An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Settings
2.2. Identification of SNP-Clusters Associated with the UAEDIAB-Phenotypes
2.3. SNP to SNP Functional and Pathway Enrichment
2.4. Targeted Next-Generation Sequencing
2.5. RNA-Seq from Human Islets
2.6. In Silico Validation
2.7. Statistical Methods
3. Results
3.1. NHGRI-EBI GWAS Catalog Analysis Identifies Eight SNP-Clusters in Chromosome Regions with Frequent SNPs Associated with Most of the UAEDIAB-Phenotypes
3.2. SNPs Enrichment Analysis Showed Significant Ontology Similarity and Metabolic Pathways Enrichment
3.3. Targeted Next-Generation Sequencing (NGS) Confirms the Presence of Similar SNP-Clusters in Emirati Diabetic Patients
3.4. RNA-Seq Analysis in Human Pancreatic Islets Showed that HSD17B12 is Novel Candidate Gene for Pancreatic β Cell Function
3.5. Annotations of SNPs in HSD17B12
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripathi, B.K.; Srivastava, A.K. Diabetes mellitus: Complications and therapeutics. Med. Sci. Monit. 2006, 12, Ra130–Ra147. [Google Scholar] [PubMed]
- Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies. Nat. Rev. Endocrinol. 2016, 12, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Pradeepa, R.; Mohan, V. Prevalence of type 2 diabetes and its complications in India and economic costs to the nation. Eur. J. Clin. Nutr. 2017, 71, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Bommer, C.; Heesemann, E.; Sagalova, V.; Manne-Goehler, J.; Atun, R.; Barnighausen, T.; Vollmer, S. The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017, 5, 423–430. [Google Scholar] [CrossRef]
- Meo, S.A.; Usmani, A.M.; Qalbani, E. Prevalence of type 2 diabetes in the Arab world: Impact of GDP and energy consumption. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1303–1312. [Google Scholar]
- Lyons, T.J.; Basu, A. Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers. Transl. Res. J. Lab. Clin. Med. 2012, 159, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Billings, L.K.; Florez, J.C. The genetics of type 2 diabetes: What have we learned from GWAS? Ann. N. Y. Acad. Sci. 2010, 1212, 59–77. [Google Scholar] [CrossRef]
- Flannick, J.; Florez, J.C. Type 2 diabetes: Genetic data sharing to advance complex disease research. Nat. Rev. Genet. 2016, 17, 535–549. [Google Scholar] [CrossRef]
- Sulaiman, N.; Albadawi, S.; Abusnana, S.; Fikri, M.; Madani, A.; Mairghani, M.; Alawadi, F.; Zimmet, P.; Shaw, J. Novel approach to systematic random sampling in population surveys: Lessons from the United Arab Emirates National Diabetes Study (UAEDIAB). J. Diabetes 2015, 7, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Albadawi, S.; Abusnana, S.; Mairghani, M.; Hussein, A.; Al Awadi, F.; Madani, A.; Zimmet, P.; Shaw, J. High prevalence of diabetes among migrants in the United Arab Emirates using a cross-sectional survey. Sci. Rep. 2018, 8, 6862. