Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith–Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of BWS Registry and Data Collection Methods
2.2. Variable Terms and Description
2.3. Population Group Selection and Subgroups Defined
2.4. Statistical Analysis
2.5. Selected Case Series with Retrospective Record Review
2.6. Methodology for 11.p15 Epigenotype Profiling
3. Results
3.1. Cancer History Characteristics within the BWSp Study Population
3.1.1. Rates of Tumor Development within the 11p15 Epigenotype Populations
3.1.2. Rates of Tumor Development in Males and Females with BWSp
3.1.3. Rates of Tumor Development Associated with Assisted Reproduction and/or Multiple Gestation Pregnancies in BWSp Study Cohort
3.2. Epigenotypes, Phenotypes and Characteristics Associated with Tumor Development in BWSp Study Population
3.2.1. Tumor Phenotype Associations in Full BWS Spectrum Population
3.2.2. Tumor Phenotype Associations in BWSp Clinical Spectrum Groups
3.2.3. Phenotypes Associated with Lateralized Overgrowth and Tumor Development
3.2.4. Phenotypes Associated with Organomegaly and Tumor Development
3.2.5. Phenotypes Associated with Wilms Tumor (WT) in BWSp Population
3.2.6. Phenotypes Associated with Hepatoblastoma (HB) in BWSp Population
3.3. Tumor Phenotype Associations within BWSp (11p15) Epigenotype Population Groups
3.3.1. Tumor Phenotype Characteristics Associated with IC1 GOM (BWSp)
3.3.2. Tumor Phenotype Characteristics Associated with IC2 LOM (BWSp)
3.3.3. Tumor Phenotype Characteristics Associated with pUPD11 (BWSp)
3.3.4. Phenotype Characteristics Associated with pUPD11 and WT
3.3.5. Phenotype Characteristics Associated with pUPD11 and HB
3.3.6. Tumor Phenotype Profiles Established within pUPD11 (BWSp) Population
3.3.7. Summary of Exploratory Analyses Results–Tumor Phenotype Profiles
3.4. Selected Case Series–Emerging Patterns and Epigenotype Profiles Associated with Tumor Development in BWSp Population
3.4.1. Summary of Results from Selected Case Series
3.4.2. Epigenotype Profiles Established in Blood Samples from Patients with Tumor Development
3.4.3. Hepatoblastoma Epigenotype Profiles Associated with Mosaic IC2 LOM
3.4.4. Additional Evidence for 11p15 Tissue Mosaicism Associated with Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brioude, F.; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.; Bertoletti, M. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol. 2018, 14, 229–249. [Google Scholar] [CrossRef]
- Maas, S.M.; Vansenne, F.; Kadouch, D.J.; Ibrahim, A.; Bliek, J.; Hopman, S.; Mannens, M.M.; Merks, J.H.; Maher, E.R.; Hennekam, R.C.; et al. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am. J. Med. Genet.Part A 2016, 170, 2248–2260. [Google Scholar] [CrossRef] [Green Version]
- Mussa, A.; Russo, S.; De Crescenzo, A.; Freschi, A.; Calzari, L.; Maitz, S.; Macchiaiolo, M.; Molinatto, C.; Baldassarre, G.; Mariani, M. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 2016, 24, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Duffy, K.A.; Cielo, C.M.; Cohen, J.L.; Gonzalez-Gandolfi, C.X.; Griff, J.R.; Hathaway, E.R.; Kupa, J.; Taylor, J.A.; Wang, K.H.; Ganguly, A.; et al. Characterization of the Beckwith-Wiedemann spectrum: Diagnosis and management. Am. J. Med. Genet. C Semin. Med. Genet. 2019, 181, 693–708. [Google Scholar] [CrossRef]
- DeBaun, M.R.; Siegel, M.J. and Choyke, P.L. Nephromegaly in infancy and early childhood: A risk factor for Wilms tumor in Beckwith-Wiedemann syndrome. J. Pediatrics 1998, 132 Pt 1, 401–404. [Google Scholar] [CrossRef]
- Bliek, J.; Gicquel, C.; Maas, S.; Gaston, V.; Le Bouc, Y.; Mannens, M. Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J. Pediatrics 2004, 145, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Brioude, F.; Lacoste, A.; Netchine, I.; Vazquez, M.P.; Auber, F.; Audry, G.; Gauthier-Villars, M.; Brugieres, L.; Gicquel, C.; Le Bouc, Y. Beckwith-Wiedemann syndrome: Growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm. Res. Paediatr. 2013, 80, 457–465. [Google Scholar] [CrossRef]
