Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development
Abstract
:1. Introduction
2. Results
2.1. Differential Expression and Pathway Analyses Highlighted the NPC Stage of ASD
2.2. Construct Brain- and Neural-Specific Regulator-Target Regulation Pairs
2.3. Expression Correlations between Regulators and Target Genes
2.4. Construction of Regulatory Cascades of ASD
3. Materials and Methods
3.1. RNA-Seq Data Process and Differential Expression Analysis
3.2. Pathway Activation Assessment via GSVA Score
3.3. lncRNA-Involved Regulations
3.4. Regulatory Cascade Construction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimers
References
- Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.; Beltrao-Braga, P.; Trujillo, C.A.; Mendes, A.P.; Padmanabhan, K.; et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 2017, 22, 820–835. [Google Scholar] [CrossRef]
- Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef]
- National Institute of Mental Health. Autism Spectrum Disorder. Available online: https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd (accessed on 27 October 2021).
- Centers for Disease Control and Prevention. Data & Statistics on Autism Spectrum Disorder. Available online: cdc.gov (accessed on 27 October 2021).
- National Human Genome Research Institute. National Institute of Health about Autism. Available online: https://www.genome.gov/Genetic-Disorders/Autism (accessed on 27 October 2021).
- Moss, J.; Richards, C.; Nelson, L.; Oliver, C. Prevalence of autism spectrum disorder symptomatology and related behavioural characteristics in individuals with Down syndrome. Autism 2013, 17, 390–404. [Google Scholar] [CrossRef]
- Wheeler, A.C.; Mussey, J.; Villagomez, A.; Bishop, E.; Raspa, M.; Edwards, A.; Bodfish, J.; Bann, C.; Bailey, D.B. DSM-5 changes and the prevalence of parent-reported autism spectrum symptoms in Fragile X syndrome. J. Autism Dev. Disord. 2015, 45, 816–829. [Google Scholar] [CrossRef]
- Rizzo, R.; Pavone, P. Aripiprazole for the treatment of irritability and aggression in children and adolescents affected by autism spectrum disorders. Expert Rev. Neurother. 2016, 16, 867–874. [Google Scholar] [CrossRef]
- Skafidas, E.; Testa, R.; Zantomio, D.; Chana, G.; Everall, I.P.; Pantelis, C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol. Psychiatry 2014, 19, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Spann, M.N.; Sourander, A.; Surcel, H.M.; Hinkka-Yli-Salomäki, S.; Brown, A.S. Prenatal toxoplasmosis antibody and childhood autism. Autism Res. 2017, 10, 769–777. [Google Scholar] [CrossRef]
- Cusco, I.; Medrano, A.; Gener, B.; Vilardell, M.; Gallastegui, F.; Villa, O.; González, E.; Rodríguez-Santiago, B.; Vilella, E.; Del Campo, M.; et al. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum. Mol. Genet. 2009, 18, 1795–1804. [Google Scholar] [CrossRef] [Green Version]
- Ziats, M.N.; Rennert, O.M. Aberrant expression of long noncoding RNAs in autistic brain. J. Mol. Neurosci. 2013, 49, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Pramparo, T.; Lombardo, M.V.; Campbell, K.; Barnes, C.C.; Marinero, S.; Solso, S.; Young, J.; Mayo, M.; Dale, A.; Ahrens-Barbeau, C.; et al. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers. Mol. Syst. Biol. 2015, 11, 841. [Google Scholar] [CrossRef]
