD/ID)
2.1.1. Fragile X Syndrome
2.1.2. Chromatin-Related Disorders
2.2. Imprinting Disorders
2.2.1. Prader–Willi Syndrome and Angelman Syndrome
2.2.2. Temple Syndrome and Kagami–Ogata Syndrome
2.2.3. Beckwith–Wiedemann Syndrome and Silver–Russell Syndrome
2.2.4. Pseudohypoparathyroidism
2.2.5. Transient Neonatal Diabetes Mellitus
2.2.6. Multilocus Imprinting Disturbances
2.3. DNA Methylation Defects in Hereditary Tumours
2.3.1. Retinoblastoma
2.3.2. Lynch Syndrome
2.4. Neuromuscular Diseases
2.4.1. Myotonic Dystrophy Type 1
2.4.2. Amyotrophic Lateral Sclerosis
2.4.3. Facioscapulohumeral Muscular Dystrophy
3. DNA Methylation Analysis in Prenatal Diagnosis
- Abnormal fetal and/or parental karyotypes involving chromosomes harboring imprinted loci;
- Positive family history;
- Fetal phenotypes suggesting ImpDis detected by ultrasound;
- Females carrying PM or FM of FXS and CDM1.
4. Perspectives and Challenges
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AS | Angelman syndrome |
ANDP | Activity Dependent Neuroprotective Protein |
ATRX | Alpha thalassemia/mental retardation X-linked |
BWS | Beckwith–Wiedemann syndrome |
BWSp | Beckwith–Wiedemann syndrome spectrum |
CDM1 | congenital Myotonic dystrophy type 1 |
CJS | Claes–Jensen syndrome |
CNV | Copy number variation |
CRD | Chromatin-Related Disorders |
CVS | chorionic villi samples |
DD/ID | Developmental delay and/or intellectual disability disorders |
DM1 | Myotonic dystrophy type 1 |
DNMT | DNA methyltransferase |
FM | Full mutation |
FSHD | Facioscapulohumeral Muscular Dystrophy |
FXS | Fragile X syndrome |
gDMR | Germline-derived differentially methylated region |
GOM | gain of methylation |
IC | Imprinting Centre |
IG-DMR | Intergenic-differentially methylated region |
Imp Dis | Imprinting Disorders |
KOS | Kagami–Ogata syndrome |
KS | Kabuki syndrome |
LS | Lynch syndrome |
LOM | Loss of methylation |
mat | maternal |
mCpG | methylation of cytosines preceding guanines |
MLID | Multi-locus imprinting disturbances |
MMR | mismatch repair |
MS-MLPA | Methylation Specific Multiple Ligation-Dependent Probe Amplification |
pat | paternal |
PHP1B | Pseudohypoparathyroidism 1B |
PM | premutation |
PTH | parathyroid hormone |
PWS | Prader–Willi syndrome |
SCMC | Sub-cortical maternal complex |
SnoRNA | small nucleolar RNA |
SNV | Single-nucleotide variants |
SRS | Silver–Russell syndrome |
SS | Sotos syndrome |
TNDM | Transient neonatal diabetes mellitus |
TS | Temple syndrome |
TSS–DMR | Transcription start site-differentially methylated region |
UPD | uniparental disomy |
VUS | variants of unknown significance |
References
- Schubeler, D. ESCI award lecture: Regulation, function and biomarker potential of DNA methylation. Eur. J. Clin. Investig. 2015, 45, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baubec, T.; Schubeler, D. Genomic patterns and context specific interpretation of DNA methylation. Curr. Opin. Genet. Dev. 2014, 25, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Argelaguet, R.; Clark, S.J.; Mohammed, H.; Stapel, L.C.; Krueger, C.; Kapourani, C.A.; Imaz-Rosshandler, I.; Lohoff, T.; Xiang, Y.; Hanna, C.W.; et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 2019, 576, 487–491. [Google Scholar] [CrossRef]
- Hanna, C.W.; Demond, H.; Kelsey, G. Epigenetic regulation in development: Is the mouse a good model for the human? Hum. Reprod. Update 2018, 24, 556–576. [Google Scholar] [CrossRef]
- Neri, F.; Rapelli, S.; Krepelova, A.; Incarnato, D.; Parlato, C.; Basile, G.; Maldotti, M.; Anselmi, F.; Oliviero, S. Intragenic DNA methylation prevents spurious transcription initiation. Nature 2017, 543, 72–77. [Google Scholar] [CrossRef]
- Monk, D.; Mackay, D.J.G.; Eggermann, T.; Maher, E.R.; Riccio, A. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 2019, 20, 235–248. [Google Scholar] [CrossRef]
- Imbeault, M.; Helleboid, P.Y.; Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 2017, 543, 550–554. [Google Scholar] [CrossRef]
- Velasco, G.; Francastel, C. Genetics meets DNA methylation in rare diseases. Clin. Genet. 2019, 95, 210–220. [Google Scholar] [CrossRef]
- Pathak, R.; Feil, R. Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Curr. Opin. Chem. Biol. 2018, 45, 139–147. [Google Scholar] [CrossRef]
- Bouras, E.; Karakioulaki, M.; Bougioukas, K.I.; Aivaliotis, M.; Tzimagiorgis, G.; Chourdakis, M. Gene promoter methylation and cancer: An umbrella review. Gene 2019, 710, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.G.; Lowe, R.; Adams, P.D.; Baccarelli, A.A.; Beck, S.; Bell, J.T.; Christensen, B.C.; Gladyshev, V.N.; Heijmans, B.T.; Horvath, S.; et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol. 2019, 20, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransquet, P.D.; Wrigglesworth, J.; Woods, R.L.; Ernst, M.E.; Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: A systematic review and meta-analysis. Clin. Epigenetics 2019, 11, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agha, G.; Mendelson, M.M.; Ward-Caviness, C.K.; Joehanes, R.; Huan, T.; Gondalia, R.; Salfati, E.; Brody, J.A.; Fiorito, G.; Bressler, J.; et al. Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease. Circulation 2019, 140, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Sadikovic, B.; Aref-Eshghi, E.; Levy, M.A.; Rodenhiser, D. DNA methylation signatures in mendelian developmental disorders as a diagnostic bridge between genotype and phenotype. Epigenomics 2019, 11, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Rivero-Arias, O.; Angelov, A.; Kim, E.; Fotheringham, I.; Leal, J. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am. J. Med. Genet. A 2014, 164, 1648–1658. [Google Scholar] [CrossRef]
- Verkerk, A.J.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.P.; et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
- Brykczynska, U.; Pecho-Vrieseling, E.; Thiemeyer, A.; Klein, J.; Fruh, I.; Doll, T.; Manneville, C.; Fuchs, S.; Iazeolla, M.; Beibel, M.; et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Rep. 2016, 7, 1059–1071. [Google Scholar] [CrossRef]
- Pietrobono, R.; Tabolacci, E.; Zalfa, F.; Zito, I.; Terracciano, A.; Moscato, U.; Bagni, C.; Oostra, B.; Chiurazzi, P.; Neri, G. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum. Mol. Genet. 2005, 14, 267–277. [Google Scholar] [CrossRef]
- Smeets, H.J.; Smits, A.P.; Verheij, C.E.; Theelen, J.P.; Willemsen, R.; van de Burgt, I.; Hoogeveen, A.T.; Oosterwijk, J.C.; Oostra, B.A. Normal phenotype in two brothers with a full FMR1 mutation. Hum. Mol. Genet. 1995, 4, 2103–2108. [Google Scholar] [CrossRef] [Green Version]