- Mussa, A.; Di Candia, S.; Russo, S.; Catania, S.; De Pellegrin, M.; Di Luzio, L.; Ferrari, M.; Tortora, C.; Meazzini, M.C.; Brusati, R. Recommendations of the Scientific Committee of the Italian Beckwith-Wiedemann Syndrome Association on the diagnosis, management and follow-up of the syndrome. Eur. J. Med. Genet. 2016, 59, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Kalish, J.M.; Doros, L.; Helman, L.J.; Hennekam, R.C.; Kuiper, R.P.; Maas, S.M.; Maher, E.R.; Nichols, K.E.; Plon, S.E.; Porter, C.C. Surveillance Recommendations for Children with Overgrowth Syndromes and Predisposition to Wilms Tumors and Hepatoblastoma. Clin. Cancer Res. 2017, 23, e115–e122. [Google Scholar] [CrossRef] [Green Version]
- Mussa, A.; Duffy, K.A.; Carli, D.; Griff, J.R.; Fagiano, R.; Kupa, J.; Brodeur, G.M.; Ferrero, G.B.; Kalish, J.M. The effectiveness of Wilms tumor screening in Beckwith-Wiedemann spectrum. J. Cancer Res. Clin. Oncol. 2019, 145, 3115–3123. [Google Scholar] [CrossRef]
- Mussa, A.; Duffy, K.A.; Carli, D.; Ferrero, G.B.; Kalish, J.M. Defining an optimal time window to screen for hepatoblastoma in children with Beckwith-Wiedemann syndrome. Pediatric Blood Cancer 2019, 66, e27492. [Google Scholar] [CrossRef]
- Brzezinski, J.; Shuman, C.; Choufani, S.; Ray, P.; Stavropoulos, D.J.; Basran, R.; Steele, L.; Parkinson, N.; Grant, R.; Thorner, P. Wilms tumour in Beckwith-Wiedemann Syndrome and loss of methylation at imprinting centre 2: Revisiting tumour surveillance guidelines. Eur. J. Hum. Genet. 2017, 25, 1031–1039. [Google Scholar] [CrossRef]
- Hol, J.A.; Jongmans, M.C.J.; Sudour-Bonnange, H.; Ramirez-Villar, G.L.; Chowdhury, T.; Rechnitzer, C.; Pal, N.; Schleiermacher, G.; Karow, A.; Kuiper, R.P. Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephroblastomatosis: The 30-year SIOP-RTSG experience. Cancer 2021, 127, 628–638. [Google Scholar] [CrossRef]
- Hadzic, N.; Cho, S.J.; Finegold, M.J. Hepatoblastoma surveillance in infants born with very low birth weight: Has the time come? J. Pediatrics 2020, 216, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiala, E.M.; Ortiz, M.V.; Kennedy, J.A.; Glodzik, D.; Fleischut, M.H.; Duffy, K.A.; Hathaway, E.R.; Heaton, T.; Gerstle, J.T.; Steinherz, P. 11p15.5 epimutations in children with Wilms tumor and hepatoblastoma detected in peripheral blood. Cancer 2020, 126, 3114–3121. [Google Scholar] [CrossRef] [PubMed]
- Zivot, A.; Edelman, M.; Glick, R.; Hong, A.; Fish, J.D. Congenital Hepatoblastoma and Beckwith-Wiedemann Syndrome. J. Pediatric Hematol.Oncol. 2020, 42, e798–e800. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, J.; Shuman, C.; Choufani, S.; Ray, P.; Stavropoulos, D.J.; Basran, R.; Steele, L.; Parkinson, N.; Grant, R.; Thorner, P. Reply to Brioude et al. Eur. J. Hum. Genet. 2018, 26, 473–474. [Google Scholar] [CrossRef]
- Brioude, F.; Hennekam, R.; Bliek, J.; Coze, C.; Eggermann, T.; Ferrero, G.B.; Kratz, C.; Bouc, Y.L.; Maas, S.M.; Mackay, D.J.G. Revisiting Wilms tumour surveillance in Beckwith-Wiedemann syndrome with IC2 methylation loss, reply. Eur. J. Hum. Genet. 2018, 26, 471–472. [Google Scholar] [CrossRef]
- Bilgin, B.; Kabacam, S.; Taskiran, E.; Simsek-Kiper, P.O.; Alanay, Y.; Boduroglu, K.; Utine, G.E. Epigenotype and phenotype correlations in patients with Beckwith-Wiedemann syndrome. Turk. J. Pediatr. 2018, 60, 506–513. [Google Scholar] [CrossRef]
- Radley, J.A.; Connolly, M.; Sabir, A.; Kanani, F.; Carley, H.; Jones, R.L.; Hyder, Z.; Gompertz, L.; Reardon, W.; Richardson, R. Isolated- and Beckwith-Wiedemann syndrome related- lateralised overgrowth (hemihypertrophy): Clinical and molecular correlations in 94 individuals. Clin. Genet. 2021, 100, 292–297. [Google Scholar] [CrossRef]
