Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Pathogenic Agents
2.2. Platelet Immunophenotyping (Platelet Activation)
2.3. Real-Time Polymerase Chain Reaction
2.4. Statistical Analysis
3. Results
3.1. Types of Sepsis
3.2. Sepsis Etiology
3.3. Platelet Immunophenotyping (Platelet Activation)
3.4. Real-Time Expression of miRNAs miR-127 and miR-320a in Platelets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gudiol, C.; Albasanz-Puig, A.; Cuervo, G.; Carratalà, J. Understanding and Managing Sepsis in Patients with Cancer in the Era of Antimicrobial Resistance. Front. Med. 2021, 8, 361. [Google Scholar] [CrossRef]
- Johansson, D.; Rasmussen, M.; Inghammar, M. Thrombocytopenia in bacteraemia and association with bacterial species. Epidemiol. Infect. 2018, 146, 1312–1317. [Google Scholar] [CrossRef] [Green Version]
- Bryckaert, M.; Rosa, J.P.; Denis, C.V.; Lenting, P.J. Of von Willebrand factor and platelets. Cell. Mol. Life Sci. 2015, 72, 307. [Google Scholar] [CrossRef] [Green Version]
- Ghezelbash, B.; Amini Kafiabad, S.; Hojjati, M.T.; Hamidpoor, M.; Vaeli, S.; Tabtabae, M.R.; Gharehbaghian, A. In vitro assessment of platelet lesions during 5-day storage in Iranian Blood Transfusion Organization (IBTO) centers. Arch. Iran. Med. 2015, 18, 114–116. [Google Scholar]
- Morel, A.; Rywaniak, J.; Bijak, M.; Miller, E.; Niwald, M.; Saluk, J. Flow cytometric analysis reveals the high levels of platelet activation parameters in circulation of multiple sclerosis patients. Mol. Cell. Biochem. 2017, 430, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, S.; Ravi, S.; Budhathoki, R.; Arjyal, L.; Hamal, S.; Bista, A.; Khadka, S.; Uprety, D. Current understanding and future implications of sepsis-induced thrombocytopenia. Eur. J. Haematol. 2021, 106, 301–305. [Google Scholar] [CrossRef]
- Dangwal, S.; Thum, T. MicroRNAs in platelet biogenesis and function. Thromb. Haemost. 2012, 108, 599–604. [Google Scholar] [CrossRef]
- Pontes, T.B.; Moreira-Nunes, C.D.F.A.; Maués, J.H.D.S.; Lamarão, L.M.; De Lemos, J.A.R.; Montenegro, R.C.; Burbano, R.M.R. The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage. PLoS ONE 2015, 10, e0129399. [Google Scholar] [CrossRef]
- Da Maués, J.H.S.; de Aquino Moreira-Nunes, C.F.; Rodriguez Burbano, R.M. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review. Cells 2019, 8, 1256. [Google Scholar] [CrossRef] [Green Version]
- Da Maués, J.H.S.; de Moreira-Nunes, C.F.A.; Burbano, R.M.R. Computational Identification and Characterization of New microRNAs in Human Platelets Stored in a Blood Bank. Biomolecules 2020, 10, 1173. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.J.; Choi, J.H.; Kim, S.Y.; Kim, K.S.; Kim, Y.R.; Kang, S.H. An Assay of measuring platelet reactivity using monoclonal antibody against activated platelet glycoprotein IIb/IIIa in patients taking clopidogrel. Korean Circ. J. 2015, 45, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Barrionuevo, N.; Gatica, S.; Olivares, P.; Cabello-Verrugio, C.; Simon, F. Endothelial Cells Exhibit Two Waves of P-selectin Surface Aggregation under Endotoxic and Oxidative Conditions. Protein J. 2019, 38, 667–674. [Google Scholar] [CrossRef]
- Duman, A.; Turkdogan, K.A.; Avcil, M.; Yenisey, C.; Ture, M.; Akoz, A.; Dagli, B.; Kapci, M.; Orun, S. The Predictive Value of the Inflammatory Markers P-Selectin and MCP1 in Determining the Length of Stay and 30-Day Survival in the Differentiation of Sepsis Patients. Available online: https://pubmed.ncbi.nlm.nih.gov/30317258/ (accessed on 4 October 2021).