- Tabolacci, E.; Moscato, U.; Zalfa, F.; Bagni, C.; Chiurazzi, P.; Neri, G. Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. Eur. J. Hum. Genet. 2008, 16, 1487–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolin, S.L.; Glicksman, A.; Houck, G.E., Jr.; Brown, W.T.; Dobkin, C.S. Mosaicism in fragile X affected males. Am. J. Med. Genet. 1994, 51, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Pretto, D.; Yrigollen, C.M.; Tang, H.T.; Williamson, J.; Espinal, G.; Iwahashi, C.K.; Durbin-Johnson, B.; Hagerman, R.J.; Hagerman, P.J.; Tassone, F. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front. Genet. 2014, 5, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipovic-Sadic, S.; Sah, S.; Chen, L.; Krosting, J.; Sekinger, E.; Zhang, W.; Hagerman, P.J.; Stenzel, T.T.; Hadd, A.G.; Latham, G.J.; et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin. Chem. 2010, 56, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hadd, A.; Sah, S.; Houghton, J.F.; Filipovic-Sadic, S.; Zhang, W.; Hagerman, P.J.; Tassone, F.; Latham, G.J. High-resolution methylation polymerase chain reaction for fragile X analysis: Evidence for novel FMR1 methylation patterns undetected in Southern blot analyses. Genet. Med. 2011, 13, 528–538. [Google Scholar] [CrossRef] [Green Version]
- Grafodatskaya, D.; Chung, B.H.; Butcher, D.T.; Turinsky, A.L.; Goodman, S.J.; Choufani, S.; Chen, Y.A.; Lou, Y.; Zhao, C.; Rajendram, R.; et al. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 lysine 4 demethylase KDM5C. BMC Med. Genom. 2013, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Schenkel, L.C.; Aref-Eshghi, E.; Skinner, C.; Ainsworth, P.; Lin, H.; Pare, G.; Rodenhiser, D.I.; Schwartz, C.; Sadikovic, B. Peripheral blood epi-signature of Claes-Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C. Clin. Epigenetics 2018, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.L.; Zhou, B.O.; Zhang, R.R.; Zhang, K.L.; Zhou, J.Q.; Xu, G.L. The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc. Natl. Acad. Sci. USA 2009, 106, 22187–22192. [Google Scholar] [CrossRef] [Green Version]
- Aref-Eshghi, E.; Rodenhiser, D.I.; Schenkel, L.C.; Lin, H.; Skinner, C.; Ainsworth, P.; Pare, G.; Hood, R.L.; Bulman, D.E.; Kernohan, K.D.; et al. Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. Am. J. Hum. Genet. 2018, 102, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Choufani, S.; Cytrynbaum, C.; Chung, B.H.; Turinsky, A.L.; Grafodatskaya, D.; Chen, Y.A.; Cohen, A.S.; Dupuis, L.; Butcher, D.T.; Siu, M.T.; et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun. 2015, 6, 10207. [Google Scholar] [CrossRef] [Green Version]
- Martin-Herranz, D.E.; Aref-Eshghi, E.; Bonder, M.J.; Stubbs, T.M.; Choufani, S.; Weksberg, R.; Stegle, O.; Sadikovic, B.; Reik, W.; Thornton, J.M. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol. 2019, 20, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aref-Eshghi, E.; Schenkel, L.C.; Lin, H.; Skinner, C.; Ainsworth, P.; Pare, G.; Rodenhiser, D.; Schwartz, C.; Sadikovic, B. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics 2017, 12, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Butcher, D.T.; Cytrynbaum, C.; Turinsky, A.L.; Siu, M.T.; Inbar-Feigenberg, M.; Mendoza-Londono, R.; Chitayat, D.; Walker, S.; Machado, J.; Caluseriu, O.; et al. CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions. Am. J. Hum. Genet. 2017, 100, 773–788. [Google Scholar] [CrossRef] [PubMed]
- Schenkel, L.C.; Kernohan, K.D.; McBride, A.; Reina, D.; Hodge, A.; Ainsworth, P.J.; Rodenhiser, D.I.; Pare, G.; Berube, N.G.; Skinner, C.; et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin 2017, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, R.L.; Schenkel, L.C.; Nikkel, S.M.; Ainsworth, P.J.; Pare, G.; Boycott, K.M.; Bulman, D.E.; Sadikovic, B. The defining DNA methylation signature of Floating-Harbor Syndrome. Sci. Rep. 2016, 6, 38803. [Google Scholar] [CrossRef] [PubMed]
- Aref-Eshghi, E.; Bend, E.G.; Hood, R.L.; Schenkel, L.C.; Carere, D.A.; Chakrabarti, R.; Nagamani, S.C.S.; Cheung, S.W.; Campeau, P.M.; Prasad, C.; et al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes. Nat. Commun. 2018, 9, 4885. [Google Scholar] [CrossRef]
- Bend, E.G.; Aref-Eshghi, E.; Everman, D.B.; Rogers, R.C.; Cathey, S.S.; Prijoles, E.J.; Lyons, M.J.; Davis, H.; Clarkson, K.; Gripp, K.W.; et al. Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome. Clin. Epigenetics 2019, 11, 64. [Google Scholar] [CrossRef]
- Kernohan, K.D.; Cigana Schenkel, L.; Huang, L.; Smith, A.; Pare, G.; Ainsworth, P.; Care4Rare Canada Consortium; Boycott, K.M.; Warman-Chardon, J.; Sadikovic, B. Identification of a methylation profile for DNMT1-associated autosomal dominant cerebellar ataxia, deafness, and narcolepsy. Clin. Epigenetics 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wu, Y.; Ordog, T.; Baheti, S.; Nie, J.; Duan, X.; Hojo, K.; Kocher, J.P.; Dyck, P.J.; Klein, C.J. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E. Epigenetics 2014, 9, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, A.R.; Maroofian, R.; Salter, C.G.; Chioza, B.A.; Cross, H.E.; Patton, M.A.; Dempster, E.; Temple, I.K.; Mackay, D.J.G.; Rezwan, F.I.; et al. Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging. Genome Res. 2019, 29, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Heyn, P.; Logan, C.V.; Fluteau, A.; Challis, R.C.; Auchynnikava, T.; Martin, C.A.; Marsh, J.A.; Taglini, F.; Kilanowski, F.; Parry, D.A.; et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 2019, 51, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Grillo, G.; Touleimat, N.; Ferry, L.; Ivkovic, I.; Ribierre, F.; Deleuze, J.F.; Chantalat, S.; Picard, C.; Francastel, C. Comparative methylome analysis of ICF patients identifies heterochromatin loci that require ZBTB24, CDCA7 and HELLS for their methylated state. Hum. Mol. Genet. 2018, 27, 2409–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simo-Riudalbas, L.; Diaz-Lagares, A.; Gatto, S.; Gagliardi, M.; Crujeiras, A.B.; Matarazzo, M.R.; Esteller, M.; Sandoval, J. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome. PLoS ONE 2015, 10, e0132517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, Z.; Bando, M.; Itoh, T.; Deardorff, M.A.; Li, J.R.; Clark, D.; Kaur, M.; Tatsuro, K.; Kline, A.D.; et al. Genome-wide DNA methylation analysis in cohesin mutant human cell lines. Nucleic Acids Res. 2010, 38, 5657–5671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzyzewska, I.M.; Maas, S.M.; Henneman, P.; Lip, K.V.D.; Venema, A.; Baranano, K.; Chassevent, A.; Aref-Eshghi, E.; van Essen, A.J.; Fukuda, T.; et al. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin. Epigenetics 2019, 11, 156. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.W.; Brant, J.O.; Kramer, J.M.; Moss, J.I.; Yang, T.P.; Hansen, P.J.; Williams, R.S.; Resnick, J.L. Angelman syndrome imprinting center encodes a transcriptional promoter. Proc. Natl. Acad. Sci. USA 2015, 112, 6871–6875. [Google Scholar] [CrossRef] [Green Version]
