Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,891)

Search Parameters:
Keywords = RNA-seq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2172 KB  
Article
Identification and Validation of Iron Metabolism-Related Biomarkers in Endometriosis: A Mendelian Randomization and Single-Cell Transcriptomics Study
by Juan Du, Zili Lv and Xiaohong Luo
Curr. Issues Mol. Biol. 2025, 47(10), 831; https://doi.org/10.3390/cimb47100831 (registering DOI) - 9 Oct 2025
Abstract
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed [...] Read more.
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed IM-RGs (DEIM-RGs) were identified by intersecting IM-RGs with differentially expressed genes derived from GSE86534. Mendelian randomization analysis was employed to determine DEIM-RGs causally associated with endometriosis, with subsequent verification through sensitivity analyses and the Steiger test. Biomarkers associated with IM-RGs in endometriosis were validated using expression data from GSE86534 and GSE105764. Functional annotation, regulatory network construction, and immunological profiling were conducted for these biomarkers. Single-cell RNA sequencing (scRNA-seq) (GSE213216) was utilized to identify distinctively expressed cellular subsets between endometriosis and controls. Experimental validation of biomarker expression was performed via reverse transcription–quantitative polymerase chain reaction (RT-qPCR). BMP6 and SLC48A1, biomarkers indicative of cellular BMP response, were influenced by a medicus variant mutation that inactivated PINK1 in complex I, concurrently enriched by both biomarkers. The lncRNA NEAT1 regulated BMP6 through hsa-mir-22-3p and hsa-mir-124-3p, while SLC48A1 was modulated by hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p. Immune profiling revealed a negative correlation between BMP6 and monocytes, whereas SLC48A1 displayed a positive correlation with activated natural killer cells. scRNA-seq analysis identified macrophages and stromal stem cells as pivotal cellular components in endometriosis, exhibiting altered self-communication networks. RT-qPCR confirmed elevated expression of BMP6 and SLC48A1 in endometriosis samples relative to controls. Both BMP6 and SLC48A1 were consistently overexpressed in endometriosis, reinforcing their potential as biomarkers. Moreover, macrophages and stromal stem cells were delineated as key contributors. These findings provide novel insights into therapeutic and preventive approaches for patients with endometriosis. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
19 pages, 4213 KB  
Article
Pvalb8, a Type of Oncomodulin, Regulates Neuromast Development and Auditory Function in Zebrafish
by Guiyi Zhang, Qianqian Li, Ying Xu, Hanmeng Zhao, Chao Yang, Dong Liu and Jie Gong
Cells 2025, 14(19), 1572; https://doi.org/10.3390/cells14191572 - 9 Oct 2025
Abstract
Congenital hearing loss, frequently resulting from defective hair cells, remains poorly understood due to the incomplete identification of key pathogenic genes. Oncomodulin (OCM) is a kind of calcium-binding protein (CaBP) that regulates diverse cellular processes and is thought to play crucial roles in [...] Read more.
Congenital hearing loss, frequently resulting from defective hair cells, remains poorly understood due to the incomplete identification of key pathogenic genes. Oncomodulin (OCM) is a kind of calcium-binding protein (CaBP) that regulates diverse cellular processes and is thought to play crucial roles in auditory function. In teleost fish, parvalbumin 8 (pvalb8) and parvalbumin 9 (pvalb9) belong to the oncomodulin lineage and are highly expressed in hair cells. In this study, we first reported the oncomodulin lineage function in fish and identified pvalb8 as an essential regulator of hair cell development. Single-cell RNA sequencing (scRNA-seq) and whole-mount in situ hybridization (WISH) revealed that pvalb8 is highly and specifically expressed in supporting cells and hair cells. Functional loss of pvalb8, achieved via CRISPR/Cas9 knockout or morpholino knockdown, resulted in reduced neuromast size and a significant decrease in neuromast hair cell number, leading to auditory behavioral deficits. In addition, pvalb9 mutants exhibited hair cell defects similar to those observed in pvalb8 mutants, including a significant reduction in hair cell number. Moreover, pvalb8 loss strongly inhibited the proliferation of supporting cells, which likely accounts for the reduced number of differentiated hair cells. The expression levels of Wnt target genes, axin2, ccnd1, and myca, were all significantly reduced in pvalb8 mutants compared to control zebrafish, while activation of the Wnt signaling pathway rescued the hair cell loss observed in pvalb8 mutants, indicating that pvalb8 promotes hair cell development via Wnt-dependent proliferative signaling. These findings highlight pvalb8 as a critical factor in the regulation of auditory hair cell formation and function in zebrafish, offering new insights into the role of oncomodulin lineage in sensory cell development. Full article
19 pages, 3920 KB  
Article
Comprehensive Identification of the Bovine KLF Gene Family and Its Functional Regulation in Muscle Development: Insights from Single-Nuclei Transcriptomics
by Fengying Ma, Le Zhou, Lili Guo, Chencheng Chang, Dan Dan, Yanchun Bao, Guiting Han, Mingjuan Gu, Lin Zhu, Risu Na, Caixia Shi, Jiaxin Zhang and Wenguang Zhang
Animals 2025, 15(19), 2930; https://doi.org/10.3390/ani15192930 - 9 Oct 2025
Abstract
The Krüppel-like factor (KLF) family of transcription regulators plays pivotal roles in adipogenesis, myogenesis, and metabolism. While comprehensively studied in humans and mice, its characterization in cattle remains limited, especially within the skeletal muscle niche. This study aimed to systematically characterize [...] Read more.