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.; Elbadawi, S.; Hussein, A.; Abusnana, S.; Madani, A.; Mairghani, M.; Alawadi, F.; Sulaiman, A.; Zimmet, P.; Huse, O.; et al. Prevalence of overweight and obesity in United Arab Emirates Expatriates: The UAE National Diabetes and Lifestyle Study. Diabetol. Metab. Syndr. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Beaney, K.E.; Ward, C.E.; Bappa, D.A.S.; McGale, N.; Davies, A.K.; Hirani, S.P.; Li, K.; Howard, P.; Vance, D.R.; Crockard, M.A.; et al. A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: The coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics. Cardiovasc. Diabetol. 2016, 15, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Mei, B.; Zhou, Q.; Zhang, M.; Huang, H.; Han, L.; Huang, Q. Computational analyses of obesity associated loci generated by genome-wide association studies. PLoS ONE 2018, 13, e0199987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhu, L.; Huang, H.; He, Y.; Lv, J.; Li, W.; Chen, L.; He, W. Identification of susceptible genes for complex chronic diseases based on disease risk functional SNPs and interaction networks. J. Biomed. Inf. 2017, 74, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, W.; Zhang, C.; Xu, C.; Duan, H.; Tian, X.; Zhang, D. Heritability and Genome-Wide Association Study of Plasma Cholesterol in Chinese Adult Twins. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.M.; Fisher, D.S. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics 2007, 176, 1759–1798. [Google Scholar] [CrossRef] [Green Version]
- Calarco, L.; Barratt, J.; Ellis, J. Genome wide identification of mutational hotspots in the apicomplexan parasite Neospora caninum and the implications for virulence. Genome Biol. Evol. 2018, 10, 2417–2431. [Google Scholar] [CrossRef]
- Amos, W. Even small SNP clusters are non-randomly distributed: Is this evidence of mutational non-independence? Proc. R. Soc. B Biol. Sci. 2010, 277, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Hamoudi, R.; Saheb Sharif-Askari, N.; Saheb Sharif-Askari, F.; Abusnana, S.; Aljaibeji, H.; Taneera, J.; Sulaiman, N. Prediabetes and diabetes prevalence and risk factors comparison between ethnic groups in the United Arab Emirates. Sci. Rep. 2019, 9, 17437. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Knezevic, B.; Burnham, K.L.; Knight, J.C. XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits. Genome Med. 2016, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, J.; Holloway, E.; Adamusiak, T.; Kapushesky, M.; Zheng, J.; Kolesnikov, N.; Zhukova, A.; Brazma, A.; Parkinson, H. Modeling sample variables with an Experimental Factor Ontology. Bioinformatics 2010, 26, 1112–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Pesquita, C.; Faria, D.; Falcao, A.O.; Lord, P.; Couto, F.M. Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 2009, 5, e1000443. [Google Scholar] [CrossRef] [PubMed]