- Buiting, K. Prader-Willi syndrome and Angelman syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2010, 154, 365–376. [Google Scholar] [CrossRef]
- Buiting, K.; Cassidy, S.B.; Driscoll, D.J.; Gillessen-Kaesbach, G.; Kanber, D.; Tauber, M.; Schwinger, E.; Horsthemke, B. Clinical utility gene card for: Prader-Willi Syndrome. Eur. J. Hum. Genet. 2014, 22. [Google Scholar] [CrossRef] [Green Version]
- Lorgen-Ritchie, M.; Murray, A.D.; Ferguson-Smith, A.C.; Richards, M.; Horgan, G.W.; Phillips, L.H.; Hoad, G.; Gall, I.; Harrison, K.; McNeill, G.; et al. Imprinting methylation in SNRPN and MEST1 in adult blood predicts cognitive ability. PLoS ONE 2019, 14, e0211799. [Google Scholar] [CrossRef]
- Ramsden, S.C.; Clayton-Smith, J.; Birch, R.; Buiting, K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med. Genet. 2010, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Buiting, K.; Clayton-Smith, J.; Driscoll, D.J.; Gillessen-Kaesbach, G.; Kanber, D.; Schwinger, E.; Williams, C.; Horsthemke, B. Clinical utility gene card for: Angelman Syndrome. Eur. J. Hum. Genet. 2015, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buiting, K.; Williams, C.; Horsthemke, B. Angelman syndrome—Insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 2016, 12, 584–593. [Google Scholar] [CrossRef]
- Nazlican, H.; Zeschnigk, M.; Claussen, U.; Michel, S.; Boehringer, S.; Gillessen-Kaesbach, G.; Buiting, K.; Horsthemke, B. Somatic mosaicism in patients with Angelman syndrome and an imprinting defect. Hum. Mol. Genet. 2004, 13, 2547–2555. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Angelman, H.; Clayton-Smith, J.; Driscoll, D.J.; Hendrickson, J.E.; Knoll, J.H.; Magenis, R.E.; Schinzel, A.; Wagstaff, J.; Whidden, E.M.; et al. Angelman syndrome: Consensus for diagnostic criteria. Angelman Syndrome Foundation. Am. J. Med. Genet. 1995, 56, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Beaudet, A.L.; Clayton-Smith, J.; Knoll, J.H.; Kyllerman, M.; Laan, L.A.; Magenis, R.E.; Moncla, A.; Schinzel, A.A.; Summers, J.A.; et al. Angelman syndrome 2005: Updated consensus for diagnostic criteria. Am. J. Med. Genet. A 2006, 140, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Geoffron, S.; Abi Habib, W.; Chantot-Bastaraud, S.; Dubern, B.; Steunou, V.; Azzi, S.; Afenjar, A.; Busa, T.; Pinheiro Canton, A.; Chalouhi, C.; et al. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. J. Clin. Endocrinol. Metab. 2018, 103, 2436–2446. [Google Scholar] [CrossRef] [Green Version]
- Ioannides, Y.; Lokulo-Sodipe, K.; Mackay, D.J.; Davies, J.H.; Temple, I.K. Temple syndrome: Improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: An analysis of 51 published cases. J. Med. Genet. 2014, 51, 495–501. [Google Scholar] [CrossRef]
- Beygo, J.; Kuchler, A.; Gillessen-Kaesbach, G.; Albrecht, B.; Eckle, J.; Eggermann, T.; Gellhaus, A.; Kanber, D.; Kordass, U.; Ludecke, H.J.; et al. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur. J. Hum. Genet. 2017, 25, 935–945. [Google Scholar] [CrossRef]
- Carvalho, C.M.B.; Coban-Akdemir, Z.; Hijazi, H.; Yuan, B.; Pendleton, M.; Harrington, E.; Beaulaurier, J.; Juul, S.; Turner, D.J.; Kanchi, R.S.; et al. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 2019, 11, 25. [Google Scholar] [CrossRef]
- Kagami, M.; Matsubara, K.; Nakabayashi, K.; Nakamura, A.; Sano, S.; Okamura, K.; Hata, K.; Fukami, M.; Ogata, T. Genome-wide multilocus imprinting disturbance analysis in Temple syndrome and Kagami-Ogata syndrome. Genet. Med. 2017, 19, 476–482. [Google Scholar] [CrossRef]
- Ogata, T.; Kagami, M. Kagami-Ogata syndrome: A clinically recognizable upd (14) pat and related disorder affecting the chromosome 14q32.2 imprinted region. J. Hum. Genet. 2016, 61, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, I.M.; Buiting, K.; Czeschik, C.; Reyniers, E.; Vandeweyer, G.; Vanhaesebrouck, P.; Ludecke, H.J.; Wieczorek, D.; Horsthemke, B.; Mortier, G.; et al. Novel microdeletions on chromosome 14q32.2 suggest a potential role for non-coding RNAs in Kagami-Ogata syndrome. Eur. J. Hum. Genet. 2016, 24, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Haug, M.G.; Brendehaug, A.; Houge, G.; Kagami, M.; Ogata, T. Mosaic upd (14) pat in a patient with mild features of Kagami-Ogata syndrome. Clin. Case Rep. 2018, 6, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brioude, F.; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.; Bertoletti, M.; et al. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol. 2018, 14, 229–249. [Google Scholar] [CrossRef]
- Wang, K.H.; Kupa, J.; Duffy, K.A.; Kalish, J.M. Diagnosis and Management of Beckwith-Wiedemann Syndrome. Front. Pediatr. 2020, 7. [Google Scholar] [CrossRef]
- Azzi, S.; Abi Habib, W.; Netchine, I. Beckwith-Wiedemann and Russell-Silver Syndromes: From new molecular insights to the comprehension of imprinting regulation. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 30–38. [Google Scholar] [CrossRef]
- Alders, M.; Maas, S.M.; Kadouch, D.J.; van der Lip, K.; Bliek, J.; van der Horst, C.M.; Mannens, M.M. Methylation analysis in tongue tissue of BWS patients identifies the (EPI) genetic cause in 3 patients with normal methylation levels in blood. Eur. J. Med. Genet. 2014, 57, 293–297. [Google Scholar] [CrossRef]
- Yamada, T.; Sugiyama, G.; Higashimoto, K.; Nakashima, A.; Nakano, H.; Sumida, T.; Soejima, H.; Mori, Y. Beckwith-Wiedemann syndrome with asymmetric mosaic of paternal disomy causing hemihyperplasia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, e84–e88. [Google Scholar] [CrossRef]
- Valente, F.M.; Sparago, A.; Freschi, A.; Hill-Harfe, K.; Maas, S.M.; Frints, S.G.M.; Alders, M.; Pignata, L.; Franzese, M.; Angelini, C.; et al. Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith-Wiedemann locus. Genet. Med. 2019, 21, 1808–1820. [Google Scholar] [CrossRef] [Green Version]
- Azzi, S.; Salem, J.; Thibaud, N.; Chantot-Bastaraud, S.; Lieber, E.; Netchine, I.; Harbison, M.D. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J. Med. Genet. 2015, 52, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Bartholdi, D.; Krajewska-Walasek, M.; Ounap, K.; Gaspar, H.; Chrzanowska, K.H.; Ilyana, H.; Kayserili, H.; Lurie, I.W.; Schinzel, A.; Baumer, A. Epigenetic mutations of the imprinted IGF2-H19 domain in Silver-Russell syndrome (SRS): Results from a large cohort of patients with SRS and SRS-like phenotypes. J. Med. Genet. 2009, 46, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netchine, I.; Rossignol, S.; Dufourg, M.N.; Azzi, S.; Rousseau, A.; Perin, L.; Houang, M.; Steunou, V.; Esteva, B.; Thibaud, N.; et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: Clinical scoring system and epigenetic-phenotypic correlations. J. Clin. Endocrinol. Metab. 2007, 92, 3148–3154. [Google Scholar] [CrossRef] [PubMed]
