Metabolomics for Crop Breeding: General Considerations
Abstract
:1. Introduction
2. The Growing Need in Functional Knowledge for Crop Improvement
3. Metabolism and Metabolites
4. Lipids—A Class of Metabolites with Distinct Properties. Classification and Metabolism
5. Genetically Modified Plants with Altered Activity of Metabolic Enzymes
6. Methods of Metabolomics
6.1. General Considerations
6.2. Mass Spectrometry
6.3. Mass Spectrometry Imaging (MSI)
6.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
7. Metabolomics Studies
8. Metabolic Markers and Their Performance
9. Integration of Metabolomics Data with QTL and GWAS Data
10. Metabolomics of Plant Stress Response
10.1. Metabolomics for Abiotic Stress Responses and Tolerance
10.2. Metabolomics for Biotic Stress Responses and Tolerance
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Crouch, J.H. Marker-Assisted Selection in Plant Breeding: From Publications to Practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.C.Y.; Mackill, D.J. Marker-Assisted Selection: An Approach for Precision Plant Breeding in the Twenty-First Century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life 2021, 11, 502. [Google Scholar] [CrossRef] [PubMed]
- Saba Rahim, M.; Sharma, H.; Parveen, A.; Roy, J.K. Trait Mapping Approaches Through Association Analysis in Plants. Adv. Biochem. Eng. Biotechnol. 2018, 164, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Sallam, A.; Stephen Baenziger, P.; Börner, A. GWAS: Fast-Forwarding Gene Identification and Characterization in Temperate Cereals: Lessons from Barley—A Review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Kulwal, P.L.; Jaiswal, V. Association Mapping in Plants in the Post-GWAS Genomics Era. Adv. Genet. 2019, 104, 75–154. [Google Scholar] [CrossRef]
- Bernardo, R. Bandwagons I, Too, Have Known. Theor. Appl. Genet. 2016, 129, 2323–2332. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Singh, K.; Batra, R.; Sharma, S.; Saripalli, G.; Gautam, T.; Singh, R.; Pal, S.; Malik, P.; Kumar, M.; Jan, I.; et al. WheatQTLdb: A QTL Database for Wheat. Mol. Genet. Genom. MGG 2021, 296, 1051–1056. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The Apogee of the Omics Trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Raza, A. Metabolomics: A Systems Biology Approach for Enhancing Heat Stress Tolerance in Plants. Plant Cell Rep. 2020. [Google Scholar] [CrossRef]
- Scott, M.F.; Fradgley, N.; Bentley, A.R.; Brabbs, T.; Corke, F.; Gardner, K.A.; Horsnell, R.; Howell, P.; Ladejobi, O.; Mackay, I.J.; et al. Limited Haplotype Diversity Underlies Polygenic Trait Architecture across 70 Years of Wheat Breeding. Genome Biol. 2021, 22, 137. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef] [PubMed]
- Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Payne, T.; Marshall, D.; et al. Diversity Analysis of 80,000 Wheat Accessions Reveals Consequences and Opportunities of Selection Footprints. Nat. Commun. 2020, 11, 4572. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Xu, S.; Cai, X. Whole-Genome Quantitative Trait Locus Mapping Reveals Major Role of Epistasis on Yield of Rice. PLoS ONE 2014, 9, e87330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, P.C. Epistasis—The Essential Role of Gene Interactions in the Structure and Evolution of Genetic Systems. Nat. Rev. Genet. 2008, 9, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Rio, S.; Mary-Huard, T.; Moreau, L.; Bauland, C.; Palaffre, C.; Madur, D.; Combes, V.; Charcosset, A. Disentangling Group Specific QTL Allele Effects from Genetic Background Epistasis Using Admixed Individuals in GWAS: An Application to Maize Flowering. PLoS Genet. 2020, 16, e1008241. [Google Scholar] [CrossRef] [Green Version]
- Zuk, O.; Hechter, E.; Sunyaev, S.R.; Lander, E.S. The Mystery of Missing Heritability: Genetic Interactions Create Phantom Heritability. Proc. Natl. Acad. Sci. USA 2012, 109, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Jin, Y.; He, X.; Dong, A.; Wang, J.; Wu, R. Inferring Multilayer Interactome Networks Shaping Phenotypic Plasticity and Evolution. Nat. Commun. 2021, 12, 5304. [Google Scholar] [CrossRef]
- Mackay, T.F.C. Epistasis and Quantitative Traits: Using Model Organisms to Study Gene–Gene Interactions. Nat. Rev. Genet. 2014, 15, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.-H.; Hemani, G.; Haley, C.S. Detecting Epistasis in Human Complex Traits. Nat. Rev. Genet. 2014, 15, 722–733. [Google Scholar] [CrossRef]
- Balfourier, F.; Bouchet, S.; Robert, S.; Oliveira, R.D.; Rimbert, H.; Kitt, J.; Choulet, F.; Consortium, I.W.G.S.; Consortium, B.; Paux, E. Worldwide Phylogeography and History of Wheat Genetic Diversity. Sci. Adv. 2019, 5, eaav0536. [Google Scholar] [CrossRef] [Green Version]