- Presneau, N.; Baumhoer, D.; Behjati, S.; Pillay, N.; Tarpey, P.; Campbell, P.J.; Jundt, G.; Hamoudi, R.; Wedge, D.C.; Loo, P.V.; et al. Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J. Pathol. Clin. Res. 2015, 1, 113–123. [Google Scholar] [CrossRef]
- Fadista, J.; Vikman, P.; Laakso, E.O.; Mollet, I.G.; Esguerra, J.L.; Taneera, J.; Storm, P.; Osmark, P.; Ladenvall, C.; Prasad, R.B.; et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl. Acad. Sci. USA 2014, 111, 13924–13929. [Google Scholar] [CrossRef] [Green Version]
- Taneera, J.; Lang, S.; Sharma, A.; Fadista, J.; Zhou, Y.; Ahlqvist, E.; Jonsson, A.; Lyssenko, V.; Vikman, P.; Hansson, O.; et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 2012, 16, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Lucki, N.C.; Bandyopadhyay, S.; Wang, E.; Merrill, A.H.; Sewer, M.B. Acid ceramidase (ASAH1) is a global regulator of steroidogenic capacity and adrenocortical gene expression. Mol. Endocrinol. 2012, 26, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Chavez, J.A.; Holland, W.L.; Bar, J.; Sandhoff, K.; Summers, S.A. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 2005, 280, 20148–20153. [Google Scholar] [CrossRef] [Green Version]
- Bruce, C.R.; Thrush, A.B.; Mertz, V.A.; Bezaire, V.; Chabowski, A.; Heigenhauser, G.J.; Dyck, D.J. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E99–E107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weatherbee, S.D.; Anderson, K.V.; Niswander, L.A. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 2006, 133, 4993–5000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.N.; Klar, J.; Ali, Z.; Khan, F.; Baig, S.M.; Dahl, N. Cenani-Lenz syndrome restricted to limb and kidney anomalies associated with a novel LRP4 missense mutation. Eur. J. Med. Genet. 2013, 56, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.P.; Da, H.; Li, Z.; Kushwaha, P.; Beil, C.; Mei, L.; Xiong, W.C.; Wolfgang, M.J.; Clemens, T.L.; Riddle, R.C. Lrp4 expression by adipocytes and osteoblasts differentially impacts sclerostin’s endocrine effects on body composition and glucose metabolism. J. Biol. Chem. 2019, 294, 6899–6911. [Google Scholar] [CrossRef]
- Rankinen, T.; Sarzynski, M.A.; Ghosh, S.; Bouchard, C. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ. Res. 2015, 116, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Rantakari, P.; Lagerbohm, H.; Kaimainen, M.; Suomela, J.P.; Strauss, L.; Sainio, K.; Pakarinen, P.; Poutanen, M. Hydroxysteroid (17β) dehydrogenase 12 is essential for mouse organogenesis and embryonic survival. Endocrinology 2010, 151, 1893–1901. [Google Scholar] [CrossRef] [Green Version]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Sharma, N.K. Expression quantitative trait analyses to identify causal genetic variants for type 2 diabetes susceptibility. World J. Diabetes 2014, 5, 97–114. [Google Scholar] [CrossRef]