- Eggermann, T.; Eggermann, K.; Schonherr, N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008, 24, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.L.; Mackay, D.M.; Callaway, J.L.; Docherty, L.E.; Poole, R.L.; Bullman, H.; Lever, M.; Castle, B.M.; Kivuva, E.C.; Turnpenny, P.D.; et al. Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci. Eur. J. Hum. Genet. 2010, 18, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Calzari, L.; Mussa, A.; Mainini, E.; Cassina, M.; Di Candia, S.; Clementi, M.; Guzzetti, S.; Tabano, S.; Miozzo, M.; et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin. Epigenetics 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Abi Habib, W.; Brioude, F.; Azzi, S.; Salem, J.; Das Neves, C.; Personnier, C.; Chantot-Bastaraud, S.; Keren, B.; Le Bouc, Y.; Harbison, M.D.; et al. 11p15 ICR1 Partial Deletions Associated with IGF2/H19 DMR Hypomethylation and Silver-Russell Syndrome. Hum. Mutat. 2017, 38, 105–111. [Google Scholar] [CrossRef]
- Azzi, S.; Rossignol, S.; Steunou, V.; Sas, T.; Thibaud, N.; Danton, F.; Le Jule, M.; Heinrichs, C.; Cabrol, S.; Gicquel, C.; et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum. Mol. Genet. 2009, 18, 4724–4733. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, E.L.; Brioude, F.; Lokulo-Sodipe, O.; O’Connell, S.M.; Salem, J.; Bliek, J.; Canton, A.P.; Chrzanowska, K.H.; Davies, J.H.; Dias, R.P.; et al. Diagnosis and management of Silver-Russell syndrome: First international consensus statement. Nat. Rev. Endocrinol. 2017, 13, 105–124. [Google Scholar] [CrossRef]
- Begemann, M.; Zirn, B.; Santen, G.; Wirthgen, E.; Soellner, L.; Buttel, H.M.; Schweizer, R.; van Workum, W.; Binder, G.; Eggermann, T. Paternally Inherited IGF2 Mutation and Growth Restriction. N. Engl. J. Med. 2015, 373, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Brioude, F.; Oliver-Petit, I.; Blaise, A.; Praz, F.; Rossignol, S.; Le Jule, M.; Thibaud, N.; Faussat, A.M.; Tauber, M.; Le Bouc, Y.; et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J. Med. Genet. 2013, 50, 823–830. [Google Scholar] [CrossRef]
- Eggermann, T.; Schonherr, N.; Jager, S.; Spaich, C.; Ranke, M.B.; Wollmann, H.A.; Binder, G. Segmental maternal UPD(7q) in Silver-Russell syndrome. Clin. Genet. 2008, 74, 486–489. [Google Scholar] [CrossRef]
- Su, J.; Wang, J.; Fan, X.; Fu, C.; Zhang, S.; Zhang, Y.; Qin, Z.; Li, H.; Luo, J.; Li, C.; et al. Mosaic UPD(7q)mat in a patient with silver Russell syndrome. Mol. Cytogenet. 2017, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, G.; Bastepe, M.; Monk, D.; de Sanctis, L.; Thiele, S.; Usardi, A.; Ahmed, S.F.; Bufo, R.; Choplin, T.; De Filippo, G.; et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: First international Consensus Statement. Nat. Rev. Endocrinol. 2018, 14, 476–500. [Google Scholar] [CrossRef]
- Bastepe, M.; Juppner, H. Editorial: Pseudohypoparathyroidism and mechanisms of resistance toward multiple hormones: Molecular evidence to clinical presentation. J. Clin. Endocrinol. Metab. 2003, 88, 4055–4058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patten, J.L.; Levine, M.A. Immunochemical analysis of the alpha-subunit of the stimulatory G-protein of adenylyl cyclase in patients with Albright’s hereditary osteodystrophy. J. Clin. Endocrinol. Metab. 1990, 71, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.J.; Hughes, H.E. Imprinting in Albright’s hereditary osteodystrophy. J. Med. Genet. 1993, 30, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Shore, E.M.; Ahn, J.; Jan de Beur, S.; Li, M.; Xu, M.; Gardner, R.J.; Zasloff, M.A.; Whyte, M.P.; Levine, M.A.; Kaplan, F.S. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N. Engl. J. Med. 2002, 346, 99–106. [Google Scholar] [CrossRef]
- Farfel, Z.; Brothers, V.M.; Brickman, A.S.; Conte, F.; Neer, R.; Bourne, H.R. Pseudohypoparathyroidism: Inheritance of deficient receptor-cyclase coupling activity. Proc. Natl. Acad. Sci. USA 1981, 78, 3098–3102. [Google Scholar] [CrossRef] [Green Version]
- Linglart, A.; Carel, J.C.; Garabedian, M.; Le, T.; Mallet, E.; Kottler, M.L. GNAS1 lesions in pseudohypoparathyroidism Ia and Ic: Genotype phenotype relationship and evidence of the maternal transmission of the hormonal resistance. J. Clin. Endocrinol. Metab. 2002, 87, 189–197. [Google Scholar] [CrossRef]
- Maupetit-Mehouas, S.; Mariot, V.; Reynes, C.; Bertrand, G.; Feillet, F.; Carel, J.C.; Simon, D.; Bihan, H.; Gajdos, V.; Devouge, E.; et al. Quantification of the methylation at the GNAS locus identifies subtypes of sporadic pseudohypoparathyroidism type Ib. J. Med. Genet. 2011, 48, 55–63. [Google Scholar] [CrossRef]
- Wilson, L.C.; Oude Luttikhuis, M.E.; Clayton, P.T.; Fraser, W.D.; Trembath, R.C. Parental origin of Gs alpha gene mutations in Albright’s hereditary osteodystrophy. J. Med. Genet. 1994, 31, 835–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docherty, L.E.; Kabwama, S.; Lehmann, A.; Hawke, E.; Harrison, L.; Flanagan, S.E.; Ellard, S.; Hattersley, A.T.; Shield, J.P.; Ennis, S.; et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 2013, 56, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Polak, M.; Cave, H. Neonatal diabetes mellitus: A disease linked to multiple mechanisms. Orphanet J. Rare Dis. 2007, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, D.J.; Callaway, J.L.; Marks, S.M.; White, H.E.; Acerini, C.L.; Boonen, S.E.; Dayanikli, P.; Firth, H.V.; Goodship, J.A.; Haemers, A.P.; et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 2008, 40, 949–951. [Google Scholar] [CrossRef]
- Eggermann, T.; Perez de Nanclares, G.; Maher, E.R.; Temple, I.K.; Tumer, Z.; Monk, D.; Mackay, D.J.; Gronskov, K.; Riccio, A.; Linglart, A.; et al. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenetics 2015, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Delgado, M.; Riccio, A.; Eggermann, T.; Maher, E.R.; Lapunzina, P.; Mackay, D.; Monk, D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet. 2016, 32, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Moelans, C.B.; Atanesyan, L.; Savola, S.P.; van Diest, P.J. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). Methods Mol. Biol. 2018, 1708, 537–549. [Google Scholar] [CrossRef]
- Aref-Eshghi, E.; Schenkel, L.C.; Lin, H.; Skinner, C.; Ainsworth, P.; Pare, G.; Siu, V.; Rodenhiser, D.; Schwartz, C.; Sadikovic, B. Clinical Validation of a Genome-Wide DNA Methylation Assay for Molecular Diagnosis of Imprinting Disorders. J. Mol. Diagn. 2017, 19, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Hernandez Mora, J.R.; Tayama, C.; Sanchez-Delgado, M.; Monteagudo-Sanchez, A.; Hata, K.; Ogata, T.; Medrano, J.; Poo-Llanillo, M.E.; Simon, C.; Moran, S.; et al. Characterization of parent-of-origin methylation using the Illumina Infinium MethylationEPIC array platform. Epigenomics 2018, 10, 941–954. [Google Scholar] [CrossRef]