- Young, A.I.; Benonisdottir, S.; Przeworski, M.; Kong, A. Deconstructing the Sources of Genotype-Phenotype Associations in Humans. Science 2019, 365, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Green, E.D.; Gunter, C.; Biesecker, L.G.; Di Francesco, V.; Easter, C.L.; Feingold, E.A.; Felsenfeld, A.L.; Kaufman, D.J.; Ostrander, E.A.; Pavan, W.J.; et al. Strategic Vision for Improving Human Health at The Forefront of Genomics. Nature 2020, 586, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Han, L.; Li, Q.; Wang, G.; Zhang, H.; Li, L. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. Mol. Plant 2020. [Google Scholar] [CrossRef]
- White-Gloria, C.; Johnson, J.J.; Marritt, K.; Kataya, A.; Vahab, A.; Moorhead, G.B. Protein Kinases and Phosphatases of the Plastid and Their Potential Role in Starch Metabolism. Front. Plant Sci. 2018, 9, 1032. [Google Scholar] [CrossRef]
- Zulawski, M.; Schulze, W.X. The Plant Kinome. Methods Mol. Biol. 2015, 1306, 1–23. [Google Scholar] [CrossRef]
- Norton, H.L. Phenotype (genetics). In The International Encyclopedia of Biological Anthropology; American Cancer Society: Atlanta, GA, USA, 2018; pp. 1–3. ISBN 978-1-118-58453-8. [Google Scholar]
- Mahner, M.; Kary, M. What Exactly Are Genomes, Genotypes and Phenotypes? And What about Phenomes? J. Theor. Biol. 1997, 186, 55–63. [Google Scholar] [CrossRef]
- Nielsen, J.; Oliver, S. The next Wave in Metabolome Analysis. Trends Biotechnol. 2005, 23, 544–546. [Google Scholar] [CrossRef]
- Zhou, S.; Morgante, F.; Geisz, M.S.; Ma, J.; Anholt, R.R.H.; Mackay, T.F.C. Systems Genetics of the Drosophila Metabolome. Genome Res. 2020, 30, 392–405. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Wang, A.; Li, R.; Qu, H.; Jia, Z. Metabolome-Wide Association Studies for Agronomic Traits of Rice. Heredity 2018, 120, 342–355. [Google Scholar] [CrossRef]
- Tong, H.; Nikoloski, Z. Machine Learning Approaches for Crop Improvement: Leveraging Phenotypic and Genotypic Big Data. J. Plant Physiol. 2021, 257, 153354. [Google Scholar] [CrossRef]
- Kabera, J.; Semana, E.; Mussa, A.; He, X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar] [CrossRef]
- Calumpang, C.L.F.; Saigo, T.; Watanabe, M.; Tohge, T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Carey, L.M.; Clark, T.J.; Deshpande, R.R.; Cocuron, J.-C.; Rustad, E.K.; Shachar-Hill, Y. High Flux Through the Oxidative Pentose Phosphate Pathway Lowers Efficiency in Developing Camelina Seeds. Plant Physiol. 2020, 182, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Desmet, S.; Brouckaert, M.; Boerjan, W.; Morreel, K. Seeing the Forest for the Trees: Retrieving Plant Secondary Biochemical Pathways from Metabolome Networks. Comput. Struct. Biotechnol. J. 2021, 19, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Basler, G.; Fernie, A.R.; Nikoloski, Z. Advances in Metabolic Flux Analysis toward Genome-Scale Profiling of Higher Organisms. Biosci. Rep. 2018, 38, BSR20170224. [Google Scholar] [CrossRef]
- Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H.; et al. Genome-Wide Association Analyses Provide Genetic and Biochemical Insights into Natural Variation in Rice Metabolism. Nat. Genet. 2014, 46, 714–721. [Google Scholar] [CrossRef]
- Kushalappa, A.C.; Gunnaiah, R. Metabolo-Proteomics to Discover Plant Biotic Stress Resistance Genes. Trends Plant Sci. 2013, 18, 522–531. [Google Scholar] [CrossRef]
- Tenenboim, H.; Brotman, Y. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. Trends Plant Sci. 2016, 21, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Lewinsohn, E. Convergent Evolution in Plant Specialized Metabolism. Annu. Rev. Plant Biol. 2011, 62, 549–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, C.T.; Tu, B.P.; Tang, Y. Eight Kinetically Stable but Thermodynamically Activated Molecules That Power Cell Metabolism. Chem. Rev. 2018, 118, 1460–1494. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Chapter 8—Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation Under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: New York, NY, USA, 2018; pp. 153–167. ISBN 978-0-12-812689-9. [Google Scholar]
- Rai, A.; Saito, K.; Yamazaki, M. Integrated Omics Analysis of Specialized Metabolism in Medicinal Plants. Plant J. 2017, 90, 764–787. [Google Scholar] [CrossRef]
- Sorokina, M.; Steinbeck, C. Review on Natural Products Databases: Where to Find Data in 2020. J. Cheminform. 2020, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT Online: Collection of Open Natural Products Database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- Tzin, V.; Galili, G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis Thaliana. Arab. Book Am. Soc. Plant Biol. 2010, 8, e0132. [Google Scholar] [CrossRef] [Green Version]