- Scott, R.A.; Scott, L.J.; Magi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 2017, 66, 2888–2902. [Google Scholar] [CrossRef] [Green Version]
Number of Shared Phenotypes | Shared Phenotypes | Number of Shared Regions | Shared Regions/Bands |
---|---|---|---|
4 Phenotypes | (BMI/obesity) and (dyslipidemia) and (hypertension) and (T1D/T2D) | 4 | 8p22,1q32.3,12q24.13,7p15.2 |
(BMI/obesity) and (dyslipidemia) and [sleep apnea] and (T1D/T2D) | 3 | 11p11.2,6q21,17q12 | |
(BMI/obesity) and (hypertension) and (sleep apnea) and (T1D/T2D) | 1 | 15q26.1 | |
3 Phenotypes | (BMI/obesity) and (dyslipidemia) and (T1D/T2D) | 34 | 16q12.2,19q13.32,16p11.2,5q13.3,11p15.4, 10p13,16q23.2,18q21.32,18q11.2,6p22.3, 2p23.3,19q13.11,10p15.1,22q12.3,15q15.1, 1p31.3,19p13.2,2q36.3,11p15.1,12q24.12, 12q24.11,11q13.1,2q24.3,1p32.3,1q21.3, 10q25.2,6p21.32,6p21.1,6q23.3,17p13.2, 10q21.3,12q24.31,3p25.2,3q21.1 |
(dyslipidemia) and (hypertension) and (T1D and T2D) | 5 | 10q23.33,1q41,1q43,6p21.33,8q24.12 | |
(BMI/obesity) and (hypertension) and (T1D/T2D) | 2 | 16p12.3,1p13.2 | |
(BMI/obesity) and (sleep apnea) and (T1D/T2D) | 3 | 1q32.1,1q42.2,11q13.4 | |
2 Phenotypes | (dyslipidemia) and (T1D/T2D) | 17 | 6q13,6q27,20q13.12,1q42.13,5q11.2,4p16.3, 6q24.1,12p13.31,9q34.2,8q24.3,17p13.1, 9p24.2,22q12.2,1p34.3,7q32.2,1p22.1,2q33.2 |
(BMI/obesity) and (T1D/T2D) | 47 | 6q23.1,10q22.3,8q21.13,2p25.3,4p12, 12q13.12,14q31.1,3q27.2,2p16.1,9p21.1,4q28.2, 17q21.32,18q12.3,1p21.3,9q22.31,15q14, 9q22.2,5q33.2,14q11.2,3p14.1,12q12,8q22.3, 21q22.3,2p23.2,17p11.2,2q21.3,9q31.3, 10q26.13,17p13.3,11p15.5,11q13.3,8q24.21, 7q36.3,1p12,3q23,6p21.2,7p12.1,9p24.1, 14q24.1,18p11.21,13q31.1,5q21.1,2p21,12p12.1, 7p14.3,8q22.1,9p21.3 | |
(hypertension) and (T1D/T2D) | 6 | 5q31.1,18p11.31,7q22.1,21q22.11,8p11.21, 9q21.32 | |
(sleep apnea) and (T1D/T2D) | 1 | 2p24.3 | |
1 Phenotype | (T1D/T2D) | 89 | 8q24.11,11q14.3,4q35.1,6q12,17q21.33, 3q26.2,17q11.2,4q22.2,22q13.33,7p21.2,5q22.2, 3q13.31,11p12,15q22.2,2q23.3,11q24.3, 3q26.33,1q32.2,10q26.3,19q13.2,4q32.3, 14q32.2,2q24.2,7q32.1,9q34.3,3p24.3,Xq28, 2q33.1,3q27.3,13q21.31,6q25.1,13q14.13, 13q21.33,13q22.1,16p13.12,20q11.21,1q21.2, 5q14.2,20p12.2,2q14.3,14q23.1,15q24.3, 12q13.2,1p22.3,6q15,16p13.13,18q22.2,2q11.2, 5p13.2,15q25.1,4q27,4p15.2,6q22.32,10q23.31, 17q21.1,17q21.2,20p13,13q22.2,7p15.1, 10q24.2,10q26.11,13q12.12,8q24.22,11p15.4, 11p15.5,3p23,12q21.2,1p22.2,12q21.1,2q12.1,10q22.1, 3q12.3,9p23,9q21.31,12q14.3, 4p16.1,4q31.3,6p24.3,13q12.13,12p11.22, 2p23.1,7p14.1,8q13.2,12p11.21,2p16.2, 10q26.12,16q24.1,3p14.3,20q13.31 |
SNP ID | Mapped Gene | Chro. Region | Location | Reported Gene |
---|---|---|---|---|