- De Stoppelaar, S.F.; Van Veer, C.; Van der Poll, T. The role of platelets in sepsis. Thromb. Haemost. 2014, 112, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsirigotis, P.; Chondropoulos, S.; Frantzeskaki, F.; Stamouli, M.; Gkirkas, K.; Bartzeliotou, A.; Papanikolaou, N.; Atta, M.; Papassotiriou, I.; Dimitriadis, G.; et al. Thrombocytopenia in critically ill patients with severe sepsis/septic shock: Prognostic value and association with a distinct serum cytokine profile. J. Crit. Care 2016, 32, 9–15. [Google Scholar] [CrossRef]
- Mangalesh, S.; Dudani, S.; Malik, A. Platelet Indices and Their Kinetics Predict Mortality in Patients of Sepsis. Indian J. Hematol. Blood Transfus. 2021, 37, 600–608. [Google Scholar] [CrossRef]
- Schuetz, P.; Birkhahn, R.; Sherwin, R.; Jones, A.E.; Singer, A.; Kline, J.A.; Runyon, M.S.; Self, W.H.; Courtney, D.M.; Nowak, R.M.; et al. Serial Procalcitonin Predicts Mortality in Severe Sepsis Patients: Results From the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study. Crit. Care Med. 2017, 45, 781. [Google Scholar] [CrossRef]
- Rau, B.; Krüger, C.M.; Schilling, M.K. Procalcitonin: Improved biochemical severity stratification and postoperative monitoring in severe abdominal inflammation and sepsis. Langenbeck’s Arch. Surg. 2004, 389, 134–144. [Google Scholar] [CrossRef]
- D’Onofrio, V.; Salimans, L.; Bedenić, B.; Cartuyvels, R.; Barišić, I.; Gyssens, I.C. The clinical impact of rapid molecular microbiological diagnostics for pathogen and resistance gene identification in patients with sepsis: A systematic review. Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef]
- Dib, P.R.B.; Quirino-Teixeira, A.C.; Merij, L.B.; Pinheiro, M.B.M.; Rozini, S.V.; Andrade, F.B.; Hottz, E.D. Innate immune receptors in platelets and platelet-leukocyte interactions. J. Leukoc. Biol. 2020, 108, 1157–1182. [Google Scholar] [CrossRef]
- Liverani, E.; Rico, M.C.; Tsygankov, A.Y.; Kilpatrick, L.E.; Kunapuli, S.P. P2Y12 receptor modulates sepsis-induced inflammation. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.R.; Outteridge, S.N.; Ajjan, R.A.; Phoenix, F.; Sangha, G.K.; Faulkner, R.E.; Ecob, R.; Judge, H.M.; Khan, H.; West, L.E.; et al. Platelet P2Y12 Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2562–2570. [Google Scholar] [CrossRef] [Green Version]
- Rinder, H.M.; Bonan, J.L.; Napychank, P.A.; Malkus, H.; Smith, B.R. Activation in stored platelet concentrates: Correlation between membrane expression of P-selectin, glycoprotein IIb/IIIa, and beta- thromboglobulin release. Transfusion 1993, 33, 25–29. [Google Scholar] [CrossRef]
- Reikvam, H.; Marschner, S.; Apelseth, T.O.; Goodrich, R.; Hervig, T. The Mirasol® Pathogen Reduction Technology system and quality of platelets stored in platelet additive solution. Blood Transfus. 2010, 8, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Ohto, H.; Nollet, K.E. Overview on platelet preservation: Better controls over storage lesion. Transfus. Apher. Sci. 2011, 44, 321–325. [Google Scholar] [CrossRef]
- Vucic, M.; Stanojkovic, Z.; Antic, A.; Vucic, J.; Pavlovic, V. Evaluation of platelet activation in leukocyte-depleted platelet concentrates during storage. Bosn. J. Basic Med. Sci. 2018, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.; Konishi, A.; Nomura, S. Examination of biomarker expressions in sepsis-related DIC patients. Int. J. Gen. Med. 2018, 11, 353. [Google Scholar] [CrossRef] [Green Version]