- Niehaus, M.; Straube, H.; Künzler, P.; Rugen, N.; Hegermann, J.; Giavalisco, P.; Eubel, H.; Witte, C.-P.; Herde, M. Rapid Affinity Purification of Tagged Plant Mitochondria (Mito-AP) for Metabolome and Proteome Analyses. Plant Physiol. 2020, 182, 1194–1210. [Google Scholar] [CrossRef]
- Sweetlove, L.J.; Fernie, A.R. The Spatial Organization of Metabolism within the Plant Cell. Annu. Rev. Plant Biol. 2013, 64, 723–746. [Google Scholar] [CrossRef]
- Saranya Krishnan, S.R.; Sreelekshmi, R.; Siril, E.A.; Sukumaran, S.T. Cell and Protoplast Culture for Production of Plant Metabolites. In Plant Metabolites: Methods, Applications and Prospects; Sukumaran, S.T., Sugathan, S., Abdulhameed, S., Eds.; Springer: Singapore, 2020; pp. 71–88. ISBN 9789811551369. [Google Scholar]
- Raza, A.; Charagh, S.; Zahid, Z.; Mubarik, M.S.; Javed, R.; Siddiqui, M.H.; Hasanuzzaman, M. Jasmonic Acid: A Key Frontier in Conferring Abiotic Stress Tolerance in Plants. Plant Cell Rep. 2021, 40, 1513–1541. [Google Scholar] [CrossRef] [PubMed]
- Corradi, V.; Sejdiu, B.I.; Mesa-Galloso, H.; Abdizadeh, H.; Noskov, S.Y.; Marrink, S.J.; Tieleman, D.P. Emerging Diversity in Lipid-Protein Interactions. Chem. Rev. 2019, 119, 5775–5848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, K.; Liu, P.; Lagerholm, B.C. The Lateral Organization and Mobility of Plasma Membrane Components. Cell 2019, 177, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Cacas, J.-L.; Furt, F.; Le Guédard, M.; Schmitter, J.-M.; Buré, C.; Gerbeau-Pissot, P.; Moreau, P.; Bessoule, J.-J.; Simon-Plas, F.; Mongrand, S. Lipids of Plant Membrane Rafts. Prog. Lipid Res. 2012, 51, 272–299. [Google Scholar] [CrossRef]
- Watanabe, K.; Yasugi, E.; Oshima, M. How to Search the Glycolipid Data in “LIPIDBANK for Web”, the Newly Developed Lipid Database in Japan. Trends Glycosci. Glycotechnol. 2000, 12, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; et al. LMSD: LIPID MAPS Structure Database. Nucl. Acids Res. 2007, 35, D527–D532. [Google Scholar] [CrossRef] [Green Version]
- Cotter, D.; Maer, A.; Guda, C.; Saunders, B.; Subramaniam, S. LMPD: LIPID MAPS Proteome Database. Nucl. Acids Res. 2006, 34, D507–D510. [Google Scholar] [CrossRef] [PubMed]
- Fitoussi, N.; Borrego, E.; Kolomiets, M.V.; Qing, X.; Bucki, P.; Sela, N.; Belausov, E.; Braun Miyara, S. Oxylipins Are Implicated as Communication Signals in Tomato-Root-Knot Nematode (Meloidogyne Javanica) Interaction. Sci. Rep. 2021, 11, 326. [Google Scholar] [CrossRef]
- Pyc, M.; Cai, Y.; Greer, M.S.; Yurchenko, O.; Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Turning Over a New Leaf in Lipid Droplet Biology. Trends Plant Sci. 2017, 22, 596–609. [Google Scholar] [CrossRef]
- Chapman, K.D.; Aziz, M.; Dyer, J.M.; Mullen, R.T. Mechanisms of Lipid Droplet Biogenesis. Biochem. J. 2019, 476, 1929–1942. [Google Scholar] [CrossRef]
- Porta Siegel, T.; Ekroos, K.; Ellis, S.R. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angew. Chem. Int. Ed. Engl. 2019, 58, 6492–6501. [Google Scholar] [CrossRef] [Green Version]
- Liebisch, G.; Vizcaíno, J.A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W.J.; Schmitz, G.; Spener, F.; Wakelam, M.J.O. Shorthand Notation for Lipid Structures Derived from Mass Spectrometry. J. Lipid Res. 2013, 54, 1523–1530. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.P.; Slabas, A.R.; Rafferty, J.B. Fatty Acid Biosynthesis in Plants—Metabolic Pathways, Structure and Organization. In Lipids in Photosynthesis: Essential and Regulatory Functions; Wada, H., Murata, N., Eds.; Advances in Photosynthesis and Respiration; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 11–34. ISBN 978-90-481-2863-1. [Google Scholar]
- Li-Beisson, Y.; Shorrosh, B.; Beisson, F.; Andersson, M.X.; Arondel, V.; Bates, P.D.; Baud, S.; Bird, D.; Debono, A.; Durrett, T.P.; et al. Acyl-Lipid Metabolism. Arab. Book 2013, 11, e0161. [Google Scholar] [CrossRef] [Green Version]
- Kao, Y.-T.; Gonzalez, K.L.; Bartel, B. Peroxisome Function, Biogenesis, and Dynamics in Plants. Plant Physiol. 2018, 176, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Richael, C.M. Development of the Genetically Modified Innate® Potato. In Plant Breeding Reviews; John Wiley & Sons, Ltd.: London, UK, 2021; pp. 57–78. [Google Scholar] [CrossRef]
