Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cluster Analysis
3.2. Germination
3.3. Plant Emergence
3.4. Plant Height
3.5. Correlation between Control and Priming
3.6. Principal Component Analysis for Emergence
4. Discussion
4.1. Growth Improvement Due to Seed Priming
4.2. Priming Efficacy under Excessive Stress Conditions
4.3. Genotypic Difference of Plant Growth under Several Different Soil Moisture Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar] [CrossRef]
- WARDA (Africa Rice Center). 2007 Africa Rice Trends, 5th ed.; WARDA (Africa Rice Center): Cotonou, Benin, 2007; p. 84. [Google Scholar]
- WARDA (Africa Rice Center)/FAO/SAA. NERICA®: The New Rice for Africa—A Compendium; Somado, E.A., Guei, R.G., Keya, S.O., Eds.; WARDA (Africa Rice Center): Cotonou, Benin; FAO: Rome, Italy; Sasagawa Africa Association: Tokyo, Japan, 2008; p. 210. [Google Scholar]
- Du, L.V.; Tuong, T.P. Enhancing the Performance of Dry-Seeded Rice: Effect of Seed Priming, Seeding Rate, and Time of Seeding. In Direct Seeding: Research Strategies and Opportunities, Proceedings of the International Workshop on Direct Seeding in Asian Rice Systems: Strategic Research Issues and Opportunities, Bangkok, Thailand, 25–28 January 2000; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 241–256. [Google Scholar]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice Direct Seeding: Experiences, Challenges and Opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Farooq, M.; Barsa, S.M.A.; Wahid, A. Priming of Field-Sown Rice Seed Enhances Germination, Seedling Establishment, Allometry and Yield. Plant Growth Regul. 2006, 49, 285–294. [Google Scholar] [CrossRef]
- Matsushima, K.-I.; Sakagami, J.-I. Effects of Seed Hydropriming on Germination and Seedling Vigor during Emergence of Rice under Different Soil Moisture Conditions. Am. J. Plant Sci. 2013, 04, 1584–1593. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A. Preplant Physiological Seed Conditioning. Hortic. Rev. 1992, 13, 131–181. [Google Scholar] [CrossRef]
- Taylor, A.G.; Allen, P.S.; Bennett, M.A.; Bradford, K.J.; Burris, J.S.; Misra, M.K. Seed Enhancements. Seed Sci. Res. 1998, 8, 245–256. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, J.H. Total Sugars, α-amylase Activity, and Germination after Priming of Normal and Aged Rise Seeds. Korean J. Crop Sci. 2000, 45, 108–111. [Google Scholar]
- Farooq, M.; Wahid, A.; Ahmad, N.; Asad, S.A. Comparative Efficacy of Surface Drying and Re-Drying Seed Priming in Rice: Changes in Emergence, Seedling Growth and Associated Metabolic Events. Paddy Water Environ. 2010, 8, 15–22. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, J.H.; Hong, S.B.; Kim, M.K.; Park, E.H. Optimum Water Potential, Temperature, and Duration for Priming of Rice Seeds. Korean J. Crop Sci. 1998, 43, 1–5. [Google Scholar]
- Soltani, E.; Soltani, A. Meta-Analysis of Seed Priming Effects on Seed Germination, Seedling Emergence and Crop Yield: Iranian Studies. Int. J. Plant Prod. 2015, 9, 413–432. [Google Scholar] [CrossRef]