The Krüppel-like factor (KLF) family of transcription regulators plays pivotal roles in adipogenesis, myogenesis, and metabolism. While comprehensively studied in humans and mice, its characterization in cattle remains limited, especially within the skeletal muscle niche. This study aimed to systematically characterize the KLF family in Bos taurus and elucidate its role in breed-specific muscular development. We employed an integrated approach of comparative genomics and single-nucleus RNA sequencing (snRNA-seq) on longissimus dorsi muscle from Angus (ANG, beef breed) and Holstein (HST, dairy breed) cattle. Phylogenomic analysis identified 14 KLF genes, revealing evolutionary conservation and potential functional divergence. snRNA-seq delineated 11 distinct cell populations and uncovered cell-type-specific expression patterns of KLFs. Further machine learning based analysis pinpointed KLF6, KLF9, KLF10, and KLF12 as key global drivers of transcriptional differences between breeds, while KLF6 was identified as a major cell-type-specific contributor in lymphatic endothelial cells. Our work provides a foundational resource for understanding the KLF family in cattle and identifies promising candidate genes for improving meat production traits through molecular breeding. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
18 pages, 6017 KB  
Article
Bioinformatics Analysis of Tumor-Associated Macrophages in Hepatocellular Carcinoma and Establishment of a Survival Model Based on Transformer
by Zhuo Zeng, Shenghua Rao and Jiemeng Zhang
Int. J. Mol. Sci. 2025, 26(19), 9825; https://doi.org/10.3390/ijms26199825 (registering DOI) - 9 Oct 2025
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignancies globally. Although treatment strategies have improved, the prognosis for patients with advanced HCC remains unfavorable. Tumor-associated macrophages (TAMs) play a dual role, exhibiting both anti-tumor and pro-tumor functions. In this study, we analyzed single-cell [...] Read more.
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignancies globally. Although treatment strategies have improved, the prognosis for patients with advanced HCC remains unfavorable. Tumor-associated macrophages (TAMs) play a dual role, exhibiting both anti-tumor and pro-tumor functions. In this study, we analyzed single-cell RNA sequencing data from 10 HCC tumor cores and 8 adjacent non-tumor liver tissues available in the dataset GSE149614. Using dimensionality reduction and clustering approaches, we identified six major cell types and nine distinct TAM subtypes. We employed Monocle2 for cell trajectory analysis, hdWGCNA for co-expression network analysis, and CellChat to investigate functional communication between TAMs and other components of the tumor microenvironment. Furthermore, we estimated TAM abundance in TCGA-LIHC samples using CIBERSORT and observed that the relative proportions of specific TAM subtypes were significantly correlated with patient survival. To identify TAM-related genes influencing patient outcomes, we developed a high-dimensional, gene-based transformer survival model. This model achieved superior concordance index (C-index) values across multiple datasets, including TCGA-LIHC, OEP000321, and GSE14520, outperforming other methods. Our results emphasize the heterogeneity of tumor-associated macrophages in hepatocellular carcinoma and highlight the practicality of our deep learning framework in survival analysis. Full article
(This article belongs to the Section Molecular Informatics)
17 pages, 1534 KB  
Article
RNF135 Expression Marks Chemokine (C-C Motif) Ligand-Enriched Macrophage–Tumor Interactions in the Glioblastoma Microenvironment
by Jianan Chen, Qiong Wu, Anders E. Berglund, Robert J. Macaulay, James J. Mulé and Arnold B. Etame
Cancers 2025, 17(19), 3271; https://doi.org/10.3390/cancers17193271 - 9 Oct 2025
Abstract
Background: Tumor-associated macrophages (TAMs) are essential regulators of the glioblastoma (GBM) microenvironment; their functional heterogeneity and interaction networks are not fully elucidated. We identify RNF135 as a novel TAM-enriched gene associated with immune activation and adverse prognosis in GBM. Methods: To evaluate RNF135 [...] Read more.
Background: Tumor-associated macrophages (TAMs) are essential regulators of the glioblastoma (GBM) microenvironment; their functional heterogeneity and interaction networks are not fully elucidated. We identify RNF135 as a novel TAM-enriched gene associated with immune activation and adverse prognosis in GBM. Methods: To evaluate RNF135’s expression profile, prognostic significance, and functional pathways, extensive transcriptome analyses from TCGA and CGGA cohorts were conducted. The immunological landscape and cellular origin of RNF135 were outlined using single-cell RNA-seq analyses and bulk RNA-seq immune deconvolution (MCP-counter, xCell and ssGSEA). Cell–cell communication networks between tumor cells and RNF135-positive and -negative tumor-associated macrophage subsets were mapped using CellChat. Results: RNF135 predicted a poor overall survival and was markedly upregulated in GBM tissues. Functional enrichment analyses showed that increased cytokine signaling, interferon response, and innate immune activation were characteristics of RNF135-high samples. Immune infiltration profiling showed a strong correlation between the abundance of T cells and macrophages and RNF135 expression. According to the single-cell analyses, RNF135 was primarily expressed in TAMs, specifically in proliferation, phagocytic, and transitional subtypes. RNF135-positive TAMs demonstrated significantly improved intercellular communication with aggressive tumor subtypes in comparison to RNF135-negative TAMs. This was facilitated by upregulated signaling pathways such as MHC-II, CD39, ApoE, and most notably, the CCL signaling axis. The CCL3/CCL3L3–CCR1 ligand–receptor pair was identified as a major mechanistic driver of TAM–TAM crosstalk. High RNF135 expression was also linked to greater sensitivity to Selumetinib, a selective MEK1/2 inhibitor that targets the MAPK/ERK pathway, according to drug sensitivity analysis. Conclusions: RNF135 defines a TAM phenotype in GBM that is both immunologically active and immunosuppressive. This phenotype promotes inflammatory signaling and communication between cells in the tumor microenvironment. Targeting the CCL–CCR1 axis or combining RNF135-guided immunomodulation with certain inhibitors could be a promising therapeutic strategies for GBM. Full article
