The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery
Abstract
:1. Introduction
2. The Incidence of Cystic Fibrosis
2.1. Estimates of the Incidence of CF Worldwide
2.2. Time Trends in the Incidence of CF
3. The Survival of Cystic Fibrosis Patients
3.1. The Changing Face of CF
3.2. Better Understanding of Survival Indicators
- (1)
- The birth cohort approach, which is a longitudinal method that consists of following one or several birth cohorts and registering all the deaths that occur in those cohorts over time. This method, which requires time, draws for each birth cohort a Kaplan–Meier survival curve, which looks like a staircase curve that goes down at each death. This enables determination of the median survival when 50% of the patients of the cohort have died.
- (2)
- The period approach, which is a cross-sectional method that is commonly used by registries. It analyzes the structure of the CF population present in a registry on a specified period (usually a 5 year window; for example, the period 2014–2018) and estimates a survival curve by applying the age-specific mortality rates observed among those prevalent cases to a fictive cohort. This method estimates the median age of survival from birth, which corresponds to the age beyond which half of the babies born today with CF are expected to live. This approach assumes that death rates remain unchanged over time (which is not true) and requires large samples.
- (3)
- The conditional survival approach, which was applied recently in CF [61]. As the estimated median age of survival only applies to babies born today and as some patients have already surpassed the estimated age, another metric has been proposed recently: the estimated median age of survival conditional to surviving to a given age (for example, age of 30 or 40). This metric represents the age at which 50% of the patients who have already survived to the given age are expected to live. It is more relevant for CF patients and is higher than the estimate from birth. Keogh et al. showed, using data from the UK CF Registry, that in p.Phe508del homozygous patients, the estimated median age of survival from birth was 46 years in males and 41 years in females, whereas the estimated median age of survival conditional on surviving to 30 was 6 and 8 years higher, respectively [61].
3.3. Current Survival Estimates in CF
3.4. Prognostic Factors
3.5. New Statistical Developments and Future Trends in Survival
4. The Impact of the Discovery of the CFTR Gene on the Epidemiology of the Disease
4.1. Study of Genotype/Phenotype Correlations
4.2. Implementation of Genetic-Based Health Policies
4.3. Advent of CFTR Modulator Therapies
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Welsh, M.; Ramsey, B.W.; Accurso, F.J.; Cutting, G.R. Cystic fibrosis. In The Metabolic and Molecular Basis of Inherited Disease, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Childs, B., Vogelstein, B., Eds.; McGraw Hill: New York, NY, USA, 2001; pp. 5121–5188. [Google Scholar]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, M.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castanos, C.; Castellani, C.; et al. The Future of Cystic Fibrosis Care: A Global Perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [Green Version]
- Dodge, J.A.; Lewis, P.A. Cystic fibrosis is no longer an important cause of childhood death in the UK. Arch. Dis. Child. 2005, 90, 547. [Google Scholar]
- Fajac, I.; Burgel, P.R. Demographic growth and targeted therapies: The changing face of cystic fibrosis. Rev. Mal. Respir. 2016, 33, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.L.; Stanojevic, S.; Sykes, J.; Burgel, P.R. The changing epidemiology and demography of cystic fibrosis. Presse Med. 2017, 46, e87–e95. [Google Scholar] [CrossRef]
- Corriveau, S.; Sykes, J.; Stephenson, A.L. Cystic fibrosis survival: The changing epidemiology. Curr. Opin. Pulm. Med. 2018, 24, 574–578. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.L.; Tom, M.; Berthiaume, Y.; Singer, L.G.; Aaron, S.D.; Whitmore, G.A.; Stanojevic, S. A contemporary survival analysis of individuals with cystic fibrosis: A cohort study. Eur. Respir. J. 2015, 45, 670–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.H. Cystic fibrosis of the pancreas and its relation to celiac disease. A clinical and pathologic study. Am. J. Dis. Child. 1938, 56, 344–399. [Google Scholar] [CrossRef]
- Canadian Cystic Fibrosis Registry. Annual Data Report 2018. Available online: https://www.cysticfibrosis.ca/uploads/RegistryReport2018/2018RegistryAnnualDataReport.pdf (accessed on 20 April 2020).