- Luk, H.M. Clinical and molecular characterization of Beckwith-Wiedemann syndrome in a Chinese population. J. Pediatric Endocrinol. Metab. 2017, 30, 89–95. [Google Scholar] [CrossRef]
- Sheppard, S.E.; Lalonde, E.; Adzick, N.S.; Beck, A.E.; Bhatti, T.; De Leon, D.D.; Duffy, K.A.; Ganguly, A.; Hathaway, E.; Ji, J. Androgenetic chimerism as an etiology for Beckwith-Wiedemann syndrome: Diagnosis and management. Genet. Med. 2019, 21, 2644–2649. [Google Scholar] [CrossRef]
- Kalish, J.M.; Boodhansingh, K.E.; Bhatti, T.R.; Ganguly, A.; Conlin, L.K.; Becker, S.A.; Givler, S.; Mighion, L.; Palladino, A.A.; Adzick, N.S. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J. Med Genet. 2016, 53, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.W.; Duffy, K.A.; Richards-Yutz, J.; Deardorff, M.A.; Kalish, J.M.; Ganguly, A. Improved molecular detection of mosaicism in Beckwith-Wiedemann Syndrome. J. Med Genet. 2021, 58, 178–184. [Google Scholar] [CrossRef]
- Kalish, J.M.; Conlin, L.K.; Mostoufi-Moab, S.; Wilkens, A.B.; Mulchandani, S.; Zelley, K.; Kowalski, M.; Bhatti, T.R.; Russo, P.; Mattei, P. Bilateral pheochromocytomas, hemihyperplasia, and subtle somatic mosaicism: The importance of detecting low-level uniparental disomy. Am. J. Med Genet. Part A 2013, 161, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Duffy, K.A.; Hathaway, E.R.; Klein, S.D.; Ganguly, A.; Kalish, J.M. Epigenetic mosaicism and cell burden in Beckwith-Wiedemann Syndrome due to loss of methylation at imprinting control region 2. Cold Spring Harb. Mol. Case Stud. 2021, mcs-a006115. [Google Scholar] [CrossRef]
- MacFarland, S.P.; Duffy, K.A.; Bhatti, T.R.; Bagatell, R.; Balamuth, N.J.; Brodeur, G.M.; Ganguly, A.; Mattei, P.A.; Surrey, L.F.; Balis, F.M.; et al. Diagnosis of Beckwith-Wiedemann syndrome in children presenting with Wilms tumor. Pediatric Blood Cancer 2018, 65, e27296. [Google Scholar] [CrossRef]
- Fischer, K.M.; Mittal, S.; Long, C.J.; Duffy, K.A.; Kalish, J.M.; Evageliou, N.F.; Kolon, T.F. The following 3 cases were presented at the 2020 virtual PUOWG conferenceLate Presentation of Wilms Tumor in a Patient with Hemihypertrophy after Normal Screening. Urology 2021, 154, 271–274. [Google Scholar] [CrossRef]
- Cohen, J.L.; Duffy, K.A.; Sajorda, B.J.; Hathaway, E.R.; Gonzalez-Gandolfi, C.X.; Richards-Yutz, J.; Gunter, A.T.; Ganguly, A.; Kaplan, J.; Deardorff, M.A. Diagnosis and management of the phenotypic spectrum of twins with Beckwith-Wiedemann syndrome. Am. J. Med. Genet. Part A 2019, 179, 1139–1147. [Google Scholar] [CrossRef]
- Duffy, K.A.; Grand, K.L.; Zelley, K.; Kalish, J.M. Tumor Screening in Beckwith-Wiedemann Syndrome: Parental Perspectives. J. Genet. Couns. 2018, 27, 844–853. [Google Scholar] [CrossRef]
- Weksberg, R.; Nishikawa, J.; Caluseriu, O.; Fei, Y.L.; Shuman, C.; Wei, C.; Steele, L.; Cameron, J.; Smith, A.; Ambus, I. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum. Mol. Genet. 2001, 10, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Duffy, K.A.; Deardorff, M.A.; Kalish, J.M. The utility of alpha-fetoprotein screening in Beckwith-Wiedemann syndrome. Am. J. Med Genet. Part A 2017, 173, 581–584. [Google Scholar] [CrossRef] [Green Version]
- Mussa, A.; Molinatto, C.; Baldassarre, G.; Riberi, E.; Russo, S.; Larizza, L.; Riccio, A.; Ferrero, G.B. Cancer Risk in Beckwith-Wiedemann Syndrome: A Systematic Review and Meta-Analysis Outlining a Novel (Epi)Genotype Specific Histotype Targeted Screening Protocol. J. Pediatric 2016, 176, 142–149. [Google Scholar] [CrossRef]
- Mussa, A.; Ferrero, G.B.; Ceoloni, B.; Basso, E.; Chiesa, N.; De Crescenzo, A.; Pepe, E.; Silengo, M.; de Sanctis, L. Neonatal hepatoblastoma in a newborn with severe phenotype of Beckwith-Wiedemann syndrome. Eur. J. Pediatric 2011, 170, 1407. [Google Scholar] [CrossRef]