(This article belongs to the Special Issue Molecular Genomics in Brain Tumors)
12 pages, 844 KB  
Article
Differences in Vaginal Microbiota Composition Between Infertile and Fertile Patients: A Prospective Study
by Pei-Chen Chen, Shih-Fen Chen, Wei-Tung Hung, Yu-Ying Lin, Ling-Chun Lin, Jen-Hung Wang and Pao-Chu Chen
Diagnostics 2025, 15(19), 2544; https://doi.org/10.3390/diagnostics15192544 - 9 Oct 2025
Abstract
Background/Objectives: Dysbiosis of the vaginal microbiota, particularly the loss of Lactobacillus spp. dominance, is linked to female infertility. While community state types (CSTs) I–III and V have been studied extensively, CST IV remains underexplored. The aim of this prospective study was to [...] Read more.
Background/Objectives: Dysbiosis of the vaginal microbiota, particularly the loss of Lactobacillus spp. dominance, is linked to female infertility. While community state types (CSTs) I–III and V have been studied extensively, CST IV remains underexplored. The aim of this prospective study was to compare vaginal microbiota composition—specifically CST IVA and IVB—between fertile and infertile women. Methods: Vaginal samples were collected from 22 women (15 infertile, 7 fertile) using cervical brushes and analyzed via 16S rRNA gene sequencing. DNA was extracted, and V3–V4 regions were sequenced using the Illumina MiSeq platform. Taxonomic classification was performed with QIIME 2 and the Greengenes database. Differences in microbial composition were assessed using the Wilcoxon rank-sum test (p < 0.05) in SPSS v21.0. Results: Infertile women showed lower relative abundances of Lactobacillus spp. (31.54% vs. 42.32%) and Oscillospira spp. relative to fertile women. CST IV was more frequent in the infertile group (29.75% vs. 21.61%). Within CST IV, CST IVA accounted for a higher proportion in infertile women (7.0% vs. 0.94%), with Prevotella spp. representing 95.18% of CST IVA in infertile subjects, as opposed to the figure of 69.77% in fertile counterparts. No clear differences in CST IVB were observed between groups. Conclusions: Increased prevalence of Prevotella spp. in CST IVA may contribute to an unfavorable vaginal environment in infertile women, potentially affecting sperm viability. The presence of Oscillospira spp. in fertile women suggests it is associated with a healthy vaginal microbiota profile. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
19 pages, 2308 KB  
Article
Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review
by Davide Politano, Renato Borgatti, Giulia Borgonovi, Angelina Cistaro, Cesare Danesino, Piercarlo Fania, Gaia Garghetti, Andrea Guala, Isabella Orlando, Irene Giovanna Schiera, Claudia Scotti, Fabio Sirchia, Romina Romaniello, Gaia Visani, Denise Vurchio, Simona Mellone and Mara Giordano
Genes 2025, 16(10), 1174; https://doi.org/10.3390/genes16101174 - 9 Oct 2025
Abstract
Background: Autosomal dominant intellectual developmental disorder 51 (MIM #617788) is caused by pathogenic variants in KMT5B, a histone methyltransferase essential for transcriptional repression and central nervous system development. The disorder manifests as a complex neurodevelopmental syndrome with variable neurological and systemic features. Methods: [...] Read more.
Background: Autosomal dominant intellectual developmental disorder 51 (MIM #617788) is caused by pathogenic variants in KMT5B, a histone methyltransferase essential for transcriptional repression and central nervous system development. The disorder manifests as a complex neurodevelopmental syndrome with variable neurological and systemic features. Methods: Two adolescents with nonsense KMT5B variants underwent detailed clinical, neuropsychological, and neuroimaging evaluations, including MRI and 18FDG PET/CT, analyzed with Statistical Parametric Mapping against matched controls. RNA sequencing was performed, and the literature was reviewed to assess genotype–phenotype correlations. Results: Both patients showed global developmental delay, progressing to autism spectrum disorder (ASD) and developmental coordination disorder (DCD), without intellectual disability (ID). The MRI was normal, but neuropsychological testing revealed executive function impairment, expressive language deficits, and behavioral disturbances. PET/CT consistently demonstrated cerebellar and temporal lobe hypometabolism, correlating with symptom severity. RNA sequencing identified shared dysregulated pathways, notably DDIT4 upregulation, linked to synaptic dysfunction and neuronal atrophy in animal models. Conclusions: The findings highlight cerebellar involvement in DCD and ASD, medial temporal lobe contribution to ASD and executive dysfunction, and DDIT4 as a possible molecular signature of KMT5B loss-of-function. An integrative multimodal approach refined genotype–phenotype correlations and revealed novel brain regions and pathways implicated in KMT5B-related disorders. Full article
(This article belongs to the Special Issue Genetics and Genomics of Autism Spectrum Disorders)
Show Figures