- Sparago, A.; Verma, A.; Patricelli, M.G.; Pignata, L.; Russo, S.; Calzari, L.; De Francesco, N.; Del Prete, R.; Palumbo, O.; Carella, M.; et al. The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype. Clin. Epigenetics 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Arima, T.; Kamikihara, T.; Hayashida, T.; Kato, K.; Inoue, T.; Shirayoshi, Y.; Oshimura, M.; Soejima, H.; Mukai, T.; Wake, N. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res. 2005, 33, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.J.; Hahnemann, J.M.; Boonen, S.E.; Poerksen, S.; Bunyan, D.J.; White, H.E.; Durston, V.J.; Thomas, N.S.; Robinson, D.O.; Shield, J.P.; et al. Epimutation of the TNDM locus and the Beckwith-Wiedemann syndrome centromeric locus in individuals with transient neonatal diabetes mellitus. Hum. Genet. 2006, 119, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Soellner, L.; Monk, D.; Rezwan, F.I.; Begemann, M.; Mackay, D.; Eggermann, T. Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Mol. Cell. Probes 2015, 29, 282–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Court, F.; Martin-Trujillo, A.; Romanelli, V.; Garin, I.; Iglesias-Platas, I.; Salafsky, I.; Guitart, M.; Perez de Nanclares, G.; Lapunzina, P.; Monk, D. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum. Mutat. 2013, 34, 595–602. [Google Scholar] [CrossRef]
- Poole, R.L.; Docherty, L.E.; Al Sayegh, A.; Caliebe, A.; Turner, C.; Baple, E.; Wakeling, E.; Harrison, L.; Lehmann, A.; Temple, I.K.; et al. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders. Am. J. Med. Genet. A 2013, 161, 2174–2182. [Google Scholar] [CrossRef]
- Bliek, J.; Verde, G.; Callaway, J.; Maas, S.M.; De Crescenzo, A.; Sparago, A.; Cerrato, F.; Russo, S.; Ferraiuolo, S.; Rinaldi, M.M.; et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 2009, 17, 611–619. [Google Scholar] [CrossRef]
- Eggermann, T.; Heilsberg, A.K.; Bens, S.; Siebert, R.; Beygo, J.; Buiting, K.; Begemann, M.; Soellner, L. Additional molecular findings in 11p15-associated imprinting disorders: An urgent need for multi-locus testing. J. Mol. Med. 2014, 92, 769–777. [Google Scholar] [CrossRef]
- Fontana, L.; Bedeschi, M.F.; Maitz, S.; Cereda, A.; Fare, C.; Motta, S.; Seresini, A.; D’Ursi, P.; Orro, A.; Pecile, V.; et al. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018, 13, 897–909. [Google Scholar] [CrossRef]
- Maeda, T.; Higashimoto, K.; Jozaki, K.; Yatsuki, H.; Nakabayashi, K.; Makita, Y.; Tonoki, H.; Okamoto, N.; Takada, F.; Ohashi, H.; et al. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations. Genet. Med. 2014, 16, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuke, T.; Mizuno, S.; Nagai, T.; Hasegawa, T.; Horikawa, R.; Miyoshi, Y.; Muroya, K.; Kondoh, T.; Numakura, C.; Sato, S.; et al. Molecular and clinical studies in 138 Japanese patients with Silver-Russell syndrome. PLoS ONE 2013, 8, e60105. [Google Scholar] [CrossRef]
- Maupetit-Mehouas, S.; Azzi, S.; Steunou, V.; Sakakini, N.; Silve, C.; Reynes, C.; Perez de Nanclares, G.; Keren, B.; Chantot, S.; Barlier, A.; et al. Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism type 1b. Hum. Mutat. 2013, 34, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Perez-Nanclares, G.; Romanelli, V.; Mayo, S.; Garin, I.; Zazo Seco, C.; Fernandez-Rebollo, E.; Martinez, F.; Lapunzina, P.; de Nanclares, G.P.; Spanish, P.H.P.G. Detection of hypomethylation syndrome among patients with epigenetic alterations at the GNAS locus. J. Clin. Endocrinol. Metab. 2012, 97, E1060–E1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bens, S.; Kolarova, J.; Beygo, J.; Buiting, K.; Caliebe, A.; Eggermann, T.; Gillessen-Kaesbach, G.; Prawitt, D.; Thiele-Schmitz, S.; Begemann, M.; et al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016, 8, 801–816. [Google Scholar] [CrossRef] [PubMed]
- Bakker, B.; Sonneveld, L.J.; Woltering, M.C.; Bikker, H.; Kant, S.G. A Girl with Beckwith-Wiedemann Syndrome and Pseudohypoparathyroidism Type 1B Due to Multiple Imprinting Defects. J. Clin. Endocrinol. Metab. 2015, 100, 3963–3966. [Google Scholar] [CrossRef] [Green Version]
- Sano, S.; Matsubara, K.; Nagasaki, K.; Kikuchi, T.; Nakabayashi, K.; Hata, K.; Fukami, M.; Kagami, M.; Ogata, T. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: A female-dominant phenomenon? J. Hum. Genet. 2016, 61, 765–769. [Google Scholar] [CrossRef]
- Soellner, L.; Kraft, F.; Sauer, S.; Begemann, M.; Kurth, I.; Elbracht, M.; Eggermann, T. Search for cis-acting factors and maternal effect variants in Silver-Russell patients with ICR1 hypomethylation and their mothers. Eur. J. Hum. Genet. 2019, 27, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docherty, L.E.; Rezwan, F.I.; Poole, R.L.; Turner, C.L.; Kivuva, E.; Maher, E.R.; Smithson, S.F.; Hamilton-Shield, J.P.; Patalan, M.; Gizewska, M.; et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat. Commun. 2015, 6, 8086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begemann, M.; Rezwan, F.I.; Beygo, J.; Docherty, L.E.; Kolarova, J.; Schroeder, C.; Buiting, K.; Chokkalingam, K.; Degenhardt, F.; Wakeling, E.L.; et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J. Med. Genet. 2018, 55, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.O.; Madson, E.C. Retinoblastoma. Review of the current status. Surv. Ophthalmol. 1975, 19, 342–366. [Google Scholar]
- Greger, V.; Debus, N.; Lohmann, D.; Hopping, W.; Passarge, E.; Horsthemke, B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum. Genet. 1994, 94, 491–496. [Google Scholar] [CrossRef]
- Quinonez-Silva, G.; Davalos-Salas, M.; Recillas-Targa, F.; Ostrosky-Wegman, P.; Aranda, D.A.; Benitez-Bribiesca, L. Erratum to: “Monoallelic germline methylation and sequence variant in the promoter of the RB1 gene: A possible constitutive epimutation in hereditary retinoblastoma”. Clin. Epigenetics 2017, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloane, M.A.; Ward, R.L.; Hesson, L.B. Defining the criteria for identifying constitutional epimutations. Clin. Epigenetics 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelli, E.; Pinto, A.M.; Somma, S.; Imperatore, V.; Cannone, M.G.; Hadjistilianou, T.; De Francesco, S.; Galimberti, D.; Curro, A.; Bruttini, M.; et al. Evidence of predisposing epimutation in retinoblastoma. Hum. Mutat. 2019, 40, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Buiting, K.; Kanber, D.; Horsthemke, B.; Lohmann, D. Imprinting of RB1 (the new kid on the block). Brief. Funct. Genom. 2010, 9, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damaso, E.; Castillejo, A.; Arias, M.D.M.; Canet-Hermida, J.; Navarro, M.; Del Valle, J.; Campos, O.; Fernandez, A.; Marin, F.; Turchetti, D.; et al. Primary constitutional MLH1 epimutations: A focal epigenetic event. Br. J. Cancer 2018, 119, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Morak, M.; Ibisler, A.; Keller, G.; Jessen, E.; Laner, A.; Gonzales-Fassrainer, D.; Locher, M.; Massdorf, T.; Nissen, A.M.; Benet-Pages, A.; et al. Comprehensive analysis of the MLH1 promoter region in 480 patients with colorectal cancer and 1150 controls reveals new variants including one with a heritable constitutional MLH1 epimutation. J. Med. Genet. 2018, 55, 240–248. [Google Scholar] [CrossRef]