- UK Cystic Fibrosis Registry (Cystic Fibrosis Trust). Annual Data Report 2018. Available online: https://www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/uk-cf-registry/2018-registry-annual-data-report.ashx?la=en (accessed on 20 April 2020).
- US Cystic Fibrosis Registry (Cystic Fibrosis Foundation). Annual Data Report 2018. Available online: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2018-Patient-Registry-Annual-Data-Report.pdf (accessed on 20 April 2020).
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, P.M.; Rock, M.J.; Baker, M.W. The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes 2020, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Férec, C.; Scotet, V. Genetics ofcystic fibrosis: Basics. Arch. Pediatr. 2020, 27 (Suppl. 1), eS4–eS7. [Google Scholar]
- Southern, K.W.; Munck, A.; Pollitt, R.; Travert, G.; Zanolla, L.; Dankert-Roelse, J.; Castellani, C.; ECFS CF Neonatal Screening Working Group. A survey of newborn screening for cystic fibrosis in Europe. J. Cyst. Fibros. 2007, 6, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotet, V.; Gutierrez, H.; Farrell, P.M. Newborn screening for CF across the globe —Where is it worthwhile? Int. J. Neonatal Screen. 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Farrell, P.M.; Joffe, S.; Foley, L.; Canny, G.J.; Mayne, P.; Rosenberg, M. Diagnosis of cystic fibrosis in the Republic of Ireland: Epidemiology and costs. Ir. Med. J. 2007, 100, 557–560. [Google Scholar]
- Kere, J.; Estivill, X.; Chillon, M.; Morral, N.; Nunes, V.; Norio, R.; Savilahti, E.; de la Chapelle, A. Cystic fibrosis in a low-incidence population: Two major mutations in Finland. Hum. Genet. 1994, 93, 162–166. [Google Scholar] [CrossRef]
- Audrézet, M.P.; Munck, A.; Scotet, V.; Claustres, M.; Roussey, M.; Delmas, D.; Férec, C.; Desgeorges, M. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: Implications for diagnosis, genetic counseling, and mutation-specific therapy. Genet. Med. 2015, 17, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Castellani, C.; Picci, L.; Tridello, G.; Casati, E.; Tamanini, A.; Bartoloni, L.; Scarpa, M.; Assael, B.M.; Veneto CF Lab Network. Cystic fibrosis carrier screening effects on birth prevalence and newborn screening. Genet. Med. 2016, 18, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Dankert-Roelse, J.E.; Bouva, M.J.; Jakobs, B.S.; Janssens, H.M.; de Winter-de Groot, K.M.; Schonbeck, Y.; Gille, J.J.P.; Gulmans, V.A.M.; Verschoof-Puite, R.K.; Schielen, P.; et al. Newborn blood spot screening for cystic fibrosis with a four-step screening strategy in the Netherlands. J. Cyst. Fibros. 2019, 18, 54–63. [Google Scholar] [CrossRef]
- Skov, M.; Baekvad-Hansen, M.; Hougaard, D.M.; Skogstrand, K.; Lund, A.M.; Pressler, T.; Olesen, H.V.; Duno, M. Cystic fibrosis newborn screening in Denmark: Experience from the first 2 years. Pediatr. Pulmonol. 2020, 55, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Soltysova, A.; Tothova Tarova, E.; Ficek, A.; Baldovic, M.; Polakova, H.; Kayserova, H.; Kadasi, L. Comprehensive genetic study of cystic fibrosis in Slovak patients in 25 years of genetic diagnostics. Clin. Respir. J. 2018, 12, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- David, J.; Chrastina, P.; Peskova, K.; Kozich, V.; Friedecky, D.; Adam, T.; Hlidkova, E.; Vinohradska, H.; Novotna, D.; Hedelova, M.; et al. Epidemiology of rare diseases detected by newborn screening in the Czech Republic. Cent. Eur. J. Public Health 2019, 27, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Massie, R.J.; Curnow, L.; Glazner, J.; Armstrong, D.S.; Francis, I. Lessons learned from 20 years of newborn screening for cystic fibrosis. Med. J. Aust. 2012, 196, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Lilley, M.; Christian, S.; Hume, S.; Scott, P.; Montgomery, M.; Semple, L.; Zuberbuhler, P.; Tabak, J.; Bamforth, F.; Somerville, M.J. Newborn screening forcystic fibrosisin Alberta: Two years of experience. Paediatr. Child. Health 2010, 15, 590–594. [Google Scholar] [CrossRef] [Green Version]