- Lehner, G.F.; Harler, U.; Haller, V.M.; Feistritzer, C.; Hasslacher, J.; Dunzendorfer, S.; Bellmann, R.; Joannidis, M. Characterization of Microvesicles in Septic Shock Using High-Sensitivity Flow Cytometry. Shock 2016, 46, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noisakran, S.; Onlamoon, N.; Hsiao, H.M.; Clark, K.B.; Villinger, F.; Ansari, A.A.; Perng, G.C. Infection of bone marrow cells by dengue virus in vivo. Exp. Hematol. 2012, 40, 250–259.e4. [Google Scholar] [CrossRef] [Green Version]
- Albayati, S.; Vemulapalli, H.; Tsygankov, A.Y.; Liverani, E. P2Y12 antagonism results in altered interactions between platelets and regulatory T cells during sepsis. J. Leukoc. Biol. 2021, 110, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Bachelot-Loza, C.; Nesseler, N.; Gaussem, P.; Gouin-Thibault, I. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int. J. Mol. Sci. 2020, 21, 1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Maués, J.H.S.; de Moreira-Nunes, C.F.A.; Pontes, T.B.; Vieira, P.C.M.; Montenegro, R.C.; Lamarão, L.M.; Lima, E.M.; Burbano, R.M.R. Differential Expression Profile of MicroRNAs During Prolonged Storage of Platelet Concentrates as a Quality Measurement Tool in Blood Banks. Omics J. Integr. Biol. 2018, 22, 653–664. [Google Scholar] [CrossRef]
- Kato, M.; Slack, F.J. Ageing and the Small, Non-Coding RNA World. Ageing Res. Rev. 2013, 12, 429. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Lee, M.; Sharpe, O.; Salamone, L.; Noonan, E.J.; Hoang, C.D.; Levine, S.; Robinson, W.H.; Shrager, J.B. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. FASEB J. 2012, 26, 4710–4721. [Google Scholar] [CrossRef] [Green Version]
- Linnstaedt, S.D.; Riker, K.D.; Walker, M.G.; Nyland, J.E.; Zimny, E.; Lewandowski, C.; Hendry, P.L.; Damiron, K.; Pearson, C.; Velilla, M.A.; et al. MicroRNA 320a predicts chronic axial and widespread pain development following motor vehicle collision in a stress-dependent manner. J. Orthop. Sports Phys. Ther. 2016, 46, 911–919. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, T.; Fan, J.; Zhao, R.C.; Weng, X. MicroRNA expression profile of dexamethasone-induced human bone marrow-derived mesenchymal stem cells during osteogenic differentiation. J. Cell. Biochem. 2014, 115, 1683–1691. [Google Scholar] [CrossRef]
- Lee, H.; Zhang, D.; Zhu, Z.; Dela Cruz, C.S.; Jin, Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci. Rep. 2016, 6, 35250. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, S.V.; Gerasimenko, T.N.; Shilin, S.A.; Gazizov, I.N.; Kindeeva, O.V.; Sakharov, D.A. Comparison of Profiles of Extracellular MicroRNA Secreted by Caco-2 Cells from the Apical Side of the Membrane under Static and Microcirculation Conditions. Bull. Exp. Biol. Med. 2019, 166, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Connors, J.M.; Nagaoka, I.; Levy, J.H. Recent advances in the research and management of sepsis-associated DIC. Int. J. Hematol. 2021, 113, 24–33. [Google Scholar] [CrossRef]
- Gupta, S.; Sakhuja, A.; Kumar, G.; McGrath, E.; Nanchal, R.S.; Kashani, K.B. Culture-Negative Severe Sepsis: Nationwide Trends and Outcomes. Chest 2016, 150, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
