Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Hematoxylin and Eosin Staining Assay
2.3. Immunofluorescence Staining Assays
2.4. RNA Extraction, Library Construction, and Sequencing
2.5. Functional Annotation and Differentially Expressed Genes (DEGs)
2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
2.7. Protein Interaction Network Analysis
2.8. Real-Time PCR
2.9. Statistical Analysis
3. Results
3.1. Histological Observation of Sternum and Pectoral Muscle from Ducks
3.2. Transcriptome Analysis and Functional Genes’ Annotation
3.3. Functional Enrichment of DEGs
3.4. The Potential Relationships between the Sternum and Pectoral Muscles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karsenty, G.; Olson, E.N. Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication. Cell 2016, 164, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.M.; Zhao, K.X.; Xiao, Q. Myokines and osteokines in muscle-bone interactions. Chin. J. Geriatr. 2017, 36, 3. [Google Scholar]
- Bonewald, L.F.; Kiel, D.P.; Clemens, T.L.; Esser, K.; Orwoll, E.S.; O’Keefe, R.J.; Fielding, R.A. Forum on bone and skeletal muscle interactions: Summary of the proceedings of an ASBMR workshop. J. Bone Miner. Res. 2013, 28, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Dankbar, B.; Fennen, M.; Brunert, D.; Hayer, S.; Frank, S.; Wehmeyer, C.; Beckmann, D.; Paruzel, P.; Bertrand, J.; Redlich, K.; et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat. Med. 2015, 21, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Karsenty, G.; Mera, P. Molecular bases of the crosstalk between bone and muscle. Bone 2018, 115, 43–49. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, S.S.; Liu, X.L.; Huang, W.; Xu, T.S.; Xie, M.; Zhang, Y.S.; Zhao, J.N. Growth analysis and the better indirect selection trait investigation of pectoral on paternal line peking duck. J. South China Agric. Univ. 2013, 34, 83–86. [Google Scholar]
- Wang, Y.S.; Wu, K.; Wang, J.W. A preliminary study on the ossification model of sternum of meat duck. In Proceedings of the 19th Symposium of the Poultry Diseases Branch of the 2018 Academic Annual Meeting of the Chinese Society of Animal Husbandry and Veterinary Medicine, Nanning, China, 21–24 November 2018. [Google Scholar]
- Zheng, X.; Wang, X.; O’Connor, J.; Zhou, Z. Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nat. Commun. 2012, 3, 1116. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; O’Connor, J.; Wang, X.; Wang, M.; Zhang, X.; Zhou, Z. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc. Natl. Acad. Sci. USA 2014, 111, 13900–13905. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zofkova, I. Bone tissue as a systemic endocrine regulator. Physiol. Res. 2015, 64, 439–445. [Google Scholar] [CrossRef]
- Sanverdi, S.E.; Ozgen, B.; Dolgun, A.; Sarac, S. Incomplete endochondral ossification of the otic capsule, a variation in children: Evaluation of its prevalence and extent in children with and without sensorineural hearing loss. Am. J. Neuroradiol. 2015, 36, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, E.J.; Ahmed, Y.A.; Tatarczuch, L.; Chen, K.S.; Mirams, M. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 2008, 40, 46–62. [Google Scholar] [CrossRef]
- Chen, C.J.; Daoud, S.; Kierszenbaum, A.; Levy, R.; Rogers, J.; Vinkler, A. Endochondral Ossification; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Olsen, B.R. VEGF in bone development and homeostasis. Bone 2010, 47, S19–S20. [Google Scholar] [CrossRef]
- Carlevaro, M.F.; Cermelli, S.; Cancedda, R.; Descalzi, C.F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Auto-paracrine role during endochondral bone formation. J. Cell Sci. 2000, 113 Pt 1, 59–69. [Google Scholar]
- Tavella, S.; Biticchi, R.; Schito, A.; Minina, E.; Martino, D.D.; Pagano, A.; Vortkamp, A.; Horton, W.A.; Cancedda, R.; Silvio Garofalo, M.D. Targeted Expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J. Bone Miner. Res. 2010, 19, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Zhang, H.; Hu, M.; Liu, S.; Wang, Y.; Gao, Q.; Guo, C. The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation. Exp. Ther. Med. 2018, 15, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Minina, E.; Wenzel, H.M.; Kreschel, C.; Karp, S.; Gaffield, W.; Mcmahon, A.P.; Vortkamp, A. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001, 128, 4523. [Google Scholar]