- Kosorok, M.R.; Wei, W.H.; Farrell, P.M. The incidence ofcystic fibrosis. Stat. Med. 1996, 15, 449–462. [Google Scholar] [CrossRef]
- Sullivan, B.P.; Freedman, S.D. Cystic fibrosis. Lancet 2009, 373, 1891–1904. [Google Scholar] [CrossRef]
- Klinger, K.W. Cystic fibrosisin the OhioAmish: Gene frequency and founder effect. Hum. Genet. 1983, 65, 94–98. [Google Scholar] [CrossRef]
- Daigneault, J.; Aubin, G.; Simard, F.; De Braekeleer, M. Genetic epidemiology of cystic fibrosis in Saguenay-Lac-St-Jean (Quebec, Canada). Clin. Genet. 1991, 40, 298–303. [Google Scholar] [CrossRef]
- Nazer, H.M. Early diagnosis of cystic fibrosis in Jordanian children. J. Trop. Pediatr. 1992, 38, 113–115. [Google Scholar] [CrossRef]
- Yamashiro, Y.; Shimizu, T.; Oguchi, S.; Shioya, T.; Nagata, S.; Ohtsuka, Y. The estimated incidence of cystic fibrosis in Japan. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.C.; Insley, J.; Rushton, D.I.; Gaze, H. Cystic fibrosisin 3 Pakistani children. Arch. Dis. Child. 1974, 49, 739–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, V.; Shastri, S.S.; Kabra, M.; Kabra, S.K.; Ramachandran, V.; Arora, S.; Balakrishnan, P.; Deorari, A.K.; Paul, V.K. Carrier frequency of F508del mutation of cystic fibrosis in Indian population. J. Cyst. Fibros. 2006, 5, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwarteng Owusu, S.; Morrow, B.M.; White, D.; Klugman, S.; Vanker, A.; Gray, D.; Zampoli, M. Cystic Fibrosis in Black African Children in South Africa: A Case Control Study. J. Cyst. Fibros. 2019. [Google Scholar] [CrossRef]
- Hale, J.E.; Parad, R.B.; Comeau, A.M. Newborn screening showing decreasing incidence of cystic fibrosis. N. Engl. J. Med. 2008, 358, 973–974. [Google Scholar] [CrossRef]
- Castellani, C.; Picci, L.; Tamanini, A.; Girardi, P.; Rizzotti, P.; Assael, B.M. Association between carrier screening and incidence of cystic fibrosis. JAMA 2009, 302, 2573–2579. [Google Scholar] [CrossRef]
- Massie, J.; Curnow, L.; Gaffney, L.; Carlin, J.; Francis, I. Declining prevalence of cystic fibrosis since the introduction of newborn screening. Arch. Dis. Child. 2010, 95, 531–533. [Google Scholar] [CrossRef]
- Scotet, V.; Duguépéroux, I.; Saliou, P.; Rault, G.; Roussey, M.; Audrézet, M.P.; Férec, C. Evidence for decline in the incidence of cystic fibrosis: A 35-year observational study in Brittany, France. Orphanet J. Rare Dis. 2012, 7, 14. [Google Scholar] [CrossRef]
- Stafler, P.; Mei-Zahav, M.; Wilschanski, M.; Mussaffi, H.; Efrati, O.; Lavie, M.; Shoseyov, D.; Cohen-Cymberknoh, M.; Gur, M.; Bentur, L.; et al. The impact of a national population carrier screening program on cystic fibrosis birth rate and age at diagnosis: Implications for newborn screening. J. Cyst. Fibros. 2016, 15, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Sontag, M.L.; Wagener, J.S.; Accurso, F.; Sager, S.D. Consistent incidence of cystic fibrosis in a long-term newborn screen population. In Proceedings of the 22nd AnnualNorth American Cystic Fibrosis Conference Meeting, Orlando, FL, USA, 23–26 October 2008. [Google Scholar]
- Parker-McGill, K.; Nugent, M.; Bersie, R.; Hoffman, G.; Rock, M.; Baker, M.; Farrell, P.M.; Simpson, P.; Levy, H. Changing incidence of cystic fibrosis in Wisconsin, USA. Pediatr. Pulmonol. 2015, 50, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Scotet, V.; Audrézet, M.P.; Roussey, M.; Rault, G.; Blayau, M.; De Braekeleer, M.; Férec, C. Impact of public health strategies on the birth prevalence of cystic fibrosis in Brittany, France. Hum. Genet. 2003, 113, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Australian Cystic Fibrosis Registry. Annual Data Report 2017. Available online: https://www.cysticfibrosis.org.au/getmedia/24e94d66-29fa-4e3f-8e65-21ee24ed2e5a/ACFDR-2017-Annual-Report_highres_singles.pdf.aspx (accessed on 20 April 2020).