Figure 1

17 pages, 4443 KB  
Article
Physiological and Transcriptional Responses of Sorghum Seedlings Under Alkali Stress
by Xinyu Liu, Bo Wang, Yiyu Zhao, Min Chu, Han Yu, Di Gao, Jiaheng Wang, Ziqi Li, Sibei Liu, Yuhan Li, Yulei Wei, Jinpeng Wei and Jingyu Xu
Plants 2025, 14(19), 3106; https://doi.org/10.3390/plants14193106 - 9 Oct 2025
Abstract
Saline-alkali stress seriously affects the growth and development of crops. Sorghum bicolor (L.), a C4 plant, is an important cereal crop in the world, and its growth and geographical distribution are limited by alkali conditions. In this study, sorghum genotypes with different alkaline [...] Read more.
Saline-alkali stress seriously affects the growth and development of crops. Sorghum bicolor (L.), a C4 plant, is an important cereal crop in the world, and its growth and geographical distribution are limited by alkali conditions. In this study, sorghum genotypes with different alkaline resistance (alkaline-sensitive Z1 and alkaline-tolerant Z14) were used as experimental materials to explore the effects of alkali on sorghum seedlings. RNA-seq technology was used to examine the differentially expressed genes (DEGs) in alkali-tolerant Z14 to reveal the molecular mechanism of sorghum response to alkali stress. The results showed that plant height, root length, and biomass of both cultivars decreased with time under 80 mM NaHCO3 treatment, but Z14 showed better water retention abilities. The photosynthetic fluorescence parameters and chlorophyll content also decreased, but the Fv/Fm, ETH, ΦPSII, and chlorophyll content of Z14 were significantly higher than those of Z1. The level of reactive oxygen species (ROS) increased in both sorghum varieties under alkali stress, while the enzyme activities of SOD, POD, CAT, and APX were also significantly increased, especially in Z14, resulting in lower ROS compared with Z1. Transcriptome analysis revealed around 6000 DEGs in Z14 sorghum seedlings under alkali stress, among which 267 DEGs were expressed in all comparison groups. KEGG pathways were enriched in the MAPK signaling pathway, plant hormone signal transduction, and RNA transport. bHLHs, ERFs, NACs, MYBs, and other transcription factor families are actively involved in the response to alkali stress. A large number of genes involved in photosynthesis and the antioxidant system were found to be significantly activated under alkali stress. In the stress signal transduction cascades, Ca2+ signal transduction pathway-related genes were activated, about 23 PP2Cs in ABA signaling were upregulated, and multiple MAPK and other kinase-related genes were triggered by alkali stress. These findings will help decipher the response mechanism of sorghum to alkali stress and improve its alkali tolerance. Full article
Show Figures

Figure 1

13 pages, 2390 KB  
Article
Uncovering the Regulatory Role of Proteins in EBSS-Induced Autophagy Using RNA-Seq Analysis
by Chen Ruan, Yuzhu Li and Ran Wu
Biology 2025, 14(10), 1373; https://doi.org/10.3390/biology14101373 - 8 Oct 2025
Abstract
Earle’s balanced salt solution (EBSS) is a classical autophagy inducer that provides a special culture environment lacking amino acids and serum, causing cell starvation. However, the production of relevant omics data surrounding EBSS-induced autophagy is still in the early stage. The objective of [...] Read more.
Earle’s balanced salt solution (EBSS) is a classical autophagy inducer that provides a special culture environment lacking amino acids and serum, causing cell starvation. However, the production of relevant omics data surrounding EBSS-induced autophagy is still in the early stage. The objective of this study was to identify new potential functional proteins in the autophagy process through omics analysis. We selected EBSS-induced autophagy as our research object and uncovered autophagy-regulatory proteins using RNA-seq analysis. Western blotting showed that EBSS increased LC3B-II protein levels in NRK cells, reaching the maximum amount at 2 h of culture. Then, we used next-generation sequencing to obtain quantified RNA-seq data from cells incubated with EBSS and the bowtie–tophat–cufflinks flow path to analyze the transcriptome data. Using significant differences in the FPKM values of genes in the treated group compared with those in the control group to indicate differential expression, 470 candidate genes were selected. Subsequently, GO and KEGG analyses of these genes were performed, revealing that most of these signaling pathways were closely associated with autophagy, and to better understand the potential functions and connections of these genes, protein–protein interaction networks were studied. Considering all the conclusions of the analysis, 27 candidate genes were selected for verification, where the knockdown of Txnrd1 decreased LC3B-II protein levels in NRK cells, consistent with the results of confocal experiments. In conclusion, we uncovered autophagy-regulatory proteins using RNA-seq analysis, with our results indicating that TXNRD1 may play a role in regulating EBSS-induced autophagy via an unknown pathway. We hope that our research can provide useful information for further autophagy omics research. Full article
Show Figures

