miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Flow Cytometry
2.3. Data Processing
2.4. Key miRNA Determination and miRNA Target Gene Prediction
2.5. miRNA Inhibition Studies and RNA Interference
2.6. Expression Analysis of miRNA and Genes
2.7. KEGG Pathway and GO Enrichment Analysis
2.8. Construction of Recombinant Expression Vectors and the Dual-Luciferase Reporter Assay
2.9. Cell Culture
2.10. Statistical Analysis
3. Results
3.1. Identification of Co-High-Expression miRNAs of Each Spermatogenesis Stage
3.2. miR-301a-5p May Affect TGFB2 Expression in Chicken
3.3. miR-301a-5p Binds to TGFB2 Genes in Chicken
3.4. miR-301a-5p Regulates the TGFB Pathway by Directly Binding to TGFB2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
miRNA | Micro RNA |
SSCs | Spermatogonial stem cells |
Spa | Spermatogonium cells |
PGCs | Primordial germ cells |
TGFB | Transforming growth factor-β |
References
- Clermont, Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 1972, 52, 198–236. [Google Scholar] [CrossRef] [PubMed]
- Griswold, M.D. Spermatogenesis: The Commitment to Meiosis. Physiol. Rev. 2016, 96, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zheng, Y.; Gao, Y.; Lin, Z.; Yang, S.; Wang, T.; Wang, Q.; Xie, N.; Hua, R.; Liu, M.; et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 2018, 28, 879–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La, H.M.; Hobbs, R.M. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol. Life Sci. 2019, 76, 4071–4102. [Google Scholar] [CrossRef]
- Kleene, K.C. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 2013, 146, R1–R19. [Google Scholar] [CrossRef] [Green Version]
- Ohta, H.; Tohda, A.; Nishimune, Y. Proliferation and differentiation of spermatogonial stem cells in the w/wv mutant mouse testis. Biol. Reprod. 2003, 69, 1815–1821. [Google Scholar] [CrossRef] [Green Version]
- Beyret, E.; Liu, N.; Lin, H. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res. 2012, 22, 1429–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuma, S.; Nakano, T. piRNA and spermatogenesis in mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20110338. [Google Scholar] [CrossRef] [Green Version]
- Meikar, O.; Da Ros, M.; Kotaja, N. Epigenetic regulation of male germ cell differentiation. Subcell. Biochem. 2013, 61, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.; Odom, D.T.; Kutter, C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat. Commun. 2017, 8, 1411. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Xu, L.; Bi, Y.; Qiu, L.; Chen, Y.; Kong, L.; Pan, R.; Chang, G. piRNA-19128 regulates spermatogenesis by silencing of KIT in chicken. J. Cell Biochem. 2018, 119, 7998–8010. [Google Scholar] [CrossRef]
- Lombo, M.; Fernandez-Diez, C.; Gonzalez-Rojo, S.; Herraez, M.P. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: From spermatozoa to the progeny. Sci. Rep. 2019, 9, 18029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, X.; Mata, A.; Bassas, L.; Larriba, S. Altered miRNA Signature of Developing Germ-cells in Infertile Patients Relates to the Severity of Spermatogenic Failure and Persists in Spermatozoa. Sci. Rep. 2015, 5, 17991. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, X.; Guo, J.; Zhang, P.; Zeng, W. The roles of microRNAs in regulation of mammalian spermatogenesis. J. Anim. Sci. Biotechnol. 2017, 8, 35. [Google Scholar] [CrossRef]
- Xu, L.; Guo, Q.; Chang, G.; Qiu, L.; Liu, X.; Bi, Y.; Zhang, Y.; Wang, H.; Lu, W.; Ren, L.; et al. Discovery of microRNAs during early spermatogenesis in chicken. PLoS ONE 2017, 12, e0177098. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Kotaja, N. MicroRNAs and spermatogenesis. Fertil. Steril. 2014, 101, 1552–1562. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 2015, 149, R127–R137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindaraju, A.; Uzun, A.; Robertson, L.; Atli, M.O.; Kaya, A.; Topper, E.; Crate, E.A.; Padbury, J.; Perkins, A.; Memili, E. Dynamics of microRNAs in bull spermatozoa. Reprod. Biol. Endocrinol. 