- Napier, J.A.; Olsen, R.E.; Tocher, D.R. Update on GM Canola Crops as Novel Sources of Omega-3 Fish Oils. Plant Biotechnol. J. 2019, 17, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Kruger, N.J.; Ratcliffe, R.G. Metabolite Fingerprinting and Profiling in Plants Using NMR. J. Exp. Bot. 2005, 56, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O. Metabolomics--the Link between Genotypes and Phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of Recent Developments in GC-MS Approaches to Metabolomics-Based Research. Metab. Off. J. Metab. Soc. 2018, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Rawlinson, C.; Kamphuis, L.G.; Gummer, J.P.A.; Singh, K.B.; Trengove, R.D. A Rapid Method for Profiling of Volatile and Semi-Volatile Phytohormones Using Methyl Chloroformate Derivatisation and GC-MS. Metab. Off. J. Metab. Soc. 2015, 11, 1922–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, B.E.; Ho, W.W.H.; Biddulph, B.; Wallace, X.; Rathjen, T.; Rupasinghe, T.W.T.; Roessner, U.; Dolferus, R. Phenotyping Reproductive Stage Chilling and Frost Tolerance in Wheat Using Targeted Metabolome and Lipidome Profiling. Metab. Off. J. Metab. Soc. 2019, 15, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zou, Y.; Kaw, H.Y.; Wang, G.; Sun, H.; Cai, L.; Li, C.; Meng, L.-Y.; Li, D. Recent Developments and Emerging Trends of Mass Spectrometric Methods in Plant Hormone Analysis: A Review. Plant Methods 2020, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.-H.; Kuo, C.-H. Gas Chromatography-Mass Spectrometry-Based Analytical Strategies for Fatty Acid Analysis in Biological Samples. J. Food Drug Anal. 2020, 28, 60–73. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, J.-L. Mass-Spectrometry-Based Lipidomics. J. Sep. Sci. 2018, 41, 351–372. [Google Scholar] [CrossRef]
- Ghaste, M.; Mistrik, R.; Shulaev, V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int. J. Mol. Sci. 2016, 17, 816. [Google Scholar] [CrossRef]
- Böcker, S.; Letzel, M.C.; Lipták, Z.; Pervukhin, A. SIRIUS: Decomposing Isotope Patterns for Metabolite Identification. Bioinform. Oxf. Engl. 2009, 25, 218–224. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakabayashi, R.; Hashimoto, K.; Toyooka, K.; Saito, K. Keeping the Shape of Plant Tissue for Visualizing Metabolite Features in Segmentation and Correlation Analysis of Imaging Mass Spectrometry in Asparagus Officinalis. Metabolomics 2019, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, O.; Urrutia, M.; Bernillon, S.; Giauffret, C.; Tardieu, F.; Le Gouis, J.; Langlade, N.; Charcosset, A.; Moing, A.; Gibon, Y. Fortune Telling: Metabolic Markers of Plant Performance. Metab. Off. J. Metab. Soc. 2016, 12, 158. [Google Scholar] [CrossRef] [Green Version]
- Piao, X.; Zhang, H.; Kang, J.P.; Yang, D.U.; Li, Y.; Pang, S.; Jin, Y.; Yang, D.C.; Wang, Y. Advances in Saponin Diversity of Panax Ginseng. Molecules 2020, 25, 3452. [Google Scholar] [CrossRef]
- Shafi, A.; Zahoor, I. Chapter 12—Metabolomics of medicinal and aromatic plants: Goldmines of secondary metabolites for herbal medicine research. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Academic Press: New York, NY, USA, 2021; pp. 261–287. ISBN 978-0-12-819590-1. [Google Scholar]
- Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genomic and Metabolic Prediction of Complex Heterotic Traits in Hybrid Maize. Nat. Genet. 2012, 44, 217–220. [Google Scholar] [CrossRef]
- Liang, X.-G.; Gao, Z.; Zhang, L.; Shen, S.; Zhao, X.; Liu, Y.-P.; Zhou, L.-L.; Paul, M.J.; Zhou, S.-L. Seasonal and Diurnal Patterns of Non-Structural Carbohydrates in Source and Sink Tissues in Field Maize. BMC Plant Biol. 2019, 19, 508. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wang, D.; Gong, L.; Lyu, Y.; Guo, H.; Chen, W.; Jin, C.; Liu, X.; Fang, C.; Luo, J. Comparative Analysis of Metabolome of Rice Seeds at Three Developmental Stages Using a Recombinant Inbred Line Population. Plant J. Cell Mol. Biol. 2019, 100, 908–922. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Gupta, P.; Priscilla, K.; Sharan Kumar, N.; Hangargi, B.; Veershetty, A.; Ramrao, D.P.; Suresh, S.; Narasanna, R.; Naik, G.R.; et al. Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021, 10, 346. [Google Scholar] [CrossRef]
- Raza, A.; Ashraf, F.; Zou, X.; Zhang, X.; Tosif, H. Plant Adaptation and Tolerance to Environmental Stresses: Mechanisms and Perspectives. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 114–117. [Google Scholar] [CrossRef]
- Van Esse, H.P.; Reuber, T.L.; van der Does, D. Genetic Modification to Improve Disease Resistance in Crops. New Phytol. 2020, 225, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Delauney, A.J.; Verma, D.P.S. Proline Biosynthesis and Osmoregulation in Plants. Plant J. 1993, 4, 215–223. [Google Scholar] [CrossRef]