Figure 1

21 pages, 15960 KB  
Article
Multimodal Exploration Offers Novel Insights into the Transcriptomic and Epigenomic Landscape of the Human Submandibular Glands
by Erich Horeth, Theresa Wrynn, Jason M. Osinski, Alexandra Glathar, Jonathan Bard, Mark S. Burke, Saurin Popat, Thom Loree, Michael Nagai, Robert Phillips, Jose Luis Tapia, Jennifer Frustino, Jill M. Kramer, Satrajit Sinha and Rose-Anne Romano
Cells 2025, 14(19), 1561; https://doi.org/10.3390/cells14191561 - 8 Oct 2025
Abstract
The submandibular glands (SMGs), along with the parotid and sublingual glands, generate the majority of saliva and play critical roles in maintaining oral and systemic health. Despite their physiological importance, long-term therapeutic options for salivary gland dysfunction remain limited, highlighting the need for [...] Read more.
The submandibular glands (SMGs), along with the parotid and sublingual glands, generate the majority of saliva and play critical roles in maintaining oral and systemic health. Despite their physiological importance, long-term therapeutic options for salivary gland dysfunction remain limited, highlighting the need for a deeper molecular understanding of SMG biology, particularly in humans. To address this knowledge gap, we have performed transcriptomic- and epigenomic-based analyses and molecular characterization of the human SMG. Our integrated analysis of multiorgan RNA-sequencing datasets has identified an SMG-enriched gene expression signature comprising 289 protein-coding and 75 long non-coding RNA (lncRNA) genes that include both known regulators of salivary gland function and several novel candidates ripe for future exploration. To complement these transcriptomic studies, we have generated chromatin immunoprecipitation sequencing (ChIP-seq) datasets of key histone modifications on human SMGs. Our epigenomic analyses have allowed us to identify genome-wide enhancers and super-enhancers that are likely to drive genes and regulatory pathways that are important in human SMG biology. Finally, comparative analysis with mouse and human SMG and other tissue datasets reveals evolutionary conserved gene and regulatory networks, underscoring fundamental mechanisms of salivary gland biology. Collectively, this study offers a valuable knowledge-based resource that can facilitate targeted research on salivary gland dysfunction in human patients. Full article
Show Figures

Figure 1

15 pages, 1351 KB  
Article
NRDE2 Interacts with an Early Transcription Elongation Complex and Widely Impacts Gene Expression
by Marina Srbic, Chaïmaa Belhaouari, Raoul Raffel, Laurine Lemaire, Jerome Barbier, Julie Bossuyt, Charbel Akkawi, Xavier Contreras and Rosemary Kiernan
Int. J. Mol. Sci. 2025, 26(19), 9792; https://doi.org/10.3390/ijms26199792 - 8 Oct 2025
Abstract
NRDE2 is a highly conserved protein implicated in post-transcriptional gene silencing in Schizosaccharomyces pombe and Caenorhabditis elegans and has been shown to modulate splicing in mammals. To explore whether NRDE2 participates in additional processes in human cells, we performed tandem affinity purification followed [...] Read more.
NRDE2 is a highly conserved protein implicated in post-transcriptional gene silencing in Schizosaccharomyces pombe and Caenorhabditis elegans and has been shown to modulate splicing in mammals. To explore whether NRDE2 participates in additional processes in human cells, we performed tandem affinity purification followed by proteomic analysis of NRDE2 from nuclear extracts of HEK293T and HeLa cells. Our analysis confirmed the interaction of NRDE2 with its well-characterized partner, the MTR4 helicase (MTREX), as well as with multiple splicing factors. Notably, we also identified interactions with chromatin-associated proteins involved in transcription, including the Polymerase-Associated Factor 1 (PAF1) complex and elongating forms of RNA polymerase II (RNAPII). To further investigate NRDE2 function, we conducted RNA-seq following its transient depletion. Differential expression analysis revealed that loss of NRDE2 alters the expression of thousands of genes. Consistent with earlier reports, we observed splicing defects, particularly intron retention; however, our results indicate that the impact of NRDE2 on intron retention is more extensive than previously recognized. Moreover, intron retention was frequently associated with reduced mRNA expression. Together, these findings suggest that NRDE2 associates with both transcriptional and splicing machineries and plays a broader role in RNA processing than previously appreciated. Full article
Show Figures

