Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Methylation Analysis Using the Illumina 450k Array
Normalization and Quality Controls
2.2. Chromosomal Microarray with Affymetrix 6.0 SNP Array
2.3. Polymorphic Microsatellite Analysis for Chromosome 20
3. Results
3.1. Clinical Presentation
3.2. Identification of MLID Using the 450k Aray
3.3. Identification of Loss-of-Heterozygosity and Paternal Isodisomy of Chromosome 20
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choufani, S.; Shuman, C.; Weksberg, R. Beckwith-Wiedemann syndrome. Am. J. Med Genet. Part C: Semin. Med Genet. 2010, 154C, 343–354. [Google Scholar] [CrossRef]
- Shuman, C.; Beckwith, J.B.; Weksberg, R. Beckwith-Wiedemann Syndrome. In Gene Reviews; Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., Bird, T.D., Ledbetter, N., Mefford, H.C., Smith, R.J.H., et al., Eds.; GeneReviews: Seattle, WA, USA, 2000. [Google Scholar]
- Mantovani, G.; Spada, A.; Elli, F.M. Pseudohypoparathyroidism and Gsα–cAMP-linked disorders: Current view and open issues. Nat. Rev. Endocrinol. 2016, 12, 347–356. [Google Scholar] [CrossRef]
- Mantovani, G. Pseudohypoparathyroidism: Diagnosis and Treatment. J. Clin. Endocrinol. Metab. 2011, 96, 3020–3030. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, G.; Bastepe, M.; Monk, D.; De Sanctis, L.; Thiele, S.; Usardi, A.; Ahmed, S.F.; Bufo, R.; Choplin, T.; De Filippo, G.; et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: First international Consensus Statement. Nat. Rev. Endocrinol. 2018, 14, 476–500. [Google Scholar] [CrossRef]
- Mussa, A.; Russo, S.; Larizza, L.; Riccio, A.; Ferrero, G.B. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome: A paradigm for genomic medicine. Clin. Genet. 2016, 89, 403–415. [Google Scholar] [CrossRef]
- Levine, M.A. An update on the clinical and molecular characteristics of pseudohypoparathyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Litman, D.; Rosenberg, M.J.; Yu, S.; Biesecker, L.G.; Weinstein, L.S. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J. Clin. Investig. 2000, 106, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Bastepe, M.; Lane, A.H.; Jüppner, H. Paternal Uniparental Isodisomy of Chromosome 20q—and the Resulting Changes in GNAS1 Methylation—as a Plausible Cause of Pseudohypoparathyroidism. Am. J. Hum. Genet. 2001, 68, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Lecumberri, B.; Fernandez-Rebollo, E.; Sentchordi, L.; Saavedra, P.; Bernal-Chico, A.; Pallardo, L.F.; Bustos, J.M.J.; Castano, L.; De Santiago, M.; Hiort, O.; et al. Coexistence of two different pseudohypoparathyroidism subtypes (Ia and Ib) in the same kindred with independent Gsα coding mutations and GNAS imprinting defects. J. Med Genet. 2010, 47, 276–280. [Google Scholar] [CrossRef]
- Fernandez-Rebollo, E.; Lecumberri, B.; Garin, I.; Arroyo, J.; Bernal-Chico, A.; Goñi-Goicoechea, F.; Orduña, R.; Castaño, L.; De Nanclares, G.P. Spanish PHP Group New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism. Eur. J. Endocrinol. 2010, 163, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.; Chandler, K.E.; Lever, M.; Poole, R.L.; Bullman, H.; Mughal, M.Z.; Steggall, M.; Suri, M. Pseudohypoparathyroidism Type 1b due to Paternal Uniparental Disomy of Chromosome 20q. J. Clin. Endocrinol. Metab. 2013, 98, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatani, R.; Minagawa, M.; Molinaro, A.; Reyes, M.; Kinoshita, K.; Takatani, T.; Kazukawa, I.; Nagatsuma, M.; Kashimada, K.; Sato, K.; et al. Similar frequency of paternal uniparental disomy involving chromosome 20q (patUPD20q) in Japanese and Caucasian patients affected by sporadic pseudohypoparathyroidism type Ib (sporPHP1B). Bone 2015, 79, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Court, F.; Martin-Trujillo, A.; Romanelli, V.; Garin, I.; Iglesias-Platas, I.; Salafsky, I.; Guitart, M.; de Nanclares, G.P.; Lapunzina, P.; Monk, D. Genome-Wide Allelic Methylation Analysis Reveals Disease-Specific Susceptibility to Multiple Methylation Defects in Imprinting Syndromes. Hum. Mutat. 