2012, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.B.R.; de Arruda, R.P.; De Bem, T.H.C.; Florez-Rodriguez, S.A.; Sa Filho, M.F.; Belleannee, C.; Meirelles, F.V.; da Silveira, J.C.; Perecin, F.; Celeghini, E.C.C. Sperm-borne miR-216b modulates cell proliferation during early embryo development via K-RAS. Sci. Rep. 2019, 9, 10358. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, A.; Zhou, H.; Sun, W.; Ding, R.; Li, X.; Liu, J.; Zhou, Y.; Chen, X.; Ding, F.; Yang, L.; et al. Cryopreservation Induces Alterations of miRNA and mRNA Fragment Profiles of Bull Sperm. Front. Genet. 2020, 11, 419. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Blondin, P.; Vigneault, C.; Labrecque, R.; Sirard, M.A. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genom. 2020, 21, 798. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.S.; Wright, W.W.; DiCandeloro, P.; Wilson, E.; Kopf, G.S.; Jelinsky, S.A. Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells. Proc. Natl. Acad. Sci. USA 2008, 105, 8315–8320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, Q.; Xu, S.; Xiao, Y.; Wang, Y.; Feng, C.; Xue, R.; Zhao, H.; Song, Z.; Li, J. Transcriptome Dynamics During Turbot Spermatogenesis Predicting the Potential Key Genes Regulating Male Germ Cell Proliferation and Maturation. Sci. Rep. 2018, 8, 15825. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Gao, X.; Ding, J.; Liu, C.; Du, C.; Hou, C.; Zhu, J.; Lou, B. Transcriptome Sequencing Reveals the Traits of Spermatogenesis and Testicular Development in Large Yellow Croaker (Larimichthys crocea). Genes 2019, 10, 958. [Google Scholar] [CrossRef] [Green Version]
- Ni, F.D.; Hao, S.L.; Yang, W.X. Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis. Cell Death Dis. 2019, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Linn, E.; Ghanem, L.; Bhakta, H.; Greer, C.; Avella, M. Genes Regulating Spermatogenesis and Sperm Function Associated with Rare Disorders. Front. Cell Dev. Biol. 2021, 9, 634536. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, S.; Cai, Y.; Ma, Z.; He, J.; Zhang, Q.; Deng, F.; Ye, L.; Chen, H.; He, L.; et al. Estradiol Upregulates the Expression of the TGF-beta Receptors ALK5 and BMPR2 during the Gonadal Development of Schizothorax prenanti. Animals 2021, 11, 1365. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Wang, F.; Yuan, S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front. Cell Dev. Biol. 2020, 8, 593005. [Google Scholar] [CrossRef]
- Li, M.W.; Mruk, D.D.; Cheng, C.Y. Mitogen-activated protein kinases in male reproductive function. Trends Mol. Med. 2009, 15, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Whelan, E.C.; Guan, X.; Deng, B.; Wang, S.; Sun, J.; Avarbock, M.R.; Wu, X.; Brinster, R.L. FGF9 promotes mouse spermatogonial stem cell proliferation mediated by p38 MAPK signalling. Cell Prolif. 2021, 54, e12933. [Google Scholar] [CrossRef]
- Shi, Y.; Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Chojnacka-Puchta, L.; Sawicka, D.; Lakota, P.; Plucienniczak, G.; Bednarczyk, M.; Plucienniczak, A. Obtaining chicken primordial germ cells used for gene transfer: In vitro and in vivo results. J. Appl. Genet. 2015, 56, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Conlon, A.; Aldredge, P.A. Department of health and human services changes: Implications for hospital social workers. Health Soc. Work 2013, 38, 19–27. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microrna target sites in mammalian mrnas. Elife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. Diana-microt web server v5.0: Service integration into mirna functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 409. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Kokkinaki, M.; Pant, D.; Gallicano, G.I.; Dym, M. Small RNA molecules in the regulation of spermatogenesis. Reproduction 2009, 137, 901–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhallier, F.; Allioli, N.; Lavial, F.; Chalmel, F.; Perrard, M.H.; Durand, P.; Samarut, J.; Pain, B.; Rouault, J.P. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 2010, 16, 720–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Bao, J.; Kim, M.; Yuan, S.; Tang, C.; Zheng, H.; Mastick, G.S.; Xu, C.; Yan, W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc. Natl. Acad. Sci. USA 2014, 111, E2851–E2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Xie, B.; Xiong, S.; Liang, X.; Gui, J.F.; Mei, J. miR-34a Regulates Sperm Motility in Zebrafish. Int. J. Mol. Sci. 2017, 18, 2676. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.H.; Mitchell, D.A.; McGowan, S.D.; Evanoff, R.; Griswold, M.D. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol. Reprod. 2012, 86, 72. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Huang, Y.N.; Yao, L.; Liu, Y.R.; Liu, S.; Hu, X.; Liu, Z.B.; Shao, Z.M. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Sci. Rep. 2018, 8, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, S.G.; Attali, M.; Allemand, I.; Messiaen, S.; Fouchet, P.; Coffigny, H.; Romeo, P.H.; Habert, R. TGFbeta signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev. Biol. 2010, 342, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Moraveji, S.F.; Esfandiari, F.; Taleahmad, S.; Nikeghbalian, S.; Sayahpour, F.A.; Masoudi, N.S.; Shahverdi, A.; Baharvand, H. Suppression of transforming growth factor-beta signaling enhances spermatogonial proliferation and spermatogenesis recovery following chemotherapy. Hum. Reprod. 2019, 34, 2430–2442. [Google Scholar] [CrossRef]
- Shivdasani, A.A.; Ingham, P.W. Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr. Biol. 2003, 13, 2065–2072. [Google Scholar] [CrossRef] [Green Version]
- Olaso, R.; Habert, R. Genetic and cellular analysis of male germ cell development. J. Androl. 2000, 21, 497–511. [Google Scholar]
- Gautier, C.; Levacher, C.; Saez, J.M.; Habert, R. Transforming growth factor beta1 inhibits steroidogenesis in dispersed fetal testicular cells in culture. Mol. Cell Endocrinol. 1997, 131, 21–30. [Google Scholar] [CrossRef]
- Olaso, R.; Gautier, C.; Levacher, C.; Durand, P.; Saez, J.; Habert, R. The immunohistochemical localization of transforming growth factor-beta 2 in the fetal and neonatal rat testis. Mol. Cell Endocrinol. 1997, 126, 165–172. [Google Scholar] [CrossRef]
- Gautier, C.; Levacher, C.; Avallet, O.; Vigier, M.; Rouiller-Fabre, V.; Lecerf, L.; Saez, J.; Habert, R. Immunohistochemical localization of transforming growth factor-beta 1 in the fetal and neonatal rat testis. Mol. Cell Endocrinol. 1994, 99, 55–61. [Google Scholar] [CrossRef]
Samples | Clean Reads | Effective Reads | Effective Ratio |
---|---|---|---|
PGCs | 31,361,989 | 30,851,348 | 98.37% |
Spa | 32,522,297 | 31,688,775 | 97.44% |
Sperm | 32,219,701 | 31,970,934 | 99.23% |
SSC | 31,757,666 | 31,461,002 | 99.07% |
No. | Gene Name | Primer |
---|---|---|
1 | GAPDH | Forward: GCAGATGCAGGTGCTGAGTA |
Reverse: GACACCCATCACAAACATGG | ||
2 | TGFβ2 | Forward: AAATGCCATCCCACCA |
Reverse: GCTCTATCCGCTGCTCC | ||
2 | TGFβR1 | Forward: TGCGGACAACAAAGAC |
Reverse: GCCTAACTGCCAACCC | ||
3 | TGFβR2 | Forward: GCCTACCGCACTCACA |
Reverse: TTCAATGGGCAGCAAT | ||
4 | SMAD2 | Forward: GCCATTACCACTCAGAAC |
Reverse: TTTACGATGCGACACCT | ||
5 | SMAD3 | Forward: GGCACATCGGAAGAGGA |
Reverse: GGTTTACAGACTGAGCCAAGA | ||
6 | SMAD5 | Forward: TCGCCAAACAGTCCC |
Reverse: GCAACAGGCTGAACATC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Jiang, Y.; Bai, H.; Chen, G.; Chang, G. miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes 2021, 12, 1695. https://doi.org/10.3390/genes12111695
Guo Q, Jiang Y, Bai H, Chen G, Chang G. miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes. 2021; 12(11):1695. https://doi.org/10.3390/genes12111695
Chicago/Turabian StyleGuo, Qixin, Yong Jiang, Hao Bai, Guohong Chen, and Guobin Chang. 2021. "miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis" Genes 12, no. 11: 1695. https://doi.org/10.3390/genes12111695
APA StyleGuo, Q., Jiang, Y., Bai, H., Chen, G., & Chang, G. (2021). miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes, 12(11), 1695. https://doi.org/10.3390/genes12111695