Figure 1

17 pages, 2601 KB  
Article
Genome-Wide Isoform Switching Reveals SR45-Mediated Splicing Control of Arabidopsis Leaf Senescence
by Mohammed Albaqami and Ghaydaa Osamah Almaghrabi
Int. J. Mol. Sci. 2025, 26(19), 9784; https://doi.org/10.3390/ijms26199784 - 8 Oct 2025
Abstract
Leaf senescence is the final, programmed stage of leaf development, marked by nutrient remobilization and tightly regulated molecular events. Although alternative splicing has emerged as a major regulator of plant development, its role in isoform switching during leaf aging remains poorly understood. To [...] Read more.
Leaf senescence is the final, programmed stage of leaf development, marked by nutrient remobilization and tightly regulated molecular events. Although alternative splicing has emerged as a major regulator of plant development, its role in isoform switching during leaf aging remains poorly understood. To address this, we conducted a genome-wide analysis of isoform switching in Arabidopsis, leveraging publicly available RNA-seq data from mature (16-day-old) and senescent (30-day-old) leaves, analyzed with the IsoformSwitchAnalyzeR package. Between these two developmental stages, we identified 269 genes exhibiting 377 significant isoform switches collectively predicted to alter protein localization, coding potential, and transcript stability. Experimental validation confirmed predicted switching at the PUS3 (Pseudouridine Synthase 3) locus, with sequence analysis revealing an age-dependent shift from mitochondrial-targeted to cytoplasmic isoforms. Gene Ontology enrichment analysis of switching genes revealed 82 significant terms, prominently associated with metabolism, gene expression, developmental regulation, and stress responses. Interestingly, we found nearly one-third of switching genes to overlap with known targets of the splicing factor SR45, with enrichment in pathways related to nucleotide and amino acid metabolism, energy production, and developmental processes. Correspondingly, dark-induced senescence assays revealed accelerated senescence in the sr45 mutant, confirming SR45′s role in regulating leaf aging. Specific complementation of SR45′s two isoforms revealed contrasting functions, with SR45.1 restoring normal senescence timing while SR45.2 failed to complement. Taken together, our findings demonstrate that differential isoform usage, orchestrated by specific splicing regulators, plays a critical role in leaf aging. This insight opens new avenues for manipulating senescence and engineering stay-green traits in crops. Full article
Show Figures

Figure 1

40 pages, 1447 KB  
Review
Preclinical Diagnosis of Type 1 Diabetes: Reality or Utopia
by Tatyana A. Marakhovskaya, Dmitry V. Tabakov, Olga V. Glushkova, Zoya G. Antysheva, Yaroslava S. Kiseleva, Ekaterina S. Petriaikina, Nickolay A. Bugaev-Makarovskiy, Anna S. Tashchilova, Vasiliy E. Akimov, Julia A. Krupinova, Viktor P. Bogdanov, Tatyana M. Frolova, Victoria S. Shchekina, Ekaterina S. Avsievich, Valerii V. Gorev, Irina G. Rybkina, Ismail M. Osmanov, Irina G. Kolomina, Igor E. Khatkov, Natalia A. Bodunova, Vladimir S. Yudin, Anton A. Keskinov, Sergey M. Yudin, Pavel Y. Volchkov, Dmitry V. Svetlichnyy, Mary Woroncow and Veronika I. Skvortsovaadd Show full author list remove Hide full author list
Biomedicines 2025, 13(10), 2444; https://doi.org/10.3390/biomedicines13102444 - 7 Oct 2025
Abstract
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells, predominantly manifesting in childhood or adolescence. The lack of clearly interpretable biological markers in the early stages, combined with the insidious onset of the disease, poses [...] Read more.