- Leclerc, J.; Flament, C.; Lovecchio, T.; Delattre, L.; Ait Yahya, E.; Baert-Desurmont, S.; Burnichon, N.; Bronner, M.; Cabaret, O.; Lejeune, S.; et al. Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation. Genet. Med. 2018, 20, 1589–1599. [Google Scholar] [CrossRef]
- Pinto, D.; Pinto, C.; Guerra, J.; Pinheiro, M.; Santos, R.; Vedeld, H.M.; Yohannes, Z.; Peixoto, A.; Santos, C.; Pinto, P.; et al. Contribution of MLH1 constitutional methylation for Lynch syndrome diagnosis in patients with tumor MLH1 downregulation. Cancer Med. 2018, 7, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Cini, G.; Carnevali, I.; Quaia, M.; Chiaravalli, A.M.; Sala, P.; Giacomini, E.; Maestro, R.; Tibiletti, M.G.; Viel, A. Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family. Carcinogenesis 2015, 36, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Sloane, M.A.; Nunez, A.C.; Packham, D.; Kwok, C.T.; Suthers, G.; Hesson, L.B.; Ward, R.L. Mosaic Epigenetic Inheritance as a Cause of Early-Onset Colorectal Cancer. JAMA Oncol. 2015, 1, 953–957. [Google Scholar] [CrossRef]
- Damaso, E.; Canet-Hermida, J.; Vargas-Parra, G.; Velasco, A.; Marin, F.; Darder, E.; Del Valle, J.; Fernandez, A.; Izquierdo, A.; Mateu, G.; et al. Highly sensitive MLH1 methylation analysis in blood identifies a cancer patient with low-level mosaic MLH1 epimutation. Clin. Epigenetics 2019, 11, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur, P.; Pineda, M.; Romero, A.; Del Valle, J.; Borras, E.; Canal, A.; Navarro, M.; Brunet, J.; Rueda, D.; Ramon, Y.C.T.; et al. Identification of a founder EPCAM deletion in Spanish Lynch syndrome families. Clin. Genet. 2014, 85, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Cini, G.; Quaia, M.; Canzonieri, V.; Fornasarig, M.; Maestro, R.; Morabito, A.; D’Elia, A.V.; Urso, E.D.; Mammi, I.; Viel, A. Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype. Mol. Genet. Genom. Med. 2019, 7, e587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempers, M.J.; Kuiper, R.P.; Ockeloen, C.W.; Chappuis, P.O.; Hutter, P.; Rahner, N.; Schackert, H.K.; Steinke, V.; Holinski-Feder, E.; Morak, M.; et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: A cohort study. Lancet Oncol. 2011, 12, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Lanni, S.; Pearson, C.E. Molecular genetics of congenital myotonic dystrophy. Neurobiol. Dis. 2019, 132, 104533. [Google Scholar] [CrossRef]
- Souidi, A.; Zmojdzian, M.; Jagla, K. Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2018, 19, 4104. [Google Scholar] [CrossRef] [Green Version]
- Barbe, L.; Lanni, S.; Lopez-Castel, A.; Franck, S.; Spits, C.; Keymolen, K.; Seneca, S.; Tome, S.; Miron, I.; Letourneau, J.; et al. CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. Am. J. Hum. Genet. 2017, 100, 488–505. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, P.; Glaser, D.; Vogel, W.; Wolf, M.; Schwemmle, S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet. 1998, 62, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, M.; Fontana, L.; Masciullo, M.; Bianchi, M.L.; Rossi, S.; Leoncini, E.; Novelli, G.; Botta, A.; Silvestri, G. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim. Biophys. Acta 2015, 1852, 2645–2652. [Google Scholar] [CrossRef]
- Legare, C.; Overend, G.; Guay, S.P.; Monckton, D.G.; Mathieu, J.; Gagnon, C.; Bouchard, L. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol. Genet. 2019, 5, e338. [Google Scholar] [CrossRef] [Green Version]
- Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nat. Rev. Neurol. 2018, 14, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Gijselinck, I.; Van Mossevelde, S.; van der Zee, J.; Sieben, A.; Engelborghs, S.; De Bleecker, J.; Ivanoiu, A.; Deryck, O.; Edbauer, D.; Zhang, M.; et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 2016, 21, 1112–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Z.; Zhang, M.; Bruni, A.C.; Maletta, R.G.; Colao, R.; Fratta, P.; Polke, J.M.; Sweeney, M.G.; Mudanohwo, E.; Nacmias, B.; et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. 2015, 129, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.S.L.; Tan, E.K. Intermediate C9orf72 alleles in neurological disorders: Does size really matter? J. Med. Genet. 2017, 54, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Deenen, J.C.; Arnts, H.; van der Maarel, S.M.; Padberg, G.W.; Verschuuren, J.J.; Bakker, E.; Weinreich, S.S.; Verbeek, A.L.; van Engelen, B.G. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology 2014, 83, 1056–1059. [Google Scholar] [CrossRef] [Green Version]
- Snider, L.; Geng, L.N.; Lemmers, R.J.; Kyba, M.; Ware, C.B.; Nelson, A.M.; Tawil, R.; Filippova, G.N.; van der Maarel, S.M.; Tapscott, S.J. Facioscapulohumeral dystrophy: Incomplete suppression of a retrotransposed gene. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Sacconi, S.; Briand-Suleau, A.; Gros, M.; Baudoin, C.; Lemmers, R.J.; Rondeau, S.; Lagha, N.; Nigumann, P.; Cambieri, C.; Puma, A. FSHD1 and FSHD2 form a disease continuum. Neurology 2019, 92, e2273–e2285. [Google Scholar] [CrossRef]
- Lemmers, R.J.; Tawil, R.; Petek, L.M.; Balog, J.; Block, G.J.; Santen, G.W.; Amell, A.M.; Van Der Vliet, P.J.; Almomani, R.; Straasheijm, K.R. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 2012, 44, 1370. [Google Scholar] [CrossRef] [Green Version]
- Van den Boogaard, M.L.; Lemmers, R.J.; Balog, J.; Wohlgemuth, M.; Auranen, M.; Mitsuhashi, S.; van der Vliet, P.J.; Straasheijm, K.R.; van den Akker, R.F.; Kriek, M. Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. Am. J. Hum. Genet. 2016, 98, 1020–1029. [Google Scholar] [CrossRef] [Green Version]
- Strafella, C.; Caputo, V.; Galota, R.M.; Campoli, G.; Bax, C.; Colantoni, L.; Minozzi, G.; Orsini, C.; Politano, L.; Tasca, G. The variability of SMCHD1 gene in FSHD patients: Evidence of new mutations. Hum. Mol. Genet. 2019, 28, 3912–3920. [Google Scholar] [CrossRef]
- Cascella, R.; Strafella, C.; Caputo, V.; Galota, R.M.; Errichiello, V.; Scutifero, M.; Petillo, R.; Marella, G.L.; Arcangeli, M.; Colantoni, L. Digenic inheritance of shortened repeat units of the D4Z4 region and a loss-of-function variant in SMCHD1 in a family with FSHD. Front. Neurol. 2018, 9, 1027. [Google Scholar] [CrossRef]