- Smith, A.C.; Shuman, C.; Chitayat, D.; Steele, L.; Ray, P.N.; Bourgeois, J.; Weksberg, R. Severe presentation of Beckwith-Wiedemann syndrome associated with high levels of constitutional paternal uniparental disomy for chromosome 11p15. Am. J. Med Genet. Part A 2007, 143, 3010–3015. [Google Scholar] [CrossRef]
- Boklage, C.E. Embryogenesis of chimeras, twins and anterior midline asymmetries. Hum. Reprod. 2006, 21, 579–591. [Google Scholar] [CrossRef]
- Bliek, J.; Alders, M.; Maas, S.M.; Oostra, R.J.; Mackay, D.M.; van der Lip, K.; Callaway, J.L.; Brooks, A.; van ’t Padje, S.; Westerveld, A. Lessons from BWS twins: Complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur. J. Hum. Genet. 2009, 17, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Bedeschi, M.F.; Cagnoli, G.A.; Costanza, J.; Persico, N.; Gangi, S.; Porro, M.; Ajmone, P.F.; Colapietro, P.; Santaniello, C. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol. Genet. Genom. Med. 2020, 8, e1386. [Google Scholar] [CrossRef]
- Sun, F.; Hara, S.; Tomita, C.; Tanoue, Y.; Yatsuki, H.; Higashimoto, K.; Soejima, H. Phenotypically concordant but epigenetically discordant monozygotic dichorionic diamniotic twins with Beckwith-Wiedemann syndrome. Am. J. Med Genet. Part A 2021, 185, 3062–3067. [Google Scholar] [CrossRef]
- Abbasi, N.; Moore, A.; Chiu, P.; Ryan, G.; Weksberg, R.; Shuman, C.; Steele, L.; Chitayat, D. Prenatally diagnosed omphaloceles: Report of 92 cases and association with Beckwith-Wiedemann syndrome. Prenat. Diagn. 2021, 41, 798–816. [Google Scholar] [CrossRef]
- Carli, D.; Bertola, C.; Cardaropoli, S.; Ciuffreda, V.P.; Pieretto, M.; Ferrero, G.B.; Mussa, A. Prenatal features in Beckwith-Wiedemann syndrome and indications for prenatal testing. J. Med. Genet. 2020, 107311. [Google Scholar] [CrossRef]
- Pan, P.; Luo, G.; Tang, L.; Rolle, J.D.; Qin, Y.; Zeng, Q.; Wei, J.; Chen, Y.; Wei, H. Monochorionic-Triamniotic Triplet Pregnancy Complicated by Twin Reversed Arterial Perfusion Sequence: Case Report and Literature Review. Am. J. Perinatol. Rep. 2017, 7, e106–e110. [Google Scholar]
- Spector, L.G.; Birch, J. The epidemiology of hepatoblastoma. Pediatric Blood Cancer 2012, 59, 776–779. [Google Scholar] [CrossRef]
- Marcotte, E.L.; Schraw, J.M.; Desrosiers, T.A.; Nembhard, W.N.; Langlois, P.H.; Canfield, M.A.; Meyer, R.E.; Plon, S.E.; Lupo, P.J. Male Sex and the Risk of Childhood Cancer: The Mediating Effect of Birth Defects. JNCI Cancer Spectr. 2020, 4, pkaa052. [Google Scholar] [CrossRef]
- Skinner, M.K. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biol. Evol. 2015, 7, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Ghurburrun, E.; Borbath, I.; Lemaigre, F.P.; Jacquemin, P. Liver and Pancreas: Do Similar Embryonic Development and Tissue Organization Lead to Similar Mechanisms of Tumorigenesis? Gene Expr. 2018, 18, 149–155. [Google Scholar] [CrossRef]
- Meivar-Levy, I.; Ferber, S. Liver to Pancreas Transdifferentiation. Curr. Diabetes Rep. 2019, 19, 76. [Google Scholar] [CrossRef]
- Christesen, H.T.; Christensen, L.G.; Lofgren, A.M.; Brondum-Nielsen, K.; Svensson, J.; Brusgaard, K.; Samuelsson, S.; Elfving, M.; Jonson, T.; Gronskov, K. Tissue variations of mosaic genome-wide paternal uniparental disomy and phenotype of multi-syndromal congenital hyperinsulinism. Eur. J. Med. Genet. 2020, 63, 103632. [Google Scholar] [CrossRef]
- Uppal, S.; Blackburn, J.; Didi, M.; Shukla, R.; Hayden, J.; Senniappan, S. Hepatoblastoma and Wilms’ tumour in an infant with Beckwith-Wiedemann syndrome and diazoxide resistant congenital hyperinsulinism. Endocrinol. Diabetes Metab. Case Rep. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Urzua, A.; Burattini, S.; Pinochet, C.; Benavides, F.; Repetto, G.M. Somatic Mosaicism for Paternal Uniparental Disomy of 11p15.5 Region in Adrenal and Liver Tissues in a Newborn with Atypical Beckwith-Wiedemann Syndrome. J. Pediatric Genet. 2019, 8, 226–230. [Google Scholar]