- Mata, A.T.; Jorge, T.F.; Pires, M.V.; Antonio, C. Drought Stress Tolerance in Plants: Insights from Metabolomics. In Drought Stress Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives; Anwar Hossain, M., Hussain Wani, S., Bhattacharjee, S., Burritt, D.J., Phan Tran, L.-S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 187–216. [Google Scholar] [CrossRef]
- Rehman, A.U.; Bashir, F.; Ayaydin, F.; Kóta, Z.; Páli, T.; Vass, I. Proline Is a Quencher of Singlet Oxygen and Superoxide Both in in Vitro Systems and Isolated Thylakoids. Physiol. Plant. 2021, 172, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Đukić, N.H.; Marković, S.M.; Mastilović, J.S.; Simović, P. Differences in Proline Accumulation between Wheat Varieties in Response to Heat Stress. Bot. Serbica 2021, 45, 61–69. Available online: http://www.doiserbia.nb.rs/Article.aspx?id=1821-21582101061D (accessed on 7 September 2021). [CrossRef]
- El Moukhtari, A.; Cabassa-Hourton, C.; Farissi, M.; Savouré, A. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Front. Plant Sci. 2020, 11, 1127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Liu, R.R.; Zhang, C.Q.; Tang, K.X.; Sun, M.F.; Yan, G.H.; Liu, Q.Q. Manipulation of the Rice L-Galactose Pathway: Evaluation of the Effects of Transgene Overexpression on Ascorbate Accumulation and Abiotic Stress Tolerance. PLoS ONE 2015, 10, e0125870. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of Osmoprotectants in Improving Salinity and Drought Tolerance in Plants: A Review. Rev. Environ. Sci. Bio/Technol. 2015, 14, 407–426. [Google Scholar] [CrossRef]
- Figueroa, C.M.; Lunn, J.E. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose. Plant Physiol. 2016, 172, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Martignago, D.; Rico-Medina, A.; Blasco-Escámez, D.; Fontanet-Manzaneque, J.B.; Caño-Delgado, A.I. Drought Resistance by Engineering Plant Tissue-Specific Responses. Front. Plant Sci. 2020, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Nuccio, M.L.; Wu, J.; Mowers, R.; Zhou, H.P.; Meghji, M.; Primavesi, L.F.; Paul, M.J.; Chen, X.; Gao, Y.; Haque, E.; et al. Expression of Trehalose-6-Phosphate Phosphatase in Maize Ears Improves Yield in Well-Watered and Drought Conditions. Nat. Biotechnol. 2015, 33, 862–869. [Google Scholar] [CrossRef]
- Buffagni, V.; Vurro, F.; Janni, M.; Gullì, M.; Keller, A.A.; Marmiroli, N. Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response. Front. Plant Sci. 2020, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Foti, C.; Kalampokis, I.F.; Aliferis, K.A.; Pavli, O.I. Metabolic Responses of Two Contrasting Lentil Genotypes to PEG-Induced Drought Stress. Agronomy 2021, 11, 1190. [Google Scholar] [CrossRef]
- Yang, C.; Yang, H.; Xu, Q.; Wang, Y.; Sang, Z.; Yuan, H. Comparative Metabolomics Analysis of the Response to Cold Stress of Resistant and Susceptible Tibetan Hulless Barley (Hordeum Distichon). Phytochemistry 2020, 174, 112346. [Google Scholar] [CrossRef] [PubMed]
- Balmer, D.; Flors, V.; Glauser, G.; Mauch-Mani, B. Metabolomics of Cereals under Biotic Stress: Current Knowledge and Techniques. Front. Plant Sci. 2013, 4, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehela, Y.; Killiny, N. The Unknown Soldier in Citrus Plants: Polyamines-Based Defensive Mechanisms against Biotic and Abiotic Stresses and Their Relationship with Other Stress-Associated Metabolites. Plant Signal. Behav. 2020, 15, 1761080. [Google Scholar] [CrossRef]
- Jeon, J.E.; Kim, J.-G.; Fischer, C.R.; Mehta, N.; Dufour-Schroif, C.; Wemmer, K.; Mudgett, M.B.; Sattely, E. A Pathogen-Responsive Gene Cluster for Highly Modified Fatty Acids in Tomato. Cell 2020, 180, 176–187.e19. [Google Scholar] [CrossRef]
GM Crop | GM Trait | Gene | Gene Source | Gene Product | Gene Function | Example(s) 2 | Developer 3-Year of Approval 4 |
---|---|---|---|---|---|---|---|
Tomato-Lycopersicon esculentum | Delayed fruit softening | pg (sense or antisense) | Lycopersicon esculentum | No functional polygalacturonase enzyme is produced (transcription of the endogenous enzyme is suppressed by a gene silencing mechanism) | Inhibits the production of polygalacturonase enzyme responsible for the breakdown of pectin molecules in the cell wall, and thus causes delayed softening of the fruit | SYN-ØØØØB-6 | Z-1995 |
FLAVR SAVR | M-1992 | ||||||
Melon-Cucumis melo | Delayed ripening/senescence | sam-k | Escherichia coli bacteriophage T3 | S-adenosylmethionine hydrolase enzyme | Causes delayed ripening by reducing the S-adenosylmethionine (SAM), a substrate for ethylene production | 35-1-N | A-1996 |
Tomato-Lycopersicon esculentum | Delayed ripening/senescence | anti-efe | Lycopersicon esculentum | Antisense RNA of 1-amino-cyclopropane -1-carboxylate oxidase (ACO) gene (no functional ACO enzyme is produced) | Causes delayed ripening by suppressing the production of ethylene via silencing of the ACO gene that encodes an ethylene-forming enzyme | Huafan No 1 | HAU-1997 |