- Gabellini, D.; Green, M.R.; Tupler, R. Inappropriate gene activation in FSHD: A repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 2002, 110, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Lemmers, R.J.; Goeman, J.J.; van der Vliet, P.J.; van Nieuwenhuizen, M.P.; Balog, J.; Vos-Versteeg, M.; Camano, P.; Ramos Arroyo, M.A.; Jerico, I.; Rogers, M.T. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Hum. Mol. Genet. 2015, 24, 659–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, T.I.; Yan, C.; Sapp, P.C.; McKenna-Yasek, D.; Kang, P.B.; Quinn, C.; Salameh, J.S.; King, O.D.; Jones, P.L. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin. Epigenetics 2014, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrner, J.A.; Bjornsson, H.T. Mendelian disorders of the epigenetic machinery: Tipping the balance of chromatin states. Ann. Rev. Genom. Hum. Genet. 2014, 15, 269–293. [Google Scholar] [CrossRef] [Green Version]
- Fahrner, J.A.; Bjornsson, H.T. Mendelian disorders of the epigenetic machinery: Postnatal malleability and therapeutic prospects. Hum. Mol. Genet. 2019, 28, R254–R264. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Zheng, S.C. Cell-type deconvolution in epigenome-wide association studies: A review and recommendations. Epigenomics 2017, 9, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ito, M.; Zhou, F.; Youngson, N.; Zuo, X.; Leder, P.; Ferguson-Smith, A.C. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 2008, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Quenneville, S.; Verde, G.; Corsinotti, A.; Kapopoulou, A.; Jakobsson, J.; Offner, S.; Baglivo, I.; Pedone, P.V.; Grimaldi, G.; Riccio, A.; et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 2011, 44, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Raval, A.; Tanner, S.M.; Byrd, J.C.; Angerman, E.B.; Perko, J.D.; Chen, S.S.; Hackanson, B.; Grever, M.R.; Lucas, D.M.; Matkovic, J.J.; et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 2007, 129, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Azzollini, J.; Pesenti, C.; Pizzamiglio, S.; Fontana, L.; Guarino, C.; Peissel, B.; Plebani, M.; Tabano, S.; Sirchia, S.M.; Colapietro, P.; et al. Constitutive BRCA1 Promoter Hypermethylation Can Be a Predisposing Event in Isolated Early-Onset Breast Cancer. Cancers 2019, 11, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.; Beffy, P.; Del Carratore, R.; Falleni, A.; Pretini, V.; D’Aurizio, R.; Botta, A.; Evangelista, M.; Stoccoro, A.; Coppede, F.; et al. Activation of the interferon type I response rather than autophagy contributes to myogenesis inhibition in congenital DM1 myoblasts. Cell Death Dis. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.P.; Beischel, L.; Schwanke, C.; Styren, K.; Crunk, A.; Schoof, J.; Elias, A.F. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith-Wiedemann syndrome. J. Assist. Reprod. Genet. 2018, 35, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Cortessis, V.K.; Azadian, M.; Buxbaum, J.; Sanogo, F.; Song, A.Y.; Sriprasert, I.; Wei, P.C.; Yu, J.; Chung, K.; Siegmund, K.D. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J. Assist. Reprod. Genet. 2018, 35, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Paganini, L.; Carlessi, N.; Fontana, L.; Silipigni, R.; Motta, S.; Fiori, S.; Guerneri, S.; Lalatta, F.; Cereda, A.; Sirchia, S. Beckwith–Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics 2015, 10, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Eggermann, T.; Brioude, F.; Russo, S.; Lombardi, M.P.; Bliek, J.; Maher, E.R.; Larizza, L.; Prawitt, D.; Netchine, I.; Gonzales, M. Prenatal molecular testing for Beckwith–Wiedemann and Silver–Russell syndromes: A challenge for molecular analysis and genetic counseling. Eur. J. Hum. Genet. 2016, 24, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Farlik, M.; Halbritter, F.; Muller, F.; Choudry, F.A.; Ebert, P.; Klughammer, J.; Farrow, S.; Santoro, A.; Ciaurro, V.; Mathur, A.; et al. DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell 2016, 19, 808–822. [Google Scholar] [CrossRef] [Green Version]
Disease (OMIM) | Chromosome | DNA Methylation Defects | Frequency of Methylation Defects | Associated Genetic Defects | Mosaicism | Recurrence Risk | Methods | Refs. |
---|---|---|---|---|---|---|---|---|
Fragile X syndrome (300624) | Xq27.3 | FMR1 GOM | 100% | Expansion of CGG repeat (>200) in the FMR1 5′-UTR | Yes | 50% for PM and FM mothers | MS-MLPA | [16,17,18,19,20,21,22,23,24,25] |
Claes–Jensen syndrome (300534) | Multiple chromosomes | LOM of 1769 CpGs (9 regions) | 100% | KDM5C variants | Yes | 50% from female carriers to sons | Illumina Infinium BeadChip | [15,26,27,28,29] |
Sotos syndrome (117550) | Multiple chromosomes | LOM of >7000 CpGs (1300 regions) | 100% | NSD1 variants | Yes | 50% | Illumina Infinium BeadChip | [15,29,30,31] |
Kabuki syndrome (147920, 300867) | Multiple chromosomes | LOM of 856 CpGs, GOM of 648 CpGs | 100% | KMT2D and KDM6A variants | Yes | 50% | Illumina Infinium BeadChip | [15,29,32,33] |
CHARGE syndrome (214800) | Multiple chromosomes | 1320 CpGs | 100% | CHD7 variants | Yes | 50% | Illumina Infinium BeadChip | [15,29,33] |
Alpha thalassemia/mental retardation X-linked syndrome (301040) | Multiple chromosomes | 1112 CpGs GOM of 11 regions LOM of 5 regions | 100% | ATRX variants | Yes | 50% from female carriers to sons | Illumina Infinium BeadChip | [15,29,34] |
Floating–Harbor syndrome (136140) | Multiple chromosomes | 1078 CpGs GOM of 19 regions LOM of 9 regions | 100% | SRCAP variants | Yes | 50% in dominant cases | Illumina Infinium BeadChip | [15,29,35] |
BAFopathies (Coffin–Siris (135900, 614608, 614609), Nicolaides–Baraitser (601358) and 6q25 microdeletion (612863) syndromes) | Multiple chromosomes | 135–146 CpGs (20–30 regions) | 100% | ARID1B, SMARCB1, SMARCA4, SMARCA2 variants, ARID1B deletions | Yes | 50% | Illumina Infinium BeadChip | [15,36] |
ADNP syndrome (615873) | Multiple chromosomes | LOM of ~6000 CpGs GOM of ~1000 CpGs | 100% | ADNP variants | Yes | 50% | Illumina Infinium BeadChip | [37] |
Autosomal dominant cerebellar ataxia with deafness and narcolepsy (604121) | Multiple chromosomes | 3562 CpGs (mostly LOM) GOM of 82 regions | 100% | DNMT1 variants | Yes | 50% | Illumina Infinium BeadChip | [15,29,38] |
Hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (614116) | Multiple chromosomes | LOM of 5649 regions GOM of 1872 regions | 100% | DNMT1 variants | Yes | 50% | Illumina Infinium BeadChip | [39] |
Tatton-Brown–Rahman syndrome (615879) | Multiple chromosomes | LOM of 388 regions GOM of 1 region | 100% | DNMT3A variants | Yes | 50% | Illumina Infinium BeadChip | [40] |