- Dejkhamron, P.; Unachak, K.; Thanarattanakorn, P.; Charoenkwan, P.; Tantiprabha, W.; Chotinaruemol, S.; Chaiwun, B. Persistent hyperinsulinemic hypoglycemia of infancy associated with congenital neuroblastoma: A case report. J. Med. Assoc. Thai. 2010, 93, 745–748. [Google Scholar] [PubMed]
- Kalish, J.M.; Deardorff, M.A. Tumor screening in Beckwith-Wiedemann syndrome-To screen or not to screen? Am. J. Med. Genet. Part A 2016, 170, 22614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics and Subgroups | BWSp-ICG Data 1 | BWSp Cohort Population | |||
---|---|---|---|---|---|
Study Cohort | Cancer/Tumor Type | Published Rates (%) | Expected (n) | Observed (n) | BWSp Rate (%) |
BWSp Population Rate (n = 215 individuals) | Overall Rate | ~8% | 17.2 | 43 | 20.0% |
Tumor Distributions (n = 46 tumors) | Wilms Tumor (WT) | 52% of all | 22.4 | 29 | 63.0% |
Hepatoblastoma (HB) | 14% of all | 6.0 | 12 | 26.1% | |
Neuroblastoma | 10% of all 2 | 4.3 | 2 | 4.4% | |
Other types | <5% of all | <2.2 | 3 | 6.5% | |
BWSp (epi)Genotype Groups | Cancer/Tumor Type | Assigned Risk (%) | Expected (n) | Observed (n) | Tumor Rate (%) |
IC2 LOM Population (n = 112 individuals) | Overall Rate | 2.6% | 2.9 | 5 | 4.5% |
Wilms Tumor (WT) | 0.2% | 0.2 | 2 | 1.8% | |
Hepatoblastoma (HB) | 0.7% | 0.8 | 2 | 1.8% | |
Neuroblastoma | 0.5% | 0.6 | 1 | 0.9% | |
pUPD11 Population (n = 73 individuals) | Overall Rate | 16.0% | 11.7 | 22 | 30.1% |
Wilms Tumor (WT) | 7.9% | 5.8 | 11 | 15.1% | |
Hepatoblastoma (HB) | 3.5% | 2.6 | 9 | 12.3% | |
Neuroblastoma | 1.4% | 1.0 | 1 | 1.4% | |
Other types | ~1% | 0.8 | 1 | 1.4% | |
IC1 GOM Population (n = 30 individuals) | Overall Rate | 28.1% | 8.4 | 16 | 53.3% |
Wilms Tumor (WT) | 24.0% | 7.2 | 16 | 53.3% | |
Other types | <2% | 0.1 | 0 | 0% |
Tumor Type | Population Male:Female | Tumor Male:Female | No Tumor Male:Female |
---|---|---|---|
Tumors (all) | |||
Study Cohort (n = 215) | 0.81 (96:119) | 0.59 (16:27) | 0.87 (80:92) |
pUPD11 (n = 73) | 0.83 (33:40) | 0.69 (9:13) | 0.89 (24:27) |
IC2 LOM (n = 112) | 0.84 (51:61) | 0.67 (2:3) | 0.85 (49:58) |
Wilms Tumor (WT) | |||
Study Cohort (n = 201) | 0.81 (90:111) | 0.53 (10:19) | 0.87 (80:92) |
pUPD11 (n = 62) | 0.88 (29:33) | 0.83 (5:6) | 0.89 (24:27) |
IC1 GOM (n = 30) | 0.67 (12:18) | 0.45 (5:11) | 1.00 (7:7) |
IC2 LOM (n = 109) | 0.82 (49:60) | 0:2 | 0.85 (49:58) |
Hepatoblastoma (HB) | |||
Study Cohort (n = 183) | 0.87 (85:98) | 0.83 (5:6) | 0.87 (80:92) |
pUPD11 (n = 60) | 0.81 (27:33) | 0.50 (3:6) | 0.89 (24:27) |
IC2 LOM (n = 109) | 0.88 (51:58) | 2:0 | 0.85 (49:58) |
Population Group | Total (n) | No Tumor (n) | Tumor (n) | Tumor Rate % | Tumor Types |
---|---|---|---|---|---|
BWSp Population | 215 | 172 | 43 | 20.0% | 29 WT, 11 HB, 2 NBL, 3 other |
ART Conception 1 | Tumor Types | ||||
IC2 LOM | 34 | 32 | 2 | 5.9% | 1 HB, 1 WT |
pUPD11 | 3 | 3 | 0 | 0% | - |
IC1 GOM | 3 | 1 | 2 | 66.7% | 2 WT |
BWSp Cohort | 40 | 36 | 4 | 10.0% | 3 WT, 1 HB |
Multiple Gestation | Tumor Types | ||||
IC2 LOM | 22 | 19 | 3 | 13.6% | 1 HB *, 1 WT *, 1 NBL |
pUPD11 | 6 | 5 | 1 | 16.7% | 1 HB 1 |
IC1 GOM | 3 | 2 | 1 | 33.3% | 1 WT * |
BWSp Cohort | 31 | 26 | 5 | 16.1% | 2 WT, 2 HB, 1 NBL |
Tumors in Multiple Gestation by Conception | 31 | 26 | 5 | 16.1% | ART 2: 2 WT, 1 HB NAT: 1 HB, 1 NBL |
Phenotype Feature | Characteristic | Total (n = 215) | No Tumor (n = 172) | Tumor (n = 43) | p-Value |
---|---|---|---|---|---|
Conception Type | Natural | 80.0% | 77.4% | 90.2% | 0.066 1 |
IVF/ICSI | 19.0% | 22.0% 1 | 7.3% 1 | ||
Other ART | 14.8% | 0.6% | 2.4% | ||
Prenatal and Birth | Multiple gestation | 15.1% | 16.0% | 11.9% | 0.633 |
ICG-Pregnancy | 34.4% | 36.4% | 26.3% | 0.259 | |