2013, 34, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Azzi, S.; Rossignol, S.; Steunou, V.; Sas, T.; Thibaud, N.; Danton, F.; Le Jule, M.; Heinrichs, C.; Cabrol, S.; Gicquel, C.; et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum. Mol. Genet. 2009, 18, 4724–4733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliek, J.; Verde, G.; Callaway, J.; Maas, S.M.; De Crescenzo, A.; Sparago, A.; Cerrato, F.; Russo, S.; Ferraiuolo, S.; Rinaldi, M.M.; et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 2008, 17, 611–619. [Google Scholar] [CrossRef]
- Bens, S.; Kolarova, J.; Beygo, J.; Buiting, K.; Caliebe, A.; Eggermann, T.; Gillessen-Kaesbach, G.; Prawitt, D.; Thiele-Schmitz, S.; Begemann, M.; et al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016, 8, 801–816. [Google Scholar] [CrossRef]
- Fontana, L.; Bedeschi, M.F.; Maitz, S.; Cereda, A.; Faré, C.; Motta, S.; Seresini, A.; D’Ursi, P.; Orro, A.; Pecile, V.; et al. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018, 13, 897–909. [Google Scholar] [CrossRef]
- Sano, S.; Matsubara, K.; Nagasaki, K.; Kikuchi, T.; Nakabayashi, K.; Hata, K.; Fukami, M.; Kagami, M.; Ogata, T. Beckwith–Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: A female-dominant phenomenon? J. Hum. Genet. 2016, 61, 765–769. [Google Scholar] [CrossRef]
- Mackay, D.J.G.; Callaway, J.L.A.; Marks, S.M.; White, H.E.; Acerini, C.L.; Boonen, S.E.; Dayanikli, P.; Firth, H.V.; Goodship, J.A.; Haemers, A.P.; et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 2008, 40, 949–951. [Google Scholar] [CrossRef]
- Meyer, E.; Lim, D.; Pasha, S.; Tee, L.J.; Rahman, F.; Yates, J.R.W.; Woods, C.G.; Reik, W.; Maher, E.R. Germline Mutation in NLRP2 (NALP2) in a Familial Imprinting Disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 2009, 5, e1000423. [Google Scholar] [CrossRef] [Green Version]
- Bakker, B.; Sonneveld, L.J.H.; Woltering, M.C.; Bikker, H.; Kant, S.G. A Girl with Beckwith-Wiedemann Syndrome and Pseudohypoparathyroidism Type 1B Due to Multiple Imprinting Defects. J. Clin. Endocrinol. Metab. 2015, 100, 3963–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubellis, M.V.; Pignata, L.; Verma, A.; Sparago, A.; Del Prete, R.; Monticelli, M.; Calzari, L.; Antona, V.; Melis, D.; Tenconi, R.; et al. Loss-of-function maternal-effect mutations of PADI6 are associated with familial and sporadic Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance. Clin. Epigenet. 2020, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Choufani, S.; Turinsky, A.L.; Melamed, N.; Greenblatt, E.; Brudno, M.; Bérard, A.; Fraser, W.D.; Weksberg, R.; Trasler, J.; Monnier, P.; et al. Impact of assisted reproduction, infertility, sex and paternal factors on the placental DNA methylome. Hum. Mol. Genet. 2018, 28, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Wintle, R.F.; Lionel, A.C.; Hu, P.; Ginsberg, S.D.; Pinto, D.; Thiruvahindrapduram, B.; Wei, J.; Marshall, C.R.; Pickett, J.; Cook, E.H.; et al. A genotype resource for postmortem brain samples from the Autism Tissue Program. Autism Res. 2011, 4, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Elli, F.M.; Linglart, A.; Garin, I.; De Sanctis, L.; Bordogna, P.; Grybek, V.; Pereda, A.; Giachero, F.; Verrua, E.; Hanna, P.; et al. The Prevalence of GNAS Deficiency-Related Diseases in a Large Cohort of Patients Characterized by the EuroPHP Network. J. Clin. Endocrinol. Metab. 2016, 101, 3657–3668. [Google Scholar] [CrossRef]