rs3817334 | MTCH2 | 11p11.2 | 11:47629441 | MTCH2 |
rs7124681 | CELF1 | 11p11.2 | 11:47508395 | CUGBP1 |
rs11066280 | HECTD4 | 12q24.13 | 12:112379979 | HECTD4 |
rs4430796 | HNF1B | 17q12 | 17:37738049 | HNF1B |
rs2176598 | HSD17B12 | 11p11.2 | 11:43842728 | HSD17B12 |
rs17696736 | NAA25 | 12q24.13 | 12:112049014 | Not Reported |
rs2028299 | AP3S2 | 15q26.1 | 15:89831025 | AP3S2 |
rs9400239 | FOXO3 | 6q21 | 6:108656460 | FOXO3 |
rs17126232 | AC124242.3 | 8p22 | 8:18120141 | ASAH1 |
rs6990042 | SGCZ | 8p22 | 8:14316465 | SGCZ |
rs10742752 | AC103855.3 | 11p11.2 | 11:45416824 | SYT13 |
rs17630235 | TRAFD1, HECTD4 | 12q24.13 | 12:112153882 | Not reported |
rs1439620 | AC013394.1, LINC01578 | 15q26.1 | 15:92886416 | LOC100507217 |
rs12150665 | GGNBP2 | 17q12 | 17:36558947 | GGNBP2 |
rs3800229 | FOXO3 | 6q21 | 6:108675760 | FOXO3 |
rs35424364 | CCDC162P | 6q21 | 6:109322403 | C6ORF183, CCDC162P |
rs1495741 | PSD3, NAT2 | 8p22 | 8:18415371 | NAT2 |
rs10838738 | MTCH2 | 11p11.2 | 11:47641497 | MTCH2 |
rs326214 | MADD | 11p11.2 | 11:47276809 | LRP4 |
rs74472562 | TSPAN18 | 11p11.2 | 11:44741205 | RP11-45A12.2, TSPAN18 |
rs1061810 | HSD17B12, AC087521.2, AC087521.4 | 11p11.2 | 11:43856384 | HSD17B12 |
rs936674 | AC091078.1 | 15q26.1 | 15:93360368 | RP11-266O8.1 |
rs148024591 | AC091078.1 | 15q26.1 | 15:93371222 | RP11-266O8.1 |
rs2521501 | FES | 15q26.1 | 15:90894158 | FURIN, FES |
rs8042680 | PRC1, PRC1-AS1 | 15q26.1 | 15:90978107 | PRC1 |
rs12899811 | VPS33B | 15q26.1 | 15:91000846 | PRC1 |
rs79548680 | RCCD1 | 15q26.1 | 15:90962549 | PRC1 |
rs1877031 | STARD3 | 17q12 | 17:39657827 | STARD3 |
rs4796285 | AC243830.1, LHX1-DT | 17q12 | 17:36824731 | Not reported |
rs10908278 | HNF1B | 17q12 | 17:37739961 | HNF1B, TCF2 |
rs1704198 | AC096639.1 | 1q32.3 | 1:213737151 | PROX1 |
rs340839 | PROX1 | 1q32.3 | 1:213988477 | PROX1 |
rs7526425 | AC105275.1, SLC30A1, RD3 | 1q32.3 | 1:211527316 | SLC30A1 |
rs2075423 | PROX1-AS1 | 1q32.3 | 1:213981376 | PROX1 |
rs884366 | CCDC162P | 6q21 | 6:109252892 | LOC100996634 |
rs149358103 | RPS27AP11, LINC02541 | 6q21 | 6:11358684 | SOCS5P5, MARCKS |
rs10261878 | AC010719.1, AC018706.1 | 7p15.2 | 7:25910925 | NFE2L3, MIR148A |
rs4719841 | NFE2L3, MIR148A | 7p15.2 | 7:25957916 | MIR148A |
rs4722551 | NFE2L3, MIR148A | 7p15.2 | 7:25952206 | MIR148A |
rs6969780 | HOXA3, HOXA-AS2 | 7p15.2 | 7:27119517 | HOXA3 |
rs10279895 | HNRNPA1P73, RPL35P4 | 7p15.2 | 7:27288591 | EVX1, HOXA |
rs7804356 | SKAP2 | 7p15.2 | 7:26852046 | Not reported |
rs4921914 | PSD3, NAT2 | 8p22 | 8:18414928 | NAT2 |
rs1961456 | NAT2 | 8p22 | 8:18398199 | NAT2 |
rs115706913 | SGCZ | 8p22 | 8:14224308 | Not Reported |
rs2946504 | TRMT9B | 8p22 | 8:12954071 | KIAA1456 |
Term Name | Number of SNPs Overlapped | SNP IDs | Z-Score | p-Value | FDR | |
---|---|---|---|---|---|---|