Preterm Birth | 40.9% | 40.5% | 42.5% | 0.859 | |
Large for GA | 63.5% | 63.6% | 63.2% | 1.000 | |
Common BWSp Features | Macroglossia | 71.8% | 77.8% | 47.6% | <0.001 *** |
BWSp-LO | 73.8% | 72.0% | 81.0% | 0.325 | |
Facial Nevus Simplex | 51.0% | 58.5% | 20.5% | <0.001 *** | |
Ear creases/pits | 62.2% | 67.1% | 42.1% | 0.005 ** | |
Hypoglycemia | Overall Rate | 60.1% | 64.2% | 43.9% | 0.021 * |
Severe (HI) | 20.9% | 21.4% | 18.6% | 0.834 | |
Transient | 38.4% | 42.0% | 24.4% | 0.048 * | |
Abdominal Wall Defects (AWD) | Overall Rate | 70.1% | 75.0% | 50.0% | 0.003 ** |
Omphalocele | 24.1% | 26.6% | 14.0% | 0.109 | |
Minor Defect | 45.1% | 47.6% | 35.0% | 0.162 | |
Organomegaly | Overall Rate | 33.7% | 31.6% | 41.5% | 0.267 |
Nephromegaly | 19.6% | 16.8% | 30.0% | 0.074 | |
Hepatomegaly | 19.8% | 19.6% | 20.5% | 1.000 | |
Splenomegaly | 14.5% | 13.6% | 17.9% | 0.456 | |
Source of BWSp Diagnosis | Blood + | 82.5% | 87.2% | 64.3% | 0.001 ** |
Characteristic Present | No Tumor (n = 124) | Tumor (n = 20) | p-Value | |
% (observed) | % (observed) | |||
Classic BWS Phenotype Population (n = 144) | Molecular Testing (+ Blood) | 97.4% (113) | 100% (20) | 1.000 |
Preterm Birth | 47.5% (57) | 80.0% (16) | 0.008 ** | |
Macroglossia | 93.5% (116) | 95.0% (19) | 1.000 | |
BWSp-LO | 72.3% (86) | 75.0% (15) | 1.000 | |
Abdominal Wall Defect | 87.5% (105) | 75.0% (15) | 0.166 | |
Hypoglycemia (any) | 68.3% (82) | 70.0% (14) | 1.000 | |
Facial Nevus Simplex (FNS) | 69.2% (81) | 38.9% (7) | 0.017 * | |
Organomegaly | 38.3% (44) | 65.0% (13) | 0.030 * | |
Nephromegaly | 21.1% (23) | 52.6% (10) | 0.008 ** | |
Hepatomegaly | 24.1% (26) | 33.3% (6) | 0.394 | |
Characteristic Present | No Tumor (n = 40) | Tumor (n = 22) | p-Value | |
Atypical BWSp/ BWSp-ILO Phenotypes Population (n = 62) | Molecular Testing (+ Blood) | 55.0% (22) | 28.6% (6) | 0.062 1 |
Preterm Birth | 23.1% (9) | 5.0% (1) | 0.141 | |
Macroglossia | 27.5% (11) | 4.5% (1) | 0.042 * | |
BWSp-LO | 72.5% (29) | 85.7% (18) | 0.342 | |
Abdominal Wall Defect | 37.5% (15) | 25.0% (5) | 0.395 | |
Hypoglycemia (any) | 51.3% (20) | 19.0% (4) | 0.026 * | |
Severe (HI) | 35.0% (14) | 4.5% (1) | 0.011* | |
Transient | 15.4% (6) | 14.3% (3) | 1.000 | |
Organomegaly | 13.2% (5) | 9.5% (2) | 0.708 | |
Nephromegaly | 5.3% (2) | 9.5% (2) | 0.611 | |
Hepatomegaly | 8.0% (3) | 9.5% (2) | 1.000 |
Lateralized Overgrowth (LO) Population Phenotypes | BWSp-LO Group Total (n = 152) | BWSp-LO No Tumor (n = 118) | BWSp-LO Tumor (n = 34) | p-Value |
---|---|---|---|---|
BWSp Subtypes | <0.001 *** | |||
IC1 GOM | 13.8% (21) | 8.5% (10) | 32.4% (11) | |
pUPD11 | 45.4% (69) | 40.7% (48) | 61.8% (21) | |
IC2 LOM | 40.8% (62) | 50.8% (60) | 5.9% (2) | |
Molecular Testing (+ Blood) | 77.7% (115) | 84.2% (96) | 55.9% (19) | 0.002 ** |
Macroglossia | 64.9% (98) | 71.2% (84) | 42.4% (14) | 0.004 ** |
Facial Nevus Simplex | 47.6% (68) | 55.0% (61) | 21.9% (7) | 0.001 ** |
AWD (any) | 63.9% (92) | 70.5% (79) | 40.6% (13) | 0.003 ** |
Omphalocele | 18.0% (27) | 19.0% (22) | 15.6% (5) | 0.800 |
Minor defect | 45.1% (65) | 50.9% (57) | 25.0% (8) | 0.015 * |
Hypoglycemia (any) | 63.4% (92) | 69.0% (78) | 43.8% (14) | 0.012 * |
Severe (HI) | 0.819 | |||
Transient | 38.6% (56) | 43.4% (49) | 21.9% (7) | 0.039 * |
Organomegaly Population Phenotypes | Organomegaly Group Total | Organomegaly No Tumor | Organomegaly Tumor | p-Value |
---|---|---|---|---|
(n = 66) | (n = 49) | (n = 17) | ||
Male sex | 53.0% (35) | 63.3% (31) | 23.5% (4) | 0.010 * |
Diversity groups | 0.043 * | |||
‘White/Caucasian’ only | 63.5% (40) | 71.7% (33) | 41.2% (7) | 1 |
‘Mixed’ race/ethnicity | 17.5% (11) | 10.9% (5) | 35.3% (6) | 1 |
‘Other’ race/ethnicity | 19.0% (12) | 17.4% (8) | 23.5% (4) | |
Specific Organs Affected | ||||
Nephromegaly | 62.7% (37) | 58.1% (25) | 75.0% (12) | 0.365 |
Hepatomegaly | 64.9% (37) | 69.1% (29) | 53.3% (8) | 0.349 |