Variables | n |
---|---|
Patients admitted to the ICU | 200 |
Patients admitted to the ICU with sepsis | 140 (70%) |
Male gender | 122 (61%) |
Average age, years (range) | 60.75 (28–89) |
Average length of stay in the ICU for patients without sepsis (days) | 5 |
Average length of stay in the ICU for patients with sepsis (days) | 15.7 |
APACHE II score average | 35 |
Type of ICU admission—n (%) * | |
Medical admission | 132 (66%) |
Surgical admission | 68 (34%) |
Infection Site—n (%) * | |
Pulmonary | 91 (65%) |
Abdominal | 42 (30%) |
Urinary bacteremia | 7 (5%) |
Main Comorbidities—n (%) * | |
Neoplasms | 112 (80%) |
Diabetes mellitus | 15 (10.7%) |
Systemic arterial hypertension (PAH) | 13 (9.3%) |
Invasive Procedures—n (%) *,# | |
Urinary catheterization | 77 (55%) |
Central vascular catheterization | 116 (82.9%) |
Bladder probe | 70 (50%) |
Tracheostomy | 105 (75%) |
Mechanical ventilation | 111 (79.3%) |
Parameters | Healthy Controls | Before Uncomplicated Sepsis | In Uncomplicated Sepsis | Before Severe Sepsis | Severe Sepsis | Before Septic Shock | Septic Shock |
---|---|---|---|---|---|---|---|
Membrane Proteins Expression | |||||||
P2Y12 | 39.28 ± 1.51 | 38.94 ± 0.80 | 101.24 ± 3.27 * | 40.87 ± 0.89 | 166.64 ± 20.34 * | 42.40 ± 1.94 | 281.85 ± 24.89 * |
CD62P | 9.22 ± 1.30 | 18.39 ± 2.09 | 72.19 ± 3.36 * | 22.69 ± 3.55 | 121.06 ± 5.30 * | 22.78 ± 3.47 | 159.97 ± 6.27 * |
CD41 | 98.87 ± 4.30 | 108.83 ± 4.62 | 233.83 ± 4.49 * | 121.12 ± 4.82 | 315.39 ± 4.72 * | 130.62 ± 4.67 | 462.04 ± 7.52 * |
CD61 | 87.46 ± 2.09 | 91.25 ± 1.33 | 233.83 ± 4.49 * | 94.31 ± 1.72 | 308.56 ± 1.42 * | 95.51 ± 1.37 | 394.95 ± 13.68 * |
miRNAs Expression | |||||||
miR-127 | 0.369 ± 0.03 | 0.371 ± 0.004 | 0.404 ± 0.002 | 0.359 ± 0.033 | 0.442 ± 0.024 | 0.454 ± 0.005 | 0.453 ± 0.030 |
miR-320a | 0.249 ± 0.02 | 0.281 ± 0.007 | 0.606 ± 0.007 | 0.309 ± 0.007 | 0.756 ± 0.024 | 0.343 ± 0.028 | 0.843 ± 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira Corrêa, P.C.M.; Carneiro, D.M.; da Silva Valente, L.d.S.; Diogo, F.M.; Lamarão, L.M.; da Silva Maués, J.H.; Moreira-Nunes, C.A.; Burbano, R.M.R. Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens. Genes 2021, 12, 1877. https://doi.org/10.3390/genes12121877
Vieira Corrêa PCM, Carneiro DM, da Silva Valente LdS, Diogo FM, Lamarão LM, da Silva Maués JH, Moreira-Nunes CA, Burbano RMR. Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens. Genes. 2021; 12(12):1877. https://doi.org/10.3390/genes12121877
Chicago/Turabian StyleVieira Corrêa, Priscilla Cristina Moura, Débora Monteiro Carneiro, Luciana do Socorro da Silva Valente, Fabíola Marques Diogo, Leticia Martins Lamarão, Jersey Heitor da Silva Maués, Caroline Aquino Moreira-Nunes, and Rommel Mario Rodríguez Burbano. 2021. "Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens" Genes 12, no. 12: 1877. https://doi.org/10.3390/genes12121877
APA StyleVieira Corrêa, P. C. M., Carneiro, D. M., da Silva Valente, L. d. S., Diogo, F. M., Lamarão, L. M., da Silva Maués, J. H., Moreira-Nunes, C. A., & Burbano, R. M. R. (2021). Detection of Sepsis in Platelets Using MicroRNAs and Membrane Antigens. Genes, 12(12), 1877. https://doi.org/10.3390/genes12121877