- Belgian Cystic Fibrosis Registry. Annual Data Report 2016. Available online: https://www.sciensano.be/sites/www.wiv-isp.be/files/report_belgian_cf_registry_2016_en_final_1.pdf (accessed on 20 April 2020).
- European (ECFS) Cystic Fibrosis Registry. Annual Data Report 2018. Available online: https://www.ecfs.eu/sites/default/files/general-content-images/working-groups/ecfs-patient-registry/ECFSPR_Report2017_v1.3.pdf (accessed on 20 April 2020).
- French Cystic Fibrosis Registry. Annual Data Report 2017. Available online: http://www.vaincrelamuco.org/sites/default/files/rapport_du_registre_-_donnees_2017.pdf (accessed on 20 April 2020).
- Irish Cystic Fibrosis Registry. Annual Data Report 2018. Available online: https://cfri.ie/annual-reports/ (accessed on 20 April 2020).
- Burgel, P.R.; Bellis, G.; Olesen, H.V.; Viviani, L.; Zolin, A.; Blasi, F.; Elborn, J.S.; ERS/ECFS Task force on provision of care for adults withcystic fibrosisin Europe. Future trends in cystic fibrosis demography in 34 European countries. Eur. Respir. J. 2015, 46, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, I.; Sheehan, A.M.; Heery, E.; While, A.E. Improvingtransitiontoadulthealthcare for young people withcysticfibrosis: A systematic review. J. Child. Health Care 2017, 21, 312–330. [Google Scholar] [CrossRef] [PubMed]
- Hughan, K.S.; Daley, T.; Rayas, M.S.; Kelly, A.; Roe, A. Female reproductive health in cystic fibrosis. J. Cyst. Fibros. 2019, 18 (Suppl. 2), S95–S104. [Google Scholar] [CrossRef] [Green Version]
- Vekaria, S.; Popowicz, N.; White, S.W.; Mulrennan, S.J. To be or not to be on CFTR modulators duringpregnancy: Risks to be considered. J. Cyst. Fibros. 2019, S1569-1993, 30983-X. [Google Scholar]
- Hodson, M.E.; Simmonds, N.J.; Warwick, W.J.; Tullis, E.; Castellani, C.; Assael, B.; Dodge, J.A.; Corey, M.; International study of aging in cystic fibrosis. An international/multicentre report on patients with cystic fibrosis (CF) over the age of 40 years. J. Cyst. Fibros. 2008, 7, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Nick, J.A.; Chacon, C.S.; Brayshaw, S.J.; Jones, M.C.; Barboa, C.M.; St Clair, C.G.; Young, R.L.; Nichols, D.P.; Janssen, J.S.; Huitt, G.A.; et al. Effects of gender and age at diagnosis on disease progression in long-term survivors of cystic fibrosis. Am. J. Respir. Crit. Care Med. 2010, 182, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Férec, C.; Verlingue, C.; Guillermit, H.; Quéré, I.; Raguénès, O.; Feigelson, J.; Audrézet, M.P.; Moullier, P.; Mercier, B. Genotype Analysis of Adult Cystic Fibrosis Patients. Hum. Mol. Genet. 1993, 2, 1557–1560. [Google Scholar] [CrossRef]
- Keogh, R.H.; Stanojevic, S. A guide to interpreting estimated median age of survival in cystic fibrosispatient registry reports. J. Cyst. Fibros. 2018, 17, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Sykes, J.; Stanojevic, S.; Goss, C.H.; Quon, B.S.; Marshall, B.C.; Petren, K.; Ostrenga, J.; Fink, A.; Elbert, A.; Stephenson, A.L. A standardized approach to estimating survival statistics for population-basedcystic fibrosisregistry cohorts. J. Clin. Epidemiol. 2016, 70, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Keogh, R.H.; Szczesniak, R.; Taylor-Robinson, D.; Bilton, D. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: A longitudinal study using UK patient registry data. J. Cyst. Fibros. 2018, 17, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerem, E.; Reisman, J.; Corey, M.; Canny, G.J.; Levison, H. Prediction of mortality in patients with cystic fibrosis. N. Engl. J. Med. 1992, 326, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.G.; Adler, F.R.; Fitzsimmons, S.C.; Cahill, B.C.; Hibbs, J.R.; Marshall, B.C. Predictive 5-year survivorship model of cystic fibrosis. Am. J. Epidemiol. 2001, 153, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaron, S.D.; Stephenson, A.L.; Cameron, D.W.; Whitmore, G.A. A statistical model to predict one-year risk of death in patients with cystic fibrosis. J. Clin. Epidemiol. 2015, 68, 1336–1345. [Google Scholar] [CrossRef]
- Nkam, L.; Lambert, J.; Latouche, A.; Bellis, G.; Burgel, P.R.; Hocine, M.N. A 3-year Prognostic Score for Adults with Cystic Fibrosis. J. Cyst. Fibros. 2017, 16, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Stanojevic, S.; Sykes, J.; Stephenson, A.L.; Aaron, S.D.; Whitmore, G.A. Development and External Validation of 1- And 2-year Mortality Prediction Models in Cystic Fibrosis. Eur. Respir. J. 2019, 54, 1900224. [Google Scholar] [CrossRef]
- Keogh, R.H.; Bilton, D.; Cosgriff, R.; Kavanagh, D.; Rayner, O.; Sedgwick, P.M. Results from an online survey of adults with cystic fibrosis: Accessing and using life expectancy information. PLoS ONE 2019, 14, e0213639. [Google Scholar] [CrossRef] [Green Version]
- Keogh, R.H.; Seaman, S.R.; Barrett, J.K.; Taylor-Robinson, D.; Szczesniak, R. Dynamic Prediction of Survival in Cystic Fibrosis: A Landmarking Analysis Using UK Patient Registry Data. Epidemiology 2019, 30, 29–37. [Google Scholar] [CrossRef]
- Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca/app (accessed on 20 April 2020).
- Kerem, E.; Corey, M.; Kerem, B.S.; Rommens, J.; Markiewicz, D.; Levison, H.; Tsui, L.C.; Durie, P. The relation between genotype and phenotype in cystic fibrosis – analysis of the most common mutation (delta F508). N. Engl. J. Med. 1990, 323, 1517–1522. [Google Scholar] [CrossRef] [Green Version]
- The Cystic Fibrosis Genotype-Phenotype Consortium. Correlation between genotype and phenotype in patients with cystic fibrosis. N. Engl. J. Med. 1993, 329, 1308–1313. [Google Scholar] [CrossRef]
- Welsh, M.J.; Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993, 73, 1251–1254. [Google Scholar] [CrossRef]
- Drumm, M.L.; Konstan, M.W.; Schluchter, M.D.; Handler, A.; Pace, R.; Zou, F.; Zariwala, M.; Fargo, D.; Xu, A.; Dunn, J.M.; et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 2005, 353, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Corvol, H.; Blackman, S.M.; Boelle, P.Y.; Gallins, P.J.; Pace, R.G.; Stonebraker, J.R.; Accurso, F.J.; Clement, A.; Collaco, J.M.; Dang, H.; et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 2015, 6, 8382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczesniak, R.; Rice, J.L.; Brokamp, C.; Ryan, P.; Pestian, T.; Ni, Y.; Andrinopoulou, E.R.; Keogh, R.H.; Gecili, E.; Huang, R.; et al. Influences of environmental exposures on individuals living with cystic fibrosis. Expert Rev. Respir. Med. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Bombieri, C.; Claustres, M.; De Boeck, K.; Derichs, N.; Dodge, J.; Girodon, E.; Sermet, I.; Schwarz, M.; Tzetis, M.; Wilschanski, M.; et al. Recommendations for the Classification of Diseases as CFTR-related Disorders. J. Cyst. Fibros. 2011, 10 (Suppl. 2), S86–S102. [Google Scholar] [CrossRef] [Green Version]