- Bastepe, M.; Altug-Teber, Ö.; Agarwal, C.; Oberfield, S.E.; Bonin, M.; Jüppner, H. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib). Bone 2011, 48, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.Y.; Lee, B.H.; Choi, J.-H.; Kim, G.-H.; Kim, J.-K.; Lee, J.H.; Yu, J.; Yoo, J.-H.; Ko, C.W.; Lim, H.-H.; et al. Clinical characterization and identification of two novel mutations of the GNAS gene in patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism. Clin. Endocrinol. 2011, 75, 207–213. [Google Scholar] [CrossRef]
- Park, H.-S.; Kim, C.G.; Hong, N.; Lee, S.J.; Seo, D.H.; Rhee, Y. Osteosarcoma in a Patient with Pseudohypoparathyroidism Type 1b Due to Paternal Uniparental Disomy of Chromosome 20q. J. Bone Miner. Res. 2017, 32, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Eggermann, T.; Perez De Nanclares, G.; Maher, E.R.; Temple, I.K.; Tümer, Z.; Monk, D.; Mackay, D.J.G.; Grønskov, K.; Riccio, A.; Linglart, A.; et al. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenet. 2015, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Higashimoto, K.; Jozaki, K.; Yatsuki, H.; Nakabayashi, K.; Makita, Y.; Tonoki, H.; Okamoto, N.; Takada, F.; Ohashi, H.; et al. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith–Wiedemann syndrome with epimutations. Genet. Med. 2014, 16, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Maupetit-Méhouas, S.; Azzi, S.; Steunou, V.; Sakakini, N.; Silve, C.; Reynes, C.; De Nanclares, G.P.; Keren, B.; Chantot, S.; Barlier, A.; et al. Simultaneous Hyper- and Hypomethylation at Imprinted Loci in a Subset of Patients withGNASEpimutations Underlies a Complex and Different Mechanism of Multilocus Methylation Defect in Pseudohypoparathyroidism Type 1b. Hum. Mutat. 2013, 34, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Tee, L.; Lim, D.; Dias, R.P.; Baudement, M.-O.; Slater, A.A.; Kirby, G.; Hancocks, T.; Stewart, H.; Hardy, C.; Macdonald, F.; et al. Epimutation profiling in Beckwith-Wiedemann syndrome: Relationship with assisted reproductive technology. Clin. Epigenet. 2013, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nanclares, G.P.; Fernández-Rebollo, E.; Santin, I.; García-Cuartero, B.; Gaztambide, S.; Menéndez, E.; Morales, M.J.; Pombo, M.; Bilbao, J.R.; Barros, F.; et al. Epigenetic Defects ofGNASin Patients with Pseudohypoparathyroidism and Mild Features of Albright’s Hereditary Osteodystrophy. J. Clin. Endocrinol. Metab. 2007, 92, 2370–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grafodatskaya, D.; Choufani, S.; Basran, R.; Weksberg, R. An Update on Molecular Diagnostic Testing of Human Imprinting Disorders. J. Pediatr. Genet. 2017, 6, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, W.P. Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays 2000, 22, 452–459. [Google Scholar] [CrossRef]
- Bastepe, M.; Jüppner, H. GNAS Locus and Pseudohypoparathyroidism. Horm. Res. Paediatr. 2005, 63, 65–74. [Google Scholar] [CrossRef]
- Linglart, A.; Gensure, R.C.; Olney, R.C.; Jüppner, H.; Bastepe, M. A Novel STX16 Deletion in Autosomal Dominant Pseudohypoparathyroidism Type Ib Redefines the Boundaries of a cis-Acting Imprinting Control Element of GNAS. Am. J. Hum. Genet. 2005, 76, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Linglart, A.; Bastepe, M.; Jüppner, H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at theGNASlocus. Clin. Endocrinol. 2007, 67, 822–831. [Google Scholar] [CrossRef]