Splenomegaly | 33.9% (19) | 36.6% (15) | 26.7% (4) | 0.543 |
Characteristic | No Tumor (n = 172) | BWSp-WT (n = 29) | p-Value |
---|---|---|---|
Blood + | 87.2% (143) | 53.6% (15) | <0.001 *** |
Conception Type | 0.081 1 | ||
Natural | 77.4% (123) | 89.3% (25) | |
IVF/ICSI | 22.0% (35) | 7.1% (2) | |
Other ART | 0.6% (1) | 3.6% (1) | |
BWSp Features | |||
Macroglossia | 77.8% (133) | 34.5% (10) | <0.001 *** |
BWSp-LO | 72.0% (118) | 75.0% (21) | 0.823 |
Ear creases/pits | 67.1% (104) | 26.9% (7) | <0.001 *** |
Facial Nevus Simplex | 58.5% (93) | 14.8% (4) | <0.001 *** |
Organomegaly | 31.6% (49) | 26.9% (10) | 0.666 |
Nephromegaly | 16.8% (25) | 25.9% (7) | 0.280 |
Hepatomegaly | 19.6% (29) | 22.2% (6) | 0.795 |
Hypoglycemia (any) | 64.2% (104) | 35.7% (10) | 0.006 ** |
Severe (HI) | 21.4% (36) | 3.4% (1) | 0.020 * |
Transient | 42.0% (68) | 32.1% (9) | 0.406 |
AWD (any) | 75.0% (123) | 33.3% (9) | <0.001 *** |
Omphalocele | 26.6% (45) | 0/29 | <0.001 *** |
Minor Defect | 47.6% (78) | 33.3% (9) | 0.212 |
Characteristic | No Tumor (n = 172) | BWSp-HB (n = 11) | p-Value |
---|---|---|---|
Blood + | 87.2% (143) | 100% (11) | 0.365 |
Preterm Birth | 40.5% (66) | 80.0% (8) | 0.020 * |
Large Size (LGA) | 63.6% (105) | 88.9% (8) | 0.163 |
BWSp Features | |||
Macroglossia | 77.8% (133) | 90.0% (9) | 0.692 |
BWSp-LO | 72.0% (118) | 100% (11) | 0.069 1 |
Ear creases/pits | 67.1% (104) | 100% (9) | 0.058 1 |
Organomegaly | 31.6% (49) | 60.0% (6) | 0.085 |
Nephromegaly | 16.8% (25) | 40.0% (4) | 0.085 |
Hepatomegaly | 19.6% (29) | 22.2% (2) | 1.000 |
Hypoglycemia (any) | 64.2% (104) | 70.0% (7) | 1.000 |
Severe (HI) | 21.4% (36) | 54.5% (6) | 0.022 * |
Transient | 42.0% (68) | 10.0% (1) | 0.052 1 |
Abdominal Wall Defect | 75.0% (123) | 90.0% (9) | 0.454 |
Omphalocele | 26.6% (45) | 54.5% (5) | 0.182 |
Minor Defect | 47.6% (78) | 40.0% (4) | 0.751 |
pUPD11 Characteristics | pUPD11 No Tumor (n = 51) | pUPD11-WT (n = 11) | p-Value |
---|---|---|---|
Blood + | 63.3% (31) | 36.4% (4) | 0.174 |
Preterm Birth | 22.9% (11) | 10.0% (1) | 0.670 |
BWSp Features | |||
Macroglossia | 40.0% (20) | 18.2% (2) | 0.299 |
BWSp-LO | 96.0% (48) | 90.9% (10) | 0.455 |
Facial Nevus Simplex | 35.4% (17) | 0/11 | 0.024 * |
Hypoglycemia (any) | 81.6% (40) | 30.0% (3) | 0.002 ** |
Severe (HI) | 42.9% (21) | 9.1% (1) | 0.043 * |
Transient | 38.8% (19) | 20.0% (2) | 0.470 |
Organomegaly | 28.3% (13) | 27.3% (3) | 1.000 |
Nephromegaly | 13.3% (6) | 27.3% (3) | 0.358 |
Hepatomegaly | 24.4% (11) | 18.2% (2) | 1.000 |
Splenomegaly | 13.3% (6) | 36.4% (4) | 0.093 |
Abdominal Wall Defect | 57.1% (28) | 18.2% (2) | 0.042 * |
Omphalocele | 4.2% (2) | 0/11 | 1.000 |
Minor defect | 53.1% (26) | 18.2% (2) | 0.048 * |
pUPD11 Characteristics | pUPD11 No Tumor (n = 51) | pUPD11-HB (n = 9) | p-Value |
---|---|---|---|
Blood + | 63.3% (31) | 100% (9) | 0.045 * |
Preterm Birth | 22.9% (11) | 75.0% (6) | 0.007 ** |
BWSp Features | |||
Macroglossia | 40.0% (20) | 87.5% (7) | 0.020 * |
BWSp-LO | 96.0% (48) | 100% (9) | 1.000 |
Ear creases/pits | 46.8% (22) | 100% (7/7) | 0.012 * |
Hypoglycemia (any) | 81.6% (40) | 62.5% (5) | 0.345 |
Severe (HI) | 42.9% (21) | 55.6% (5) | 0.717 |
Transient | 38.8% (19) | 0/8 | 0.042 * |
Organomegaly | 28.3% (13) | 75.0% (6) | 0.017 * |
Nephromegaly | 13.3% (6) | 50.0% (4) | 0.033 * |
Hepatomegaly | 24.4% (11) | 28.6% (2) | 1.000 |
Abdominal Wall Defect | 57.1% (28) | 87.5% (7) | 0.134 |
Omphalocele | 4.2% (2) | 33.3% (3) | 0.024 * |
Minor defect | 53.1% (26) | 50.0% (4) | 1.000 |
Blood Profile Established | Patient (Sex) | 11p15 Epigenotype Profile | BWSp Phenotype and Tumor Profiles | ||||
---|---|---|---|---|---|---|---|
IC2 % | IC1 % | Affected Cell Fraction | Phe-Score and Group | Tumor Type | BWSp Dx + Screening | ||
IC2 LOM (Normal IC1) | #01 (Male) 1 | 0.05% (+) | 48.16% (N) | 99.90% | 14 (Severe) | HB | + |