- Bareil, C.; Bergougnoux, A. CFTR gene variants, epidemiology and molecular pathology. Arch. Pediatr. 2020, 27 (Suppl. 1), eS8–eS12. [Google Scholar] [CrossRef]
- Farrell, P.M.; Mishler, E.H.; Fost, N.C.; Wilfond, B.S.; Tluczek, A.; Gregg, R.G.; Bruns, W.T.; Hassemer, D.J.; Laessig, R.H. Current issues in neonatal screening for cystic fibrosis and implications of the CF gene discovery. Pediatr. Pulmonol. 1991, 7, S11–S18. [Google Scholar] [CrossRef]
- Scotet, V.; de Braekeleer, M.; Roussey, M.; Rault, G.; Parent, P.; Dagorne, M.; Journel, H.; Lemoigne, A.; Codet, J.P.; Catheline, M.; et al. Neonatal Screening for Cystic Fibrosis in Brittany, France: Assessment of 10 Years’ Experience and Impact on Prenatal Diagnosis. Lancet 2000, 356, 789–794. [Google Scholar] [CrossRef]
- Farrell, P.M.; Kosorok, M.R.; Laxova, A.; Shen, G.; Koscik, R.E.; Bruns, W.T.; Splaingard, M.; Mischler, E.H. Nutritional benefits of neonatal screening for cystic fibrosis. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. N. Engl. J. Med. 1997, 337, 963–969. [Google Scholar] [CrossRef]
- Farrell, P.M.; Lai, H.J.; Li, Z.; Kosorok, M.R.; Laxova, A.; Green, C.G.; Collins, J.; Hoffman, G.; Laessig, R.; Rock, M.J.; et al. Evidence on improved outcomes with early diagnosis of cystic fibrosis through neonatal screening: Enough is enough! J. Pediatr. 2005, 147, S30–S36. [Google Scholar] [CrossRef]
- Mak, D.Y.; Sykes, J.; Stephenson, A.L.; Lands, L.C. The benefits of newborn screening for cystic fibrosis: The Canadian experience. J. Cyst. Fibros. 2016, 15, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Lindstrom, M.J.; Farrell, P.M.; Lai, H.J.; Wisconsin Cystic Fibrosis Neonatal Screening Group. Pubertal Height Growth and Adult Height in Cystic Fibrosis After Newborn Screening. Pediatrics 2015, 137, e20152907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mérelle, M.E.; Schouten, J.P.; Gerritsen, J.; Dankert-Roelse, J.E. Influence of neonatal screening and centralized treatment on long-term clinical outcome and survival of CF patients. Eur. Respir. J. 2001, 18, 306–315. [Google Scholar] [CrossRef]
- Mastella, G.; Zanolla, L.; Castellani, C.; Altieri, S.; Furnari, M.; Giglio, L.; Lombardo, M.; Miano, A.; Sciuto, C.; Pardo, F.; et al. Neonatal screening for cystic fibrosis: Long-term clinical balance. Pancreatology 2001, 1, 531–537. [Google Scholar] [CrossRef]
- Lai, H.J.; Cheng, Y.; Farrell, P.M. The survival advantage of patients with cystic fibrosis diagnosed through neonatal screening: Evidence from the United States Cystic Fibrosis Foundation registry data. J. Pediatr. 2005, 147, S57–S63. [Google Scholar] [CrossRef] [PubMed]
- Tridello, G.; Castellani, C.; Meneghelli, I.; Tamanini, A.; Assael, B.M. Early Diagnosis from Newborn Screening Maximises Survival in Severe Cystic Fibrosis. ERJ Open Res. 2018, 4, 00109-2017. [Google Scholar] [CrossRef]