- Enochson, L.; Stenberg, J.; Brittberg, M.; Lindahl, A. GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition. Osteoarthr. Cartil. 2014, 22, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, H.; Lyons, J.P.; Mori-Akiyama, Y.; Yang, X.; Zhang, R.; Zhang, Z.; Deng, J.M.; Taketo, M.M.; Nakamura, T.; Behringer, R.R. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004, 18, 1072–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef]
- Zehentner, B.K.; Haussmann, A.; Burtscher, H. The bone morphogenetic protein antagonist Noggin is regulated by Sox9 during endochondral differentiation. Dev. Growth Differ. 2002, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Pandolfi, V.; Mcfetridge, P.S. Novel human-derived extracellular matrix induces in-vitro and in-vivo vascularization and inhibits fibrosis. Biomaterials 2015, 49, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsuhito, S.; Maja, O.; Margareta, J.S.; Anders, G.; Mcternan, P.G.; Johanna, A.; Peter, J.; Kajsa, S.H.; Bob, O.; Shigeo, Y. Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. J. Clin. Endocrinol. Metab. 2009, 94, 3987–3994. [Google Scholar]
- Takeda, E.; Suzuki, Y.; Sato, Y. Age-associated downregulation of vasohibin-1 in vascular endothelial cells. Aging Cell 2016, 15, 885–892. [Google Scholar] [CrossRef]
- Young, P.R. Pharmacological modulation of cytokine action and production through signaling pathways. Cytokine Growth Factor Rev. 1998, 9, 239. [Google Scholar] [CrossRef]
- Schrader, A.J.; Lechner, O.; Templin, M.; Dittmar, K.E.; Machtens, S.; Mengel, M.; Probst-Kepper, M.; Franzke, A.; Wollensak, T.; Gatzlaff, P.; et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br. J. Cancer 2002, 86, 1250–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Larsen, P.H.; Hao, C.; Yong, V.W. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J. Biol. Chem. 2002, 277, 49481–49487. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Pan, Y.; Wei, Y.; Cheng, X.; Zhou, B.P.; Tan, M.; Zhou, X.; Xia, W.; Hortobagyi, G.N.; Yu, D.; et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004, 6, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, R.; Dubuc, A.; Ward, S.; Yang, L.; Northcott, P.; Woerner, B.M.; Kroll, K.; Luo, J.; Taylor, M.D.; Wechsler-Reya, R.J.; et al. CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res. 2012, 72, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Kuleva, N.V.; Krasovskaya, I.E. A new role for myoglobin in cardiac and skeletal muscle function. Biophysics 2016, 61, 717–720. [Google Scholar] [CrossRef]
- Edyta, B.; Magdalena, K.; Agnieszka, M.Z.; Kamil, K.; Karolina, A.; Ma Gorzata, Z.; Iwona, G.; Czerwińska, A.M.; Magdalena, C.-G.; Ciemerych, M.A. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol. Cell 2012, 104, 722–737. [Google Scholar]
- Rudy, B.; Maffie, J.; Amarillo, Y.; Clark, B.; Goldberg, E.M.; Jeong, H.Y.; Kruglikov, I.; Kwon, E.; Nadal, M.; Zagha, E. Voltage gated potassium channels: Structure and function of Kv1 to Kv9 subfamilies. Encycl. Neurosci. 2009, 43, 397–425. [Google Scholar]
- D’Adamo, M.C.; Gallenmuller, C.; Servettini, I.; Hartl, E.; Tucker, S.J.; Arning, L.; Biskup, S.; Grottesi, A.; Guglielmi, L.; Imbrici, P.; et al. Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front. Physiol. 2014, 5, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownstein, C.A.; Beggs, A.H.; Rodan, L.; Shi, J.; Towne, M.C.; Pelletier, R.; Cao, S.; Rosenberg, P.A.; Urion, D.K.; Picker, J.; et al. Clinical heterogeneity associated with KCNA1 mutations include cataplexy and nonataxic presentations. Neurogenetics 2016, 17, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.P.; Ptácek, L.J. Episodic neurological channelopathies. Neuron 2010, 68, 282–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, H.; Wang, L.; Xi, Y.; Wang, J.; Zhang, R.; Li, L.; Bai, L.; Mustafa, A. Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks. Genes 2021, 12, 463. https://doi.org/10.3390/genes12040463
Li Y, Liu H, Wang L, Xi Y, Wang J, Zhang R, Li L, Bai L, Mustafa A. Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks. Genes. 2021; 12(4):463. https://doi.org/10.3390/genes12040463
Chicago/Turabian StyleLi, Yanying, Hehe Liu, Lei Wang, Yang Xi, Jiwen Wang, Rongping Zhang, Liang Li, Lili Bai, and Ahsan Mustafa. 2021. "Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks" Genes 12, no. 4: 463. https://doi.org/10.3390/genes12040463
APA StyleLi, Y., Liu, H., Wang, L., Xi, Y., Wang, J., Zhang, R., Li, L., Bai, L., & Mustafa, A. (2021). Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks. Genes, 12(4), 463. https://doi.org/10.3390/genes12040463