- Binang, W.B.; Shiyam, J.O.; Ntia, J.D. Effect of Seed Priming Method on Agronomic Performance and Cost Effectiveness of Rainfed, Dry-Seeded NERICA Rice. Res. J. Seed Sci. 2012, 5, 136–143. [Google Scholar] [CrossRef]
- Harris, D.; Pathan, A.K.; Gothkar, P.; Joshi, A.; Chivasa, W.; Nyamudeza, P. On-Farm Seed Priming: Using Participatory Methods to Revive and Refine a Key Technology. Agric. Syst. 2001, 69, 151–164. [Google Scholar] [CrossRef]
- Nakao, Y.; Asea, G.; Minoru, Y.; Nobuki, K.; Hiroyuki, H.; Kisho, M.; Yabuta, S.; Rieko, K.; Jun-Ichi, S. Development of Hydropriming Techniques for Sowing Seeds of Upland Rice in Uganda. Am. J. Plant Sci. 2018, 9, 2170–2182. [Google Scholar] [CrossRef] [Green Version]
- Ella, E.S.; Dionisio-Sese, M.L.; Ismail, A.M. Seed Pre-Treatment in Rice Reduces Damage, Enhances Carbohydrate Mobilization and Improves Emergence and Seedling Establishment under Flooded Conditions. AoB Plants 2011, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illangakoon, T.K.; Ella, E.S.; Ismail, A.M.; Marambe, B.; Keerthisena, R.S.K.; Bentota, A.P.; Kulatunge, S. Impact of Variety and Seed Priming on Anaerobic Germination-Tolerance of Rice (Oryza sativa L.) Varieties in Sri Lanka. Trop. Agric. Res. 2016, 28, 26. [Google Scholar] [CrossRef] [Green Version]
- Ranal, M.A.; De Santana, D.G. How and Why to Measure the Germination Process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Katsura, K.; Tsujimoto, Y.; Oda, M.; Matsushima, K.I.; Inusah, B.; Dogbe, W.; Sakagami, J.I. Genotype-by-Environment Interaction Analysis of Rice (Oryza spp.) Yield in a Floodplain Ecosystem in West Africa. Eur. J. Agron. 2016, 73, 152–159. [Google Scholar] [CrossRef]
- Ando, H.; Kobata, T. Effect of Seed Hradening on the Seedling Emergence and α-amylase Activity in the Grains of Weat and Rice Sown in Dry Soil. Jpn. J. Crop Sci. 2002, 71, 2091. [Google Scholar]
- EL-Hendawy, S.E.; Sone, C.; Ito, O.; Sakagami, J.I. Evaluation of Germination Ability in Rice Seeds under Anaerobic Conditions by Cluster Analysis. Res. J. Seed Sci. 2011, 4, 82–93. [Google Scholar]
- Adachi, Y.; Sugiyama, M.; Sakagami, J.I.; Fukuda, A.; Ohe, M.; Watanabe, H. Seed Germination and Coleoptile Growth of New Rice Lines Adapted to Hypoxic Conditions. Plant Prod. Sci. 2015, 18, 471–475. [Google Scholar] [CrossRef]
No. | Species | Genotype | Origin | Adaptation or Characters |
---|---|---|---|---|
1 | Oryza sativa | Amankwatia | Ghana | Lowland and irrigated |
2 | Bodia | Ghana | Lowland and irrigated | |
3 | CK40 | Guinea | Lowland | |
4 | IR 07F297 | Philippines | Anaerobic germination, Sub1 | |
5 | IR 07F323 | Philippines | Anaerobic germination, Sub1 | |
6 | IR 42 | Philippines | Irrigated | |
7 | IR11141-1-6-1-4 | Philippines | Elongation | |
8 | IR67520-B-14-1-3-2-2 | Philippines | Submergence | |
9 | IR71700-247-1-1-2 | Philippines | Lowland | |
10 | IR72431-5B-18-B-10-1 | Philippines | Elongation | |
11 | IR73018-21-2-B-2-B | Philippines | Submergence | |