#02 (Male) | 0.99% (+) | 53.70% (N) | 98.02% | 10 (Severe) | HB (recur) | + | |
#03 (Female) 1 | 23.75% (+) | 49.42% (N) | 52.50% | 8 (Classic) | NBL | + | |
#04 (Female) | 27.12% (+) | 50.41% (N) | 45.76% | 6 (Atypical) | HB | + | |
#05 (Female) | 33.89% (+) | 49.60% (N) | 32.22% | 1 (UH) | WT | - | |
#06 (Male) 1 | 40.44% (+) | (N) | 19.12% | No Features | HB | - | |
IC2 LOM + IC1 GOM (pUPD11) | #07 (Female) | 13.06% (+) | 80.39% (+) | 67.33% | 11 (Severe) | HB (+PBL) | + |
#08 (Female) | 16.87% (+) | 80.27% (+) | 63.40% | 11 (Severe) | HB (x2) | + | |
#09 (Male) | 33.52% (+) | 72.66% (+) | 37.14% | 11 (Severe) | HB | + | |
#10 (Male) | 36.99% (+) | 61.33% (+) | 24.34% | 9 (Classic) | HB | + | |
#11 (Female) | 41.03% (+) | 59.74% (+) | 18.71% | LO | HB | Adult Dx | |
#12 (Female) | 46.04% (+) | 58.22% (+) | 12.18% | 9 (Classic) | HB | C | |
IC1 GOM (Normal IC2) | #13 (Female) | 49.60% (N) | 68.97% (+) | 37.94% | 8 (Classic) | Bilat Nephr | + |
#14 (Female) 1 | (N) | 56.28% (+) | 12.56% | None (+IVF) | WT | - | |
#15 (Female) 1 | (N) | 56.23% (+) | 12.46% | LO | HB | - | |
Normal Methylation | #16 (Female) | 49.96% (N) | 48.10% (N) | <3% (N) | 4 (Atypical/ILO) | HB | - |
#17 (Male) 1 | 48.52% (N) | 52.33% (N) | <3% (N) | 4 (Atypical/ILO) | WT | - |
Patient ID | Sample Type | BWSp Epigenotype Profile Established | ||||
---|---|---|---|---|---|---|
IC2 % | IC1 % | 11p15 Copy Number 1 | 11p15 DMR Influence | Affected Cell Fraction | ||
Patient #01 (Male) | Blood | 0.05% (+) | 48.16% (N) | (N) | IC2 | 99.90% |
Liver (normal) | 2.70% (+) | 50.24% (N) | - | IC2 | 94.60% | |
HB Tumor | 0.91% (+) | 47.86% (N) | - | IC2 | 98.18% | |
Placenta | 30.32% (+) | 47.05% (N) | - | IC2 | 39.36% | |
Mother | Saliva | 48.88% (N) | 47.90% (N) | - | No 11p15 | <3% |
Patient #04 (Female) | Blood | 27.12% (+) | 50.41% (N) | (N) | IC2 | 45.76% |
Liver (normal) | 24.00% (+) | 62.02% (+) | (N) | IC2 + IC1 | 38.02% | |
HB Tumor | 13.65% (+) | 57.84% (+) | (N) | IC2 + IC1 | 44.19% | |
Patient #18 (Female) | Blood | Hypo | (N) | (N) | IC2 | Cannot Assess 2 |
Liver (normal) | 15.67% | 51.81% | - | IC2 | 68.66% | |
HB Tumor | 25.13% | 52.19% | - | IC2 | 49.74% | |
Patient #16 (Female) | Blood | 49.96% (N) | 48.10% (N) | (N) | No 11p15 | <3% |
HB Tumor | 13.32% (+) | 51.32% (N) | (N) | IC2 | 49.74% | |
Patient #06 (Male) | Blood | 40.44% (+) | (N) | (N) | IC2 | 19.12% |
HB Tumor | 7.12% (+) | 80.42% (+) | (N) | IC2 + IC1 | 73.30% | |
Familial Testing | Mother | 36.81% (+) | (N) | (N) | IC2 | 26.38% |
Mat GDM | (N) | (N) | - | No 11p15 | <3% | |
Mat GDF | (N) | (N) | - | No 11p15 | <3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffy, K.A.; Getz, K.D.; Hathaway, E.R.; Byrne, M.E.; MacFarland, S.P.; Kalish, J.M. Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith–Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes 2021, 12, 1839. https://doi.org/10.3390/genes12111839
Duffy KA, Getz KD, Hathaway ER, Byrne ME, MacFarland SP, Kalish JM. Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith–Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes. 2021; 12(11):1839. https://doi.org/10.3390/genes12111839
Chicago/Turabian StyleDuffy, Kelly A., Kelly D. Getz, Evan R. Hathaway, Mallory E. Byrne, Suzanne P. MacFarland, and Jennifer M. Kalish. 2021. "Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith–Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population" Genes 12, no. 11: 1839. https://doi.org/10.3390/genes12111839
APA StyleDuffy, K. A., Getz, K. D., Hathaway, E. R., Byrne, M. E., MacFarland, S. P., & Kalish, J. M. (2021). Characteristics Associated with Tumor Development in Individuals Diagnosed with Beckwith–Wiedemann Spectrum: Novel Tumor-(epi)Genotype-Phenotype Associations in the BWSp Population. Genes, 12(11), 1839. https://doi.org/10.3390/genes12111839