Heyn–Sproul–Jackson syndrome (618724) | Multiple chromosomes | GOM of 1140 regions LOM of 738 region | 100% | DNMT3A variants | Yes | 50% | Illumina Infinium BeadChip | [41] |
Immunodeficiency-centromeric instability-facial anomalies syndrome 1 (242860) | Multiple chromosomes | LOM of 6942 CpGs GOM of 1921 CpGs | 100% | DNMT3B variants | Yes | 25% | Illumina Infinium BeadChip | [42,43] |
Immunodeficiency-centromeric instability-facial anomalies syndrome 2 (614069) | Multiple chromosomes | LOM of 8414 CpGs GOM of 2661 CpGs | 100% | ZBTB24 variants | Yes | 25% | Illumina Infinium BeadChip | [42] |
Immunodeficiency-centromeric instability-facial anomalies syndrome 3 (616910) | Multiple chromosomes | LOM of 9623 CpGs GOM of 2166 CpGs | 100% | CDCA7 variants | Yes | 25% | Illumina Infinium BeadChip | |
Immunodeficiency-centromeric instability-facial anomalies syndrome 4 (616911) | Multiple chromosomes | LOM of 8708 CpGs GOM of 4120 CpGs | 100% | HELLS variants | Yes | 25% | Illumina Infinium BeadChip | |
Genitopatellar syndrome (606170) | Multiple chromosomes | ~700 CpGs | 100% | KAT6B variants | Yes | 50% | Illumina Infinium BeadChip | [15,29] |
Say–Barber–Biesecker–Young–Simpson syndrome (603736) | Multiple chromosomes | ~800 CpGs | 100% | KAT6B variants | Yes | 50% | Illumina Infinium BeadChip | [15,29] |
Werner syndrome (277700) | Multiple chromosomes | LOM of 614 CpGs GOM of 511 CpGs | 100% | WRN variants | Yes | 25% | Illumina Infinium BeadChip | [15] |
Williams syndrome (194050) | Multiple chromosomes | 1413 CpGs (mostly GOM) | 100% | 7q11.23 deletions | Yes | 50% | Illumina Infinium BeadChip | [15] |
7q11.23 duplication syndrome (609757) | Multiple chromosomes | 508 CpGs (mostly LOM) | 100% | 7q11.23 duplications | Yes | 50% | Illumina Infinium BeadChip | [15] |
Progressive supranuclear palsy (601104) | Multiple chromosomes | GOM of 6110 CpGs LOM of 2818 CpGs | 100% | MAPT variants | Yes | 50% | Illumina Infinium BeadChip | [15] |
Frontotemporal dementia (600274) | Multiple chromosomes | LOM of 387 CpGs GOM of 142 CpGs | 100% | MAPT variants | Yes | 50% | Illumina Infinium BeadChip | [15] |
Cornelia de Lange syndrome (122470, 300590, 610759) | Multiple chromosomes | GOM of 563 CpGs LOM of 361 CpGs | 100% | NIPBL, SMC1A, SMC3 variants | Yes | 50% | Illumina Infinium BeadChip | [44] |
SETD1B-related syndrome | Multiple chromosomes | 3340 CpGs (mostly GOM) | 100% | 12q31.24 deletions/SETD1B variants | Yes | 50% | Illumina Infinium BeadChip | [45] |
Prader–Willi syndrome (176270) | 15q11.2 | SNURF GOM | 99% |
| Yes | <1% for primary epimutations or UPD, 50% for pat deletions | MS-MLPA MS-pyrosequencing | [46,47,48,49,50] |
Angelman syndrome (601623) | 15q11.2 | SNURF LOM | 80% |
| Yes | <1% for primary epimutations or UPD, 50% for mat deletions | MS-MLPA MS-pyrosequencing | [47,49,51,52,53,54,55] |
Temple syndrome (616222) | 14q32 | MEG3/DLK1 LOM | 100% |
| Yes | <1% for primary epimutations or UPD, 50% for pat deletions | MS-MLPA | [56,57,58,59,60] |
Kagami–Ogata Syndrome (608149) | 14q32 | MEG3/DLK1 and/or MEG3 GOM | 100% |
| Yes | <1% for primary epimutations or UPD, 50% for mat deletions | MS-MLPA | [60,61,62,63] |
Beckwith–Wiedemann syndrome (130630) | 11p15.5–11p15.4 | IC2 LOM | 80% |
| Yes | <1% for primary epimutations or UPD, 50% for mat IC1 deletions or SNVs, increased for mat SCMC SNVs | MS-MLPA MS-pyrosequencing | [64,65,66,67,68,69] |
IC2 LOM + IC1 GOM | ||||||||
IC1 GOM | ||||||||
Silver–Russell syndrome (1800860) | 11p15.5 | IC1 LOM | 50% |
| Yes | <1% for primary epimutations or UPD, 50% for pat IC1 deletions, increased for mat SCMC SNVs | MS-MLPA MS-pyrosequencing | [66,70,71,72,73,74,75,76,77,78,79,80,81,82] |
IC2 GOM + IC1 LOM | ||||||||
7 | MEST GOM + GRB10 GOM | 4–10% | UPD(7)mat (rarely whole genome mat UPD) | <1% | ||||
Pseudohypoparathyroidism 1b (603233) | 20q13.32 | GNAS LOM | 100% |
| Not reported | <1% for primary epimutations or UPD, 50% for mat deletions/duplications | MS-MLPA | [83,84,85,86,87,88,89,90,91] |
Transient neonatal diabetes mellitus (601410) | 6q24 | PLAGL1 LOM | 70% |
| unknown | <1% for primary epimutations or UPD, 25% with parents carrying ZFP57 variants | MS-MLPA | [92,93,94] |
MLID | Multiple chromosomes | LOM of multiple DMRs |
|
| Yes | <1% for primary epimutations, Increased in case of maternal-effect SCMC variants or zygotic ZFP57 variants | MS-MLPA | [95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118] |
Retinoblastoma (180200) | 13q14 | RB1 GOM | 13% | Not reported | Yes | <1% | MS-MLPA | [119,120,121,122,123,124] |
Lynch syndrome (609310) | 3p22.2 | MLH1/EPM2AIP1 GOM | up to 3% | deletions or c.-27C>A and c.85G>T substitutions | Yes | <1% for primary epimutations, 50% in case of genetic alterations | MS-MLPA | [125,126,127,128,129,130,131,132,133,134] |
Lynch syndrome (120435) | 2p21-p16 | MSH2 GOM | 1%–3% | EPCAM 3′ deletions | Yes, limited to epithelial tissues | 50% | MS-MLPA | |
Myotonic dystrophy type 1 (160900) | 19q13.3 | DMPK GOM |
| Expansion of CTG repeat (>50) in the DMPK 3′-UTR | Yes | 50% for FM and PM mothers | MS-HRMA bisulphite sequencing | [135,136,137,138,139,140] |
Amyotrophic Lateral Sclerosis (105550) | 9p21.2 | C9orf72 GOM | 10%–30% | Expansion of GGGGCC repeat in the C9orf72 5′UTR | Yes | 50% | bisulphite sequencing | [141,142,143,144] |
Facioscapulohumeral Muscular Dystrophy (158900, 158901) | 4q35 | D4Z4 LOM | 100% |
| Yes | 50% for FSHD1, lower for FSHD2 | bisulphite sequencing | [145,146,147,148,149,150,151,152,153,154] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrato, F.; Sparago, A.; Ariani, F.; Brugnoletti, F.; Calzari, L.; Coppedè, F.; De Luca, A.; Gervasini, C.; Giardina, E.; Gurrieri, F.; et al. DNA Methylation in the Diagnosis of Monogenic Diseases. Genes 2020, 11, 355. https://doi.org/10.3390/genes11040355
Cerrato F, Sparago A, Ariani F, Brugnoletti F, Calzari L, Coppedè F, De Luca A, Gervasini C, Giardina E, Gurrieri F, et al. DNA Methylation in the Diagnosis of Monogenic Diseases. Genes. 2020; 11(4):355. https://doi.org/10.3390/genes11040355
Chicago/Turabian StyleCerrato, Flavia, Angela Sparago, Francesca Ariani, Fulvia Brugnoletti, Luciano Calzari, Fabio Coppedè, Alessandro De Luca, Cristina Gervasini, Emiliano Giardina, Fiorella Gurrieri, and et al. 2020. "DNA Methylation in the Diagnosis of Monogenic Diseases" Genes 11, no. 4: 355. https://doi.org/10.3390/genes11040355
APA StyleCerrato, F., Sparago, A., Ariani, F., Brugnoletti, F., Calzari, L., Coppedè, F., De Luca, A., Gervasini, C., Giardina, E., Gurrieri, F., Lo Nigro, C., Merla, G., Miozzo, M., Russo, S., Sangiorgi, E., Sirchia, S. M., Squeo, G. M., Tabano, S., Tabolacci, E., ... Riccio, A. (2020). DNA Methylation in the Diagnosis of Monogenic Diseases. Genes, 11(4), 355. https://doi.org/10.3390/genes11040355