- Clancy, J.P.; Cotton, C.U.; Donaldson, S.H.; Solomon, G.M.; Van Devanter, D.R.; Boyle, M.P.; Gentzsch, M.; Nick, J.A.; Illek, B.; Wallenburg, J.C.; et al. CFTR Modulator Theratyping: Current Status, Gaps and Future Directions. J. Cyst. Fibros. 2019, 18, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Pacheco, M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharmacol. 2020, 10, 1662. [Google Scholar] [CrossRef] [Green Version]
- Shteinberg, M.; Taylor-Cousar, J.L. Impact of CFTR modulator use on outcomes in people with severe cystic fibrosis lung disease. Eur. Respir. Rev. 2020, 29, pii: 190112. [Google Scholar] [CrossRef] [Green Version]
- Accurso, F.J.; Rowe, S.M.; Clancy, J.P.; Boyle, M.P.; Dunitz, J.M.; Durie, P.R.; Sagel, S.D.; Hornick, D.B.; Konstan, M.W.; Donaldson, S.H.; et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N. Engl. J. Med. 2010, 363, 1991–2003. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.E.; Elborn, J.S.; Ramsey, B.W.; Marigowda, G.; Huang, X.; Cipolli, M.; Colombo, C.; Davies, J.C.; De Boeck, K.; Flume, P.A.; et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 2015, 373, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor-Cousar, J.L.; Munck, A.; McKone, E.F.; van der Ent, C.K.; Moeller, A.; Simard, C.; Wang, L.T.; Ingenito, E.P.; McKee, C.; Lu, Y.; et al. Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N. Engl. J. Med. 2017, 377, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Keating, D.; Marigowda, G.; Burr, L.; Daines, C.; Mall, M.A.; McKone, E.F.; Ramsey, B.W.; Rowe, S.M.; Sass, L.A.; Tullis, E.; et al. VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N. Engl. J. Med. 2018, 379, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.L.; O’Callaghan, L.; Pelligra, C.; Konstan, M.W.; Ward, A.; Ishak, J.K.; Chandler, C.; Liou, T.G. Modeling long-term health outcomes of patients with cystic fibrosis homozygous for F508del-CFTR treated with lumacaftor/ivacaftor. Ther. Adv. Respir. Dis. 2019, 13, 1–23. [Google Scholar] [CrossRef] [Green Version]
CF Registry [ref] | Year | Patients | Median Age | Age ≥ 18 y. | Age ≥ 40 y. | Median Age at Death | Median Age of Survival | |
---|---|---|---|---|---|---|---|---|
n | y. | % | % | y. | y. | |||
Australia | [48] | 2017 | 3151 | 19.6 | 53.7% | - | 35.6 | - |
Belgium | [49] | 2016 | 1275 | 22.5 | 61.2% | - | - | - |
Canada | [10] | 2018 | 4370 | 23.5 | 61.5% | 15.9% | 33.0 | 52.1 |
ECFS | [50] | 2017 | 48204 | 18.5 | 51.3% | - | 29.0 | - |
France | [51] | 2017 | 7114 | 20.3 | 55.9% | 11.9% | 33.8 | - |
Ireland | [52] | 2018 | 1239 | 20.9 | 58.5% | 11.3% | 33.0 | 44.4 |
UK | [11] | 2018 | 10509 | 20.0 | 54.7% | - | 32.0 | 47.3 |
USA | [12] | 2018 | 30775 | 19.8 | 54.6% | - | 30.8 | 47.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scotet, V.; L’Hostis, C.; Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes 2020, 11, 589. https://doi.org/10.3390/genes11060589
Scotet V, L’Hostis C, Férec C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes. 2020; 11(6):589. https://doi.org/10.3390/genes11060589
Chicago/Turabian StyleScotet, Virginie, Carine L’Hostis, and Claude Férec. 2020. "The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery" Genes 11, no. 6: 589. https://doi.org/10.3390/genes11060589
APA StyleScotet, V., L’Hostis, C., & Férec, C. (2020). The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes, 11(6), 589. https://doi.org/10.3390/genes11060589