Tomato-Lycopersicon esculentum | Delayed ripening/senescence | accd | Pseudomonas chlororaphis | 1-amino-cyclopropane-1-carboxylic acid deaminase enzyme | Metabolizes the precursor of the fruit ripening hormone ethylene, resulting in delayed fruit ripening | CGN-89322-3 | M-1995 |
Carnation-Dianthus caryophyllus | Delayed ripening/senescence | acc (truncated) | Dianthus caryophyllus | Modified transcript of 1-amino-cyclopropane -1-carboxylic acid (ACC) synthase gene | Causes reduced synthesis of endogenous ethylene through a gene silencing mechanism and thus delayed senescence and longer vase life | FLO-ØØØ66-8 | F-1995 (c.o.) |
Pineapple-Ananas comosus | Delayed ripening/senescence | acc | Ananas comosus | 1-aminocyclopropane-1-carboxylic acid synthase | Involved in catalyzing the penultimate step in ethylene biosynthesis | Rosé | DM-2016 |
Modified fruit color | b-Lyc | Ananas comosus | Gamma-carotene | Increases lycopene accumulation using RNAi technology | |||
e-Lyc | Ananas comosus | Delta-carotene | Increases lycopene accumulation using RNAi technology | ||||
Psy (Phytoene Synthase) | Tangerine (Citrus reticulata) | Phytoene | Increases lycopene and/or beta-carotene levels | ||||
Sugarcane-Saccharum sp. | Drought stress tolerance | EcBetA | Escherichia coli | Choline dehydrogenase | Catalyzes the production of the osmoprotectant compound glycine betaine conferring tolerance to water stress | NXI-1T | P-2011 |
Sugarcane-Saccharum sp. | Drought stress tolerance | RmBetA | Rhizobium meliloti | Choline dehydrogenase | Catalyzes the production of the osmoprotectant compound glycine betaine conferring tolerance to water stress | NXI-4T | P-2013 |
Rice-Oryza sativa L. | Enhanced Provitamin A Content | crt1 | Pantoea ananatis | Phytoene desaturase enzyme CRTI | Catalyzes the conversion of 15-cis-phytoene to all-trans-lycopene | Golden Rice | IRRI-2017 |
psy1 | Zea mays | Phytoene synthase ZmPSY1 | Converts geranylgeranyl diphosphate into phytoene, and acts upstream of CRTI in the carotenoid biosynthesis pathway | ||||
Cotton-Gossypium hirsutum L. | Low Gossypol | dCS | Gossypium hirsutum L. | dsRNA that suppresses the expression of d-cadinene synthase gene that encode d-cadinene synthase, a key enzyme involved in gossypol biosynthesis, thru RNAi pathway | Silence the endogenous dCS genes | TAM-66274-5 | TAM-2018 |
Potato-Solanum tuberosum L. | Lowered Free Asparagine | asn1 | Solanum tuberosum | Double stranded RNA | Designed to generate dsRNA to down regulate Asn1 transcripts which lowers asparagine formation | All 5 transgenes: Innate® Acclimate, Innate® Hibernate. All transgenes except VInv: Innate® Cultivate, Innate® Generate, Innate® Accelerate, Innate® Invigorate | JRS-2014 (2015 for Vlnv-containing accessions) |
Reduced Black Spot | ppo5 (polyphenol oxidase 5) | Solanum verrucosum | Double stranded RNA | Designed to generate dsRNA to down regulate Ppo5 transcripts which lowers black spot bruise development | |||
Lowered Reducing Sugars | PhL | Solanum tuberosum | Double stranded RNA | Designed to generate dsRNA to down regulate PhL transcripts which lowers reducing sugars | |||
R1 | Solanum tuberosum | Double stranded RNA | Designed to generate dsRNA to down regulate R1 transcripts which lowers reducing sugars | ||||
Vlnv | Solanum tuberosum | Double stranded RNA | Downregulates VInv transcripts which lowers reducing sugars | ||||
Maize-Zea mays L. | Male sterility | zm-aa1 | Zea mays | Alpha amylase enzyme | Hydrolyses starch and makes pollen sterile when expressed in immature pollen | 32138 SPT maintainer | DP-2011 |
Maize-Zea mays L. | Modified alpha amylase | amy797E | synthetic gene derived from Thermococcales spp. | Thermostable alpha-amylase enzyme | Enhances bioethanol production by increasing the thermostability of amylase used in degrading starch | Enogen™ | Sy-2007 |
Maize-Zea mays L. | Modified amino acid | cordapA | Corynebacterium glutamicum | Dihydrodipicolinate synthase enzyme | Increases the production of amino acid lysine | Mavera™ Maize, Mavera™ YieldGard™ Maize | R-2003 |
Carnation-Dianthus caryophyllus | Modified flower color | dfr | Petunia hybrida | Dihydroflavonol-4-reductase (DFR) hydroxylase enzyme | Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its derivatives | All have dfr, some have bp40 or hfl:Moondust™, Moonshadow™, Moonshade™, Moonlite™, Moonaqua™, Moonvista™ | F-1995 or 1998 if with bp40 (c.o.) |