1 | Metabolic Disease | 15 | rs1061810, rs10908278, rs11066280, rs12899811, rs149358103, rs1704198, rs17126232, rs17696736, rs2028299, rs2075423, rs2946504, rs4430796, rs7804356, rs79548680, rs8042680 | 13.2 | 8.20 × 10−15 | 2.60 × 10−13 |
2 | Diabetes Mellitus | 12 | rs1061810, rs10908278, rs12899811,rs149358103, rs17696736, rs2028299, rs2075423, rs2946504, rs4430796, rs7804356, rs79548680, rs8042680 | 12.2 | 1.50 × 10−12 | 2.30 × 10−11 |
3 | Body Mass Index | 13 | rs10261878, rs10742752, rs10838738, rs12150665, rs1439620, rs17630235, rs2176598, rs3800229, rs3817334, rs6990042, rs7124681, rs936674, rs9400239 | 10.9 | 6.40 × 10−12 | 4.80 × 10−11 |
4 | Sleep Apnea | 4 | rs148024591, rs35424364, rs4796285, rs74472562 | 29.7 | 7.80 × 10−12 | 4.80 × 10−11 |
5 | Sleep Apnea | 4 | rs148024591, rs35424364, rs4796285, rs74472562 | 29.7 | 7.80 × 10−12 | 4.80 × 10−11 |
6 | Type II Diabetes Mellitus | 10 | rs1061810, rs10908278, rs12899811, rs2946504, rs149358103, rs8042680, rs2028299, rs2075423, rs4430796, rs79548680 | 11.9 | 2.30 × 10−11 | 1.20 × 10−10 |
7 | Sleep Apnea Measurement | 4 | rs148024591, rs35424364, rs4796285, rs74472562 | 20.5 | 3.90 × 10−10 | 1.70 × 10−9 |
8 | Sleep Disorder | 4 | rs148024591, rs35424364, rs4796285, rs74472562 | 15.5 | 6.50 × 10−9 | 2.50 × 10−8 |
9 | Hypertension | 5 | rs10279895, rs11066280, rs115706913, rs2521501, rs6969780 | 12.1 | 1.40 × 10−8 | 4.80 × 10−8 |
10 | Triglyceride Measurement | 6 | rs11066280, rs1495741, rs340839, rs4719841, rs4722551, rs4921914 | 7.9 | 5.70 × 10−7 | 1.8 × 10−6 |
11 | Lipid Measurement | 9 | rs11066280, rs1495741, rs1877031, rs326214, rs340839, rs4719841, rs4722551, rs4921914, rs884366 | 6.21 | 1.9 × 10−6 | 5.4 × 10−6 |
12 | Lipoprotein Measurement | 7 | rs11066280, rs1495741, rs1877031, rs1961456, rs326214, rs4722551, rs884366 | 5.45 | 1.9 × 10−5 | 0.00005 |
13 | Diastolic Blood Pressure | 5 | rs10279895,rs11066280, rs17696736, rs2521501, rs6969780 | 5.5 | 4.1 × 10−5 | 9.7 × 10−5 |
14 | Mean Arterial Pressure | 3 | rs17696736, rs2521501, rs6969780 | 6.2 | 5.3 × 10−5 | 0.00012 |
15 | Physical Activity Measurement | 3 | rs3800229, rs3817334, rs7124681 | 5.31 | 0.00015 | 0.00028 |
16 | High-Density Lipoprotein Cholesterol Measurement | 4 | rs11066280, rs1877031, rs326214, rs884366 | 4.92 | 0.00015 | 0.00028 |
17 | Drinking Behavior | 3 | rs11066280, rs17696736, rs2521501 | 5.27 | 0.00016 | 0.00028 |
18 | Obesity | 2 | rs1704198, rs17126232 | 5.4 | 0.00025 | 0.00043 |
19 | Systolic Blood Pressure | 4 | rs11066280, rs17696736, rs2521501, rs6969780 | 4.21 | 0.00046 | 0.00074 |
20 | Parental Longevity | 2 | rs17630235, rs17696736 | 4.37 | 0.00073 | 0.0011 |
21 | Total Cholesterol Measurement | 3 | rs1495741, rs1961456, rs4722551 | 4.01 | 0.00081 | 0.0012 |
22 | Type I Diabetes Mellitus | 2 | rs17696736, rs7804356 | 4.26 | 0.00083 | 0.0012 |