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells, predominantly manifesting in childhood or adolescence. The lack of clearly interpretable biological markers in the early stages, combined with the insidious onset of the disease, poses significant challenges to early diagnosis and the implementation of preventive strategies. The applicability of classic T1D biomarkers for understanding the mechanisms of the autoimmune process, preclinical diagnostics and treatment efficiency is limited. Despite advances in next-generation sequencing (NGS) technologies, which have enabled large-scale genome-wide association studies (GWASs) and the identification of polygenic risk scores (PRSs) associated with T1D predisposition, as well as progress in bioinformatics approaches for assessing dysregulated gene expression, no universally accepted risk assessment model or definitive predictive biomarker has been established. Until now, the use of new promising biomarkers for T1D diagnostics is limited by insufficient evidence base. However, they have great potential for the development of diagnostic methods on their basis, which has been shown in single or serial large-scale studies. This critical review covers both well-known biomarkers widely used in clinical practice, such as HLA-haplotype, non-HLA SNPs, islet antigen autoantibodies, C-peptide, and the promising ones, such as cytokines, cfDNA, microRNA, T1D-specific immune cells, islet-TCR, and T1D-specific vibrational bands. Additionally, we highlight new approaches that have been gaining popularity and have already demonstrated their potential: GWAS, single-cell transcriptomics, identification of antigen-specific T cells using scRNA-seq, and FTIR spectroscopy. Although some of the biomarkers, in our opinion, are still limited to a research context or are far from being implemented in clinical diagnostics of T1D, they have the greatest potential of being applied in clinical practice. When integrated with the monitoring of the classical autoimmune diabetes markers, they would increase the sensitivity and specificity during diagnostics of early and preclinical stages of the disease. This critical review aims to evaluate the current landscape of classical and emerging biomarkers in autoimmune diabetes, with a focus on those enabling early detection—prior to extensive destruction of pancreatic islets. Another goal of the review is to focus the attention of the scientific community on the gaps in early T1D diagnostics, and to help in the selection of markers, targets, and methods for scientific studies on creating novel diagnostic panels. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
14 pages, 1246 KB  
Article
Evaluation of Nasal Microbial Communities of Beef Calves During Pre-Weaning Outbreak of Bovine Respiratory Disease
by Amy N. Abrams, Larry A. Kuehn, John W. Keele, Michael G. Gonda and Tara G. McDaneld
Animals 2025, 15(19), 2914; https://doi.org/10.3390/ani15192914 - 7 Oct 2025
Viewed by 29
Abstract
Bovine respiratory disease complex (BRDC) is a leading cause of morbidity and mortality in pre-weaned calves, yet the role of commensal nasal microbiota in outbreak severity remains poorly understood. This study characterized nasal bacterial communities during two BRDC outbreaks of differing severity (moderate [...] Read more.
Bovine respiratory disease complex (BRDC) is a leading cause of morbidity and mortality in pre-weaned calves, yet the role of commensal nasal microbiota in outbreak severity remains poorly understood. This study characterized nasal bacterial communities during two BRDC outbreaks of differing severity (moderate vs. severe) and at ~30 days post-treatment. Nasal swabs were collected from calves and analyzed using 16S rRNA gene sequencing (V1–V3 regions, Illumina MiSeq) and quantitative PCR targeting three major BRDC pathogens. Microbial community profiles differed between outbreak groups and across timepoints. Calves in the severe outbreak group exhibited lower microbial diversity compared to those in the moderate outbreak. In both groups, diversity significantly increased from outbreak to post-treatment. At the time of disease, nasal communities were dominated by the genera Mycoplasmopsis, Mesomycoplasma, and Caviibacter, with qPCR confirming Mycoplasma bovirhinis as the predominant species. These findings indicate that BRDC outbreaks in pre-weaned calves are associated with reduced microbial diversity and the dominance of pathogenic Mycoplasma species, with recovery characterized by greater bacterial diversity. Shifts in nasal microbiome composition between outbreak and post-treatment may reflect pathogen-driven disruption during disease and subsequent microbial community rebalancing. Full article
(This article belongs to the Collection Cattle Diseases)
Show Figures