- Mariot, V.; Maupetit-Méhouas, S.; Sinding, C.; Kottler, M.-L.; Linglart, A. A Maternal Epimutation of GNAS Leads to Albright Osteodystrophy and Parathyroid Hormone Resistance. J. Clin. Endocrinol. Metab. 2008, 93, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, G.; De Sanctis, L.; Barbieri, A.M.; Elli, F.M.; Bollati, V.; Vaira, V.; Labarile, P.; Bondioni, S.; Peverelli, E.; Lania, A.G.; et al. Pseudohypoparathyroidism andGNASEpigenetic Defects: Clinical Evaluation of Albright Hereditary Osteodystrophy and Molecular Analysis in 40 Patients. J. Clin. Endocrinol. Metab. 2010, 95, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Elli, F.M.; De Sanctis, L.; Bollati, V.; Tarantini, L.; Filopanti, M.; Barbieri, A.M.; Peverelli, E.; Beck-Peccoz, P.; Spada, A.; Mantovani, G. Quantitative Analysis of Methylation Defects and Correlation with Clinical Characteristics in Patients With Pseudohypoparathyroidism Type I and GNAS Epigenetic Alterations. J. Clin. Endocrinol. Metab. 2014, 99, E508–E517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonen, S.E.; Pörksen, S.; Mackay, D.; Oestergaard, E.; Olsen, B.; Bröndum-Nielsen, K.; Temple, I.K.; Hahnemann, J.M.D. Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur. J. Hum. Genet. 2008, 16, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Symbol | Chromosome Location | Number of CpG Sites | Controls (n = 6) | Patient | |
---|---|---|---|---|---|
Average | 2SD | ||||
DIRAS3-1 | 1p31.3 | 27 | 0.56 | 0.04 | 0.26 |
PLAGL1 | 6q24 | 15 | 0.57 | 0.06 | 0.18 |
KCNQ1OT1 | 11p15.5 | 28 | 0.56 | 0.05 | 0.19 |
NESP55 | 20q13.32 | 22 | 0.55 | 0.06 | 0.92 |
GNASAS | 20q13.32 | 59 | 0.52 | 0.07 | 0.10 |
GNASXL | 20q13.32 | 6 | 0.56 | 0.04 | 0.05 |
GNAS1A | 20q13.12 | 40 | 0.57 | 0.06 | 0.12 |
Case 1 | Case 2 | Proband | |
---|---|---|---|
Sex | F | F | M |
Age (year) at diagnosis of BWS | 0.5 | at birth | 0.3 |
Age (year) at diagnosis of PHP1b | 16 | 12.4 | 14 |
Phenotypes for BWS | macrosomia, umbilical hernia | macroglossia, macrosomia, umbilical hernia, hypoglycemia, hemihypertrophy | macroglossia, macrosomia, umbilical hernia, ear crease, hypoglycemia |
Phenotypes for PHP1b | hypocalcemia, hyperphosphatemia, parathyroid hormone resistance, no AHO | hypocalcemia, hyperphosphatemia, parathyroid hormone resistance, no AHO | hypocalcemia, hyperphosphatemia, parathyroid hormone resistance, stunted growth, mild learning difficulty |
Phenotype-related DMRs | BWS: LOM-IC2 PHP1b: LOM-AS, XL, A/B, GOM-NESP | BWS: LOM-IC2 PHP1b: LOM-AS, XL, A/B, GOM-NESP (patUPD20 excluded) | BWS: LOM-IC2 PHP1b: patUPD20 (LOM-AS, XL, A/B, GOM-NESP) |
Other associated DMRs with MLID | not examined | DIRAS3, FAM50B, PEG1/MEST, RB1 | DIRAS3, PLAGL1 |
Conception | natural | natural | natural |
Maternal /paternal age at birth (years) | unknown | 33/34 | 39/39 |
Mutation of a gene for MLID | not examined | not identified in ZFP57, NLRP2, NLRP7, KHLC3L, NLRP5 | not examined |
Reference | [22] | [19] | this report |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choufani, S.; Ko, J.M.; Lou, Y.; Shuman, C.; Fishman, L.; Weksberg, R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes 2021, 12, 172. https://doi.org/10.3390/genes12020172
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes. 2021; 12(2):172. https://doi.org/10.3390/genes12020172
Chicago/Turabian StyleChoufani, Sanaa, Jung Min Ko, Youliang Lou, Cheryl Shuman, Leona Fishman, and Rosanna Weksberg. 2021. "Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome" Genes 12, no. 2: 172. https://doi.org/10.3390/genes12020172
APA StyleChoufani, S., Ko, J. M., Lou, Y., Shuman, C., Fishman, L., & Weksberg, R. (2021). Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes, 12(2), 172. https://doi.org/10.3390/genes12020172