12 | IR73020-19-2-B-3-2B | Philippines | Submergence | |
13 | IRBL9-W | Philippines | Blast resistance, Sub1 | |
14 | Jasmin85 | Ghana | Lowland and irrigated | |
15 | N 22 | India | Upland | |
16 | Nylon | Guinea | Deepwater | |
17 | PSBRC 80 | Philippines | Lowland | |
18 | Sakai | Ghana | Lowland and irrigated | |
19 | Sikamo | Ghana | Lowland and irrigated | |
20 | Takanari | Japan | Irrigated | |
21 | Vandana | India | Upland | |
22 | O. glaberrima | CG14 | Senegal | Lowland |
23 | Mala Noir IV | Niger | Deepwater | |
24 | Saligbeli | Guinea | Deepwater | |
25 | Séidou Bayebeli | Guinea | Upland | |
26 | Yélé 1A | Mali | Deepwater | |
27 | Interspecific progeny (NERICA) | WAB1159-2-12-11-6-10 | Guinea | Lowland |
MGT (h) | G50 (h) | |||||||
---|---|---|---|---|---|---|---|---|
Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | |
Group 1 | 51.8 | 29.9 | 0.58 | ** | 60.0 | 28.9 | 0.48 | ** |
Group 2 | 33.9 | 24.5 | 0.72 | ** | 30.6 | 21.6 | 0.71 | ** |
Group 3 | 38.5 | 27.8 | 0.72 | ** | 37.8 | 25.0 | 0.66 | ** |
Group 4 | 37.2 | 25.5 | 0.68 | *** | 34.7 | 22.5 | 0.65 | *** |
Group 5 | 37.0 | 15.6 | 0.42 | * | 34.3 | 12.0 | 0.35 | ns |
Group 6 | 31.0 | 20.5 | 0.66 | ** | 28.8 | 17.3 | 0.60 | ** |
Soil Moisture (w/w) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5% | 10% | 15% | 20% | |||||||||||||
Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | |
E50 (h) | ||||||||||||||||
Group 1 | - | - | - | - | 146.0 | - | - | - | 127.5 | - | - | - | - | - | - | - |
Group 2 | 129.1 | 138.0 | 1.07 | ns | 101.8 | 81.5 | 0.80 | * | 86.3 | 79.3 | 0.92 | ns | 118.3 | 108.9 | 0.92 | ns |
Group 3 | 144.3 | 142.7 | 0.99 | ns | 102.4 | 92.2 | 0.90 | * | 85.5 | 80.8 | 0.94 | ns | 122.4 | 122.0 | 1.00 | ns |
Group 4 | 143.3 | - | - | - | 98.1 | 86.5 | 0.88 | *** | 82.7 | 78.8 | 0.95 | ns | 112.5 | 109.9 | 0.98 | ns |
Group 5 | 149.9 | - | - | - | 113.3 | 104.6 | 0.92 | ns | 95.6 | 96.7 | 1.01 | ns | 119.9 | 104.8 | 0.87 | ns |
Group 6 | 147.1 | 152.3 | 1.04 | * | 99.7 | 85.1 | 0.85 | *** | 79.5 | 72.3 | 0.91 | * | 134.7 | 121.1 | 0.90 | ns |
MET (h) | ||||||||||||||||
Group 1 | - | - | - | - | 140.9 | 148.2 | 1.05 | ns | 131.6 | 132.3 | 1.00 | ns | 137.4 | 120.0 | 0.87 | ns |
Group 2 | 138.2 | 144.7 | 1.05 | ns | 112.1 | 94.6 | 0.84 | ns | 100.7 | 91.7 | 0.91 | * | 128.1 | 117.0 | 0.91 | ns |
Group 3 | 149.7 | 154.8 | 1.03 | ns | 113.8 | 103.0 | 0.90 | * | 98.7 | 92.7 | 0.94 | * | 124.8 | 126.4 | 1.01 | ns |
Group 4 | 143.4 | 159.0 | 1.11 | ns | 109.3 | 97.4 | 0.89 | ** | 94.5 | 91.5 | 0.97 | ns | 112.0 | 115.3 | 1.03 | ns |
Group 5 | 152.7 | 153.4 | 1.01 | ns | 119.6 | 115.4 | 0.97 | ns | 109.9 | 103.7 | 0.94 | ns | 127.2 | 116.4 | 0.92 | ns |
Group 6 | 148.6 | 158.3 | 1.07 | ** | 108.7 | 97.1 | 0.89 | ** | 90.7 | 83.6 | 0.92 | ** | 131.4 | 131.3 | 1.00 | ns |
EU | ||||||||||||||||
Group 1 | - | - | - | - | 16.6 | 13.6 | 0.82 | ns | 20.9 | 21.0 | 1.01 | ns | 15.0 | 18.2 | 1.22 | ns |
Group 2 | 13.7 | 10.4 | 0.76 | ns | 12.7 | 7.8 | 0.61 | * | 21.7 | 12.0 | 0.55 | * | 20.7 | 14.4 | 0.70 | ns |