- Chow, M.L.; Pramparo, T.; Winn, M.E.; Barnes, C.C.; Li, H.R.; Weiss, L.; Fan, J.B.; Murray, S.; April, C.; Belinson, H.; et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet. 2012, 8, e1002592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Alberts, I.; Li, X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int. J. Dev. Neurosci. 2014, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Marbach, D.; Lamparter, D.; Quon, G.; Kellis, M.; Kutalik, Z.; Bergmann, S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat. Methods 2016, 13, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; Van Der Lee, R.; Bessy, A.; Cheneby, J.; Kulkarni, S.R.; Tan, G.; et al. JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018, 46, D260–D266. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J.; Martinmäki, P.; Pizzi, C.; Rastas, P.; Ukkonen, E. MOODS: Fast search for position weight matrix matches in DNA sequences. Bioinformatics 2009, 25, 3181–3182. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Choi, J.; Won, J.; Hong, Y. The relationship between autism spectrum disorder and melatonin during fetal development. Molecules 2018, 23, 198. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol. Teratol. 2013, 36, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.G.; Abi Abdallah, D.S.; Butcher, B.A.; Denkers, E.Y. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity. PLoS ONE 2013, 8, e60215. [Google Scholar] [CrossRef] [Green Version]
- Abdoli, A.; Dalimi, A. Are there any relationships between latent Toxoplasma gondii infection, testosterone elevation, and risk of autism spectrum disorder? Front. Behav. Neurosci. 2014, 8, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Katuri, V.; Iqbal, S.; Narayan, T.; Wang, Z.; Lu, R.S.; Mishra, L.; Mishra, B. ELF a β-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/β-G spectrin gene. Oncogene 2002, 21, 5255–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Rhead, B.; Karolchik, D.; Kuhn, R.M.; Hinrichs, A.S.; Zweig, A.S.; Fujita, P.A.; Diekhans, M.; Smith, K.E.; Rosenbloom, K.R.; Raney, B.J.; et al. The UCSC genome browser database: Update 2010. Nucleic Acids Res. 2010, 38, D613–D619. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012, 41, D377–D386. [Google Scholar] [CrossRef] [Green Version]
- Inoue, F.; Kreimer, A.; Ashuach, T.; Ahituv, N.; Yosef, N. Identification and massively parallel characterization of regulatory elements driving neural induction. Cell Stem Cell 2019, 25, 713–727. [Google Scholar] [CrossRef]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef]
- Tovar, H.; García-Herrera, R.; Espinal-Enríquez, J.; Hernández-Lemus, E. Transcriptional master regulator analysis in breast cancer genetic networks. Comput. Biol. Chem. 2015, 59, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Bae, T.; Rho, K.; Choi, J.W.; Horimoto, K.; Kim, W.; Kim, S. Identification of upstream regulators for prognostic expression signature genes in colorectal cancer. BMC Syst. Biol. 2013, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawle, A.; Kebschull, M.; Demmer, R.; Papapanou, P. Identification of master regulator genes in human periodontitis. J. Dent. Res. 2016, 95, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubelmann, C.; Schwalie, P.C.; Raghav, S.K.; Röder, E.; Delessa, T.; Kiehlmann, E.; Waszak, S.M.; Corsinotti, A.; Udin, G.; Holcombe, W.; et al. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. Elife 2014, 3, e03346. [Google Scholar] [CrossRef] [PubMed]
- Consortium, F. A promoter-level mammalian expression atlas. Nature 2014, 507, 462. [Google Scholar]
- Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507, 455–461. [Google Scholar] [CrossRef]
iPSC | Term | p-Value | Benjamini |
---|---|---|---|
GOTERM_BP_DIRECT | cerebral cortex GABAergic interneuron fate commitment | 2.5 × 10−3 | 0.48 |