bp40 (f3′5′h) | Viola wittrockiana | Flavonoid 3′,5′-hydroxylase (F3′5′H) enzyme | Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its derivatives | ||||
hfl (f3′5′h) | Petunia hybrida | Flavonoid 3′,5′-hydroxylase (F3′5′H) enzyme | Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its derivatives | ||||
sfl (f3′5′h) | Sage (Salvia splendens) | Flavonoid 3′,5′-hydroxylase | Involved in the biosynthesis of a group of blue coloured anthocyanins called delphinidins | Moonique™ (also has dfr, bp40 (f3′5′h)) | Su-2008 (c.o.) | ||
dfr-diaca | Carnation (Dianthus caryophyllus) | Dihydroflavonol-4-reductase enzyme | Functions in the biosynthesis pathway of the pink/ red-coloured anthocyandin 3-O-(6-O-malylglucoside) pigment in carnations | Moonpearl™, Moonberry™ (also have dfr, bp40 (f3′5′h)) | |||
cytb5 | Petunia (Petunia hybrida) | Cytochrome b5 | Cyt b5 protein acts as an electron donor to the Cyt P450 enzyme and is required for full activity of the Cyt P450 enzyme Flavinoid 3′ 5′ hydroxylase in vivo and the generation of purple/ blue flower colours. | Moonvelvet™ (also has hfl (f3′5′h)) | Su-2008 (c.o.) | ||
Rose-Rosa hybrida | Modified flower color | 5AT | Torenia sp. | Anthocyanin 5-acyltransferase (5AT) enzyme | Alters the production of a type of anthocyanin called delphinidin | WKS82/130-4-1 (also has bp40 (f3′5′h)) | Su-2008 (c.o.) |
Argentine Canola-Brassica napus | Modified oil/fatty acid | te | Umbellularia californica (bay leaf) | 12:0 ACP thioesterase enzyme | Increases the level of triacylglycerides containing esterified lauric acid (12:0) | Laurical™ Canola | M-1994 |
Argentine Canola-Brassica napus | Modified oil/fatty acid | Lackl-delta12D | Lachancea kluyveri | Delta-12-desaturase | Converts oleic acid to linoleic acid | DHA Canola | N-2018 |
Micpu-delta-6D | Micromonas pusilla | Delta-6-desaturase | Convert a-linolenic acid to stearidonic acid | ||||
Pavsa-delta-4D | Pavlova salina | Delta-4-desaturase | Converts docosapentaenoic acid to docosahexaenoic acid | ||||
Pavsa-delta-5D | Pavlova salina | Delta-5-desaturase | Converts eicosatetraenoic acid to eicosapentaenoic acid | ||||
Picpa-omega-3D | Pichia pastoris | Delta-15-/omega-3-desaturase | Converts linoleic acid to a-linolenic acid | ||||
Pyrco-delta-5E | Pyramimonas cordata | Delta-5-elongase | Converts eicosapentaenoic acid to docosapentaenoic acid | ||||
Pyrco-delta-6E | Pyramimonas cordata | Delta-6-elongase | Convert stearidonic acid to eicosatetraenoic acid | ||||
Argentine Canola-Brassica napus | Modified oil/fatty acid | OtD5E | Ostreococcus tauri | Delta-5 elongase | Catalyzes the decarboxylation Claisen-like condensation of two carbons from malonyl-CoA to C20:5n-3-CoA generating C22:5n-3-ß-keto-C oA, which is then converted to C22:5n-3-CoA by endogenous enzymes | LBFLFK | B-2019 (c.o.) |
OtD6D | Ostreococcus tauri | Delta-6 desaturase | Converts C18:2n-6 fatty acids into C18:3n-6 fatty acids | ||||
PiO3D | Phytophthora infestans | Omega-3 desaturase | Converts C20:4n-6 into C20:5n-3 | ||||
PirO3D | Pythium irregulare | Two copies of the coding sequence for an omega-3 desaturase, cO3D(Pir)1 and cO3D(Pir)2 | Converts C20:4n-6 into C20:5n-3 | ||||
PlD4D | Pavlova lutheri | Delta-4 desaturase | Convert C22:5n-3 into C22:6n-3 | ||||
PpD6E | Physcomitrella patens | Delta-6 elongase | Catalyzes the decarboxylation Claisen-like condensation of two carbons from malonyl-CoA to C18:3n-6-CoA generating C20:3n-6-ß-keto-CoA, which is then converted to C20:3n-6-CoA by endogenous enzymes | ||||
PsD12D | Phytophthora sojae | Delta-12 desaturase | Convert C18:1n-9 into C18:2n-6 | ||||
TcD4D | Thraustochytrium sp. | Delta-4 desaturase | Converts C22:5n-3 into C22:6n-3 | ||||
TcD5D | Thraustochytrium sp. | Two copies of the coding sequence for a delta-5 desaturase, cD5D(Tc)1 and cD5D(Tc)2 | |||||
TpD6E | Thalassiosira pseudonana | Delta-6 elongase | Catalyzes the decarboxylation Claisen-like condensation of two carbons from malonyl-CoA to C18:3n-6-CoA generating C20:3n-6-ß-keto-CoA, which is then converted to C20:3n-6-CoA by endogenous enzymes | ||||
Safflower-Carthamus tinctorius L. | Modified oil/fatty acid | fad2.2 | Carthamus tinctorius | Fad2.2 gene-no functional enzyme is produced | Production of FAD2.2 (delta-12 desaturase enzyme) is suppressed by RNA interference | GOR-73226-6 | G-2018 |
fatB | Carthamus tinctorius | FatB gene-no functional enzyme produced | Production of FATB enzymes (acyl-acyl carrier protein thioesterases) is suppressed by RNA interference | ||||
Soybean-Glycine max L. | Modified oil/fatty acid | gm-fad2-1 (partial sequence) | Glycine max | No functional enzyme is produced (expression of the endogenous fad2-1 gene encoding omega-6 desaturase enzyme was suppressed by the partial gm-fad2-1 gene fragment) | Blocks the formation of linoleic acid from oleic acid (by silencing the fad2-1 gene) and allows accumulation of oleic acid in the seed | Treus™, Plenish™ | DP-2009 |