Group 3 | 11.4 | 9.0 | 0.79 | ns | 8.0 | 8.6 | 1.08 | ns | 12.9 | 9.8 | 0.76 | ns | 17.7 | 22.5 | 1.27 | * |
Group 4 | 18.1 | 5.3 | 0.29 | * | 14.7 | 7.0 | 0.47 | * | 15.5 | 13.2 | 0.85 | ns | 11.3 | 15.3 | 1.35 | ns |
Group 5 | 12.4 | - | - | - | 13.4 | 16.5 | 1.23 | ns | 20.2 | 13.3 | 0.66 | ns | 18.9 | 16.6 | 0.88 | ns |
Group 6 | 13.4 | 8.8 | 0.66 | * | 15.0 | 12.0 | 0.80 | ns | 12.2 | 12.0 | 0.99 | ns | 22.7 | 21.6 | 0.95 | ns |
Soil Moisture (w/w) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5% | 10% | 15% | 20% | |||||||||||||
Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | Control | Priming | Ratio | t-Test | |
PH (cm) | ||||||||||||||||
Group 1 | - | - | - | - | 2.4 | 2.7 | 1.12 | ns | 4.3 | 4.1 | 0.96 | ns | 1.9 | 2.1 | 1.12 | ns |
Group 2 | 2.9 | 2.4 | 0.84 | ns | 6.1 | 8.0 | 1.33 | * | 7.9 | 9.8 | 1.25 | * | 5.3 | 4.9 | 0.92 | ns |
Group 3 | 2.4 | 1.5 | 0.62 | *** | 5.8 | 7.6 | 1.31 | *** | 8.4 | 9.7 | 1.15 | * | 4.5 | 4.6 | 1.03 | ns |
Group 4 | 2.5 | 1.4 | 0.54 | * | 6.2 | 7.7 | 1.24 | * | 8.4 | 9.0 | 1.08 | ns | 5.6 | 4.6 | 0.82 | ns |
Group 5 | 1.6 | 0.9 | 0.52 | ns | 4.4 | 5.6 | 1.28 | ns | 6.5 | 7.1 | 1.09 | ns | 3.8 | 4.8 | 1.25 | ns |
Group 6 | 1.8 | 1.2 | 0.68 | ns | 6.1 | 8.7 | 1.43 | ** | 9.0 | 10.3 | 1.15 | ** | 4.0 | 4.9 | 1.22 | ns |
PHU | ||||||||||||||||
Group 1 | - | - | - | - | 43.8 | 45.7 | 1.04 | ns | 66.3 | 56.0 | 0.84 | * | 53.4 | 49.1 | 0.92 | ns |
Group 2 | 38.3 | 43.9 | 1.15 | ns | 28.1 | 22.8 | 0.81 | ns | 41.2 | 15.7 | 0.38 | * | 31.3 | 31.0 | 0.99 | ns |
Group 3 | 45.2 | 53.3 | 1.18 | * | 27.3 | 24.5 | 0.90 | ns | 27.6 | 16.3 | 0.59 | * | 43.4 | 38.6 | 0.89 | ns |
Group 4 | 55.9 | 63.1 | 1.13 | ns | 26.0 | 20.9 | 0.80 | ns | 25.8 | 21.8 | 0.84 | ns | 23.5 | 34.5 | 1.47 | ns |
Group 5 | 49.8 | 56.7 | 1.14 | ns | 47.5 | 38.8 | 0.82 | ns | 38.4 | 23.5 | 0.61 | ns | 39.0 | 27.6 | 0.71 | ns |
Group 6 | 49.9 | 62.7 | 1.26 | ns | 32.4 | 20.7 | 0.64 | * | 18.6 | 12.4 | 0.67 | ns | 47.7 | 37.6 | 0.79 | ns |
Soil Moisture (w/w) | ||||
---|---|---|---|---|
5% | 10% | 15% | 20% | |
E50 | 0.290 ns | 0.754 ** | 0.814 ** | 0.490 * |
MET | 0.532 ** | 0.762 ** | 0.903 ** | 0.425 * |
EU | 0.327 ns | 0.257 ns | 0.201 ns | 0.277 ns |
PH | 0.761 ** | 0.779 ** | 0.904 ** | 0.297 ns |
PHU | 0.270 ns | 0.400 * | 0.706 ** | 0.035 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakao, Y.; Sone, C.; Sakagami, J.-I. Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions. Genes 2020, 11, 994. https://doi.org/10.3390/genes11090994
Nakao Y, Sone C, Sakagami J-I. Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions. Genes. 2020; 11(9):994. https://doi.org/10.3390/genes11090994
Chicago/Turabian StyleNakao, Yoshihiro, Chiharu Sone, and Jun-Ichi Sakagami. 2020. "Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions" Genes 11, no. 9: 994. https://doi.org/10.3390/genes11090994
APA StyleNakao, Y., Sone, C., & Sakagami, J. -I. (2020). Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions. Genes, 11(9), 994. https://doi.org/10.3390/genes11090994