GOTERM_CC_DIRECT | endoplasmic reticulum | 2.6 × 10−3 | 0.16 |
GOTERM_BP_DIRECT | subpallium development | 3.7 × 10−3 | 0.39 |
GOTERM_BP_DIRECT | regulation of transcription from RNA polymerase II promoter involved in forebrain neuron fate commitment | 3.7 × 10−3 | 0.39 |
NPC | Term | p-Value | Benjamini |
KEGG_PATHWAY | Neuroactive ligand-receptor interaction * | 1.9 × 10−3 | 0.3 |
KEGG_PATHWAY | Pathways in cancer | 2.5 × 10−3 | 0.21 |
KEGG_PATHWAY | Focal adhesion * | 51 × 10−3 | 0.27 |
KEGG_PATHWAY | Calcium signaling pathway * | 6.1 × 10−3 | 0.25 |
KEGG_PATHWAY | Retrograde endocannabinoid signaling | 1.1 × 10−2 | 0.34 |
KEGG_PATHWAY | Wnt signaling pathway * | 1.4 × 10−2 | 0.36 |
KEGG_PATHWAY | Regulation of lipolysis in adipocytes | 0.02 | 0.42 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 2.7 × 10−2 | 0.47 |
Neuron | Term | p-Value | Benjamini |
KEGG_PATHWAY | ECM-receptor interaction | 1.7 × 10−13 | 2.9 × 10−11 |
KEGG_PATHWAY | Protein digestion and absorption | 2.8 × 10−12 | 2.3 × 10−10 |
KEGG_PATHWAY | Focal adhesion * | 2 × 10−9 | 1.1 × 10−7 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 3 × 10−9 | 1.3 × 10−7 |
KEGG_PATHWAY | Amoebiasis | 4.2 × 10−4 | 1.4 × 10−2 |
KEGG_PATHWAY | Neuroactive ligand-receptor interaction * | 8.2 × 10−4 | 2.3 × 10−2 |
KEGG_PATHWAY | TGF-beta signaling pathway | 2 × 10−3 | 4.8 × 10−2 |
KEGG_PATHWAY | Renin-angiotensin system | 1.2 × 10−2 | 0.23 |
KEGG_PATHWAY | Platelet activation | 2.1 × 10−2 | 0.33 |
KEGG_PATHWAY | Hypertrophic cardiomyopathy (HCM) | 2.5 × 10−2 | 0.35 |
KEGG_PATHWAY | Proteoglycans in cancer | 2.7 × 10−2 | 0.35 |
KEGG_PATHWAY | Dilated cardiomyopathy | 3.4 × 10−2 | 0.38 |
KEGG_PATHWAY | Regulation of actin cytoskeleton | 3.7 × 10−2 | 0.39 |
KEGG_PATHWAY | Calcium signaling pathway * | 3.8 × 10−2 | 0.37 |
NPC ASD | Term | p-Value | Benjamini |
---|---|---|---|
KEGG_PATHWAY | Phosphatidylinositol signaling system * | 4.3 × 10−3 | 0.6 |
KEGG_PATHWAY | ECM-receptor interaction * | 8 × 10−3 | 0.57 |
KEGG_PATHWAY | Morphine addiction | 0.01 | 0.51 |
KEGG_PATHWAY | Inositol phosphate metabolism | 1.1 × 10−2 | 0.44 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 0.02 | 0.58 |
KEGG_PATHWAY | Circadian entrainment * | 0.04 | 0.76 |
KEGG_PATHWAY | Focal adhesion * | 4.7 × 10−2 | 0.76 |
KEGG_PATHWAY | Calcium signaling pathway * | 4.8 × 10−2 | 0.72 |
Neuron ASD | Term | p-Value | Benjamini |
KEGG_PATHWAY | DNA replication | 1.5 × 10−3 | 0.31 |
KEGG_PATHWAY | RNA transport | 1.7 × 10−3 | 0.19 |
KEGG_PATHWAY | Mismatch repair | 4.4 × 10−3 | 0.3 |
KEGG_PATHWAY | Protein processing in endoplasmic reticulum * | 8.1 × 10−3 | 0.39 |
KEGG_PATHWAY | RNA degradation | 1.2 × 10−2 | 0.44 |
KEGG_PATHWAY | Nucleotide excision repair | 2.6 × 10−2 | 0.65 |
KEGG_PATHWAY | Spliceosome | 2.8 × 10−2 | 0.63 |
KEGG_PATHWAY | Biosynthesis of antibiotics | 5.4 × 10−2 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xu, J.; Yang, M.Q. Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes 2021, 12, 1901. https://doi.org/10.3390/genes12121901
Li D, Xu J, Yang MQ. Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes. 2021; 12(12):1901. https://doi.org/10.3390/genes12121901
Chicago/Turabian StyleLi, Dan, Joshua Xu, and Mary Qu Yang. 2021. "Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development" Genes 12, no. 12: 1901. https://doi.org/10.3390/genes12121901
APA StyleLi, D., Xu, J., & Yang, M. Q. (2021). Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes, 12(12), 1901. https://doi.org/10.3390/genes12121901