Soybean-Glycine max L. | Modified oil/fatty acid | gm-fad2-1 (silencing locus) | Glycine max | No functional enzyme is produced (production of endogenous delta-12 desaturase enzyme was suppressed by an additional copy of the gm-fad2-1 gene via a gene silencing mechanism) | Blocks the conversion of oleic acid to linoleic acid (by silencing the endogenous fad2-1 gene) and allows accumulation of monounsaturated oleic acid in the seed | DD-Ø26ØØ5-3 | DP-1997 |
Soybean-Glycine max L. | Modified oil/fatty acid | fad2-1A (sense and antisense) | Glycine max | No functional enzyme is produced (production of delta-12 desaturase enzyme is suppressed by RNA interference) | Reduces desaturation of 18:1 oleic acid to 18:2 linoleic acid; increases the levels of monounsaturated oleic acid and decreases the levels of saturated linoleic acid in the seed | Vistive Gold™ | M-2011 |
fatb1-A (sense and antisense segments) | Glycine max | No functional enzyme is produced (production of FATB enzymes or acyl-acyl carrier protein thioesterases is suppressed by RNA interference) | Decreases the transport of saturated fatty acids out of the plastid, thereby increasing their availability to desaturation to 18:1 oleic acid; reduces the levels of saturated fatty acids and increases the levels of 18:1 oleic acid | ||||
Soybean-Glycine max L. | Modified oil/fatty acid | Nc.Fad3 | Neurospora crassa | Delta 15 desaturase protein | Desaturates certain endogenous fatty acids resulting in the production of stearidonic acid (SDA), an omega-3 fatty acid | MON87769 | M-2011 |
Pj.D6D | Primula juliae | Delta 6 desaturase protein | Desaturates certain endogenous fatty acids resulting in the production of stearidonic acid (SDA), an omega-3 fatty acid | ||||
Potato-Solanum tuberosum L. | Modified starch/carbohydrate | gbss (antisense fragment) | Solanum tuberosum | No functional granule-bound starch synthase (GBSS) enzyme is produced; production of GBSS enzyme is suppressed by a gene silencing mechanism | Reduces the levels of amylose and increases the levels of amylopectin in starch granules | Amflora™, Starch Potato | B-2010 |
Tobacco-Nicotiana tabacum L. | Nicotine reduction | NtQPT1 (antisense) | Nicotiana tabacum | Antisense RNA of quinolinic acid phosphoribosyltransferase (QPTase) gene; no functional QPTase enzyme is produced | Suppresses the transcription of the QPTase gene, thereby reducing the production of nicotinic acid, a precursor for nicotine | Vector 21-41 | V-2002 (c.o.) |
Apple (Malus x Domestica) | Non-Browning | PGAS PPO suppression gene | Malus domestica | PGAS is a chimeric sense suppression transgene; it consists of 394 to 457 bp regions of four apple PPO (Polyphenol oxidase) genes (PPO2, GPO3, APO5, and pSR7) in tandem that upon transcription is designed to suppress the expression of these four members of the apple PPO gene family | Double stranded RNA (dsRNA)from the suppression transcript is processed into small interfering RNAs (siRNAs) that direct the cleavage of the target mRNA through sequence complementarity and suppresses PPO resulting in apples with a non-browning phenotype | Arctic™, Arctic™ Fuji Apple, Arctic™ "Golden Delicious" Apple | OSFI-2015 |
Argentine Canola-Brassica napus | Phytase production | phyA | Aspergillus niger var. van Tieghem | 3-phytase enzyme | Increases the breakdown of plant phytates which bind phosphorus and makes the latter available to monogastric animals | Phytaseed™ Canola | B-1998 |
Maize-Zea mays L. | Phytase production | phyA2 | Aspergillus niger strain 963 | Phytase enzyme | Degrades phytate phosphorus in seeds into inorganic phosphate to be available to animals when used as feed | BVLA430101 | OA-2009 (c.o.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litvinov, D.Y.; Karlov, G.I.; Divashuk, M.G. Metabolomics for Crop Breeding: General Considerations. Genes 2021, 12, 1602. https://doi.org/10.3390/genes12101602
Litvinov DY, Karlov GI, Divashuk MG. Metabolomics for Crop Breeding: General Considerations. Genes. 2021; 12(10):1602. https://doi.org/10.3390/genes12101602
Chicago/Turabian StyleLitvinov, Dmitry Y., Gennady I. Karlov, and Mikhail G. Divashuk. 2021. "Metabolomics for Crop Breeding: General Considerations" Genes 12, no. 10: 1602. https://doi.org/10.3390/genes12101602
APA StyleLitvinov, D. Y., Karlov, G. I., & Divashuk, M. G. (2021). Metabolomics for Crop Breeding: General Considerations. Genes, 12(10), 1602. https://doi.org/10.3390/genes12101602