23 | Blood Pressure | 5 | rs10279895, rs11066280, rs17696736, rs2521501, rs6969780 | 3.68 | 0.00089 | 0.0012 |
24 | Behavior | 5 | rs11066280, rs17696736, rs2521501, rs3817334, rs9400239 | 3.61 | 0.001 | 0.0013 |
25 | Alcohol Drinking | 2 | rs17696736, rs2521501 | 3.54 | 0.0019 | 0.0023 |
26 | Longevity | 2 | rs17630235, rs17696736 | 3.53 | 0.002 | 0.0023 |
27 | Blood Metabolite Measurement | 2 | rs1495741, rs4921914 | 3.53 | 0.002 | 0.0023 |
28 | Vital Signs | 5 | rs10279895, rs11066280, rs17696736, rs2521501, rs6969780 | 3.1 | 0.0026 | 0.0029 |
29 | Smoking Behavior | 2 | rs3817334, rs9400239 | 1.71 | 0.026 | 0.028 |
SNP | Gene Related to the SNP | Number of SNPs with Similarity Score > 0.5 in a Scale of 0–1 |
---|---|---|
rs11066280 | ALDH2 | 23 |
rs17696736 | C12orf30 | 15 |
rs17126232 | ASAH1 | 13 |
rs1704198 | PROX1 | 13 |
rs9400239 | FOXO3 | 10 |
rs3800229 | FOXO3 | 9 |
rs1961456 | NAT2 | 9 |
rs1495741 | NAT2 | 9 |
rs4722551 | MIR148A | 8 |
rs884366 | LOC100996634 | 7 |
rs326214 | LRP4 | 7 |
rs1877031 | STARD3 | 7 |
rs4719841 | MIR148A | 6 |
rs340839 | PROX1 | 6 |
rs2028299 | AP3S | 5 |
rs10908278 | HNF1B, TCF2 | 5 |
rs1061810 | HSD17B12 | 5 |
rs2946504 | KIAA1456 | 5 |
rs4921914 | NAT2 | 5 |
rs12899811 | PRC1 | 5 |
rs79548680 | PRC1 | 5 |
rs8042680 | PRC1 | 5 |
rs2075423 | PROX1 | 5 |
rs2075423 | PROX1 | 5 |
rs149358103 | SOCS5P5, MARCKS | 5 |
Identified Genes | Number of SNPs per Sample | |
---|---|---|
Patient 1 | Patient 2 | |
ASAH1 | 20 | 16 |
LRP4 | 8 | 7 |
FES | 9 | 6 |
HSD17B12 | 7 | 4 |
HNF1B | 4 | 4 |
HECTD4 | 2 | 6 |
SH2B3 | 4 | 4 |
NAT2 | 4 | 2 |
SGCZ | 3 | 1 |
FURIN | 3 | 1 |
GGNBP2 | 5 | 1 |
TSPAN18 | 2 | 2 |
ALDH2 | 1 | 1 |
STARD3 | 1 | 1 |
MTCH2 | 1 | 2 |
NDUFS3 | 1 | 1 |
PRC1 | 0 | 0 |
PTPN11 | 1 | 0 |
CELF1 | 3 | 0 |
NAA25 | 2 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachim, M.Y.; Aljaibeji, H.; Hamoudi, R.A.; Hachim, I.Y.; Elemam, N.M.; Mohammed, A.K.; Salehi, A.; Taneera, J.; Sulaiman, N. An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes. Genes 2020, 11, 461. https://doi.org/10.3390/genes11040461
Hachim MY, Aljaibeji H, Hamoudi RA, Hachim IY, Elemam NM, Mohammed AK, Salehi A, Taneera J, Sulaiman N. An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes. Genes. 2020; 11(4):461. https://doi.org/10.3390/genes11040461
Chicago/Turabian StyleHachim, Mahmood Y., Hayat Aljaibeji, Rifat A. Hamoudi, Ibrahim Y. Hachim, Noha M. Elemam, Abdul Khader Mohammed, Albert Salehi, Jalal Taneera, and Nabil Sulaiman. 2020. "An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes" Genes 11, no. 4: 461. https://doi.org/10.3390/genes11040461
APA StyleHachim, M. Y., Aljaibeji, H., Hamoudi, R. A., Hachim, I. Y., Elemam, N. M., Mohammed, A. K., Salehi, A., Taneera, J., & Sulaiman, N. (2020). An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes. Genes, 11(4), 461. https://doi.org/10.3390/genes11040461