Figure 1

15 pages, 1506 KB  
Article
Usp21 Knockout Causes Abnormal Lipid Metabolism in Mouse and Its Polymorphism Correlates with Hypercholesterolemia in Outpatients
by Sailakshmi Iyer, Naoko Hattori, Hiroshi Okuda, Takeya Nakagawa, Satoshi Fujii, Takahiro Maeda, Haruhiko Koseki and Takashi Ito
Int. J. Mol. Sci. 2025, 26(19), 9727; https://doi.org/10.3390/ijms26199727 - 6 Oct 2025
Viewed by 182
Abstract
Usp21, a member of the ubiquitin protease family, plays a vital role in various biological functions. However, the effects of Usp21 dysfunction remain incompletely understood. In this study, we generated Usp21 knockout (KO) mice. Blood tests showed no impairment of liver function [...] Read more.
Usp21, a member of the ubiquitin protease family, plays a vital role in various biological functions. However, the effects of Usp21 dysfunction remain incompletely understood. In this study, we generated Usp21 knockout (KO) mice. Blood tests showed no impairment of liver function but did reveal elevated levels of total cholesterol (T-CHOL) and free fatty acid (FFA) in Usp21 KO mice compared to wild-type (WT) mice. Next, we performed RNA-sequencing (RNA-seq) to identify genes that Usp21 regulates. The results highlighted several candidate genes based on their biological relevance, and their expression levels were validated by RT-qPCR. The Usp21 KO mice exhibited significant elevations in the expression of the genes Fabp7, Nlrc5, and Ppargc1a, which play an important role in lipid metabolism, compared to WT. These data suggest that Usp21 may play roles in lipid metabolism in association with Fabp7, Nlrc5 and Ppargc1a. To clarify the involvement of USP21 in human hypercholesterolemia, we examined single-nucleotide polymorphisms (SNPs) around USP21 in non-hypercholesterolemic and hypercholesterolemic outpatients. We found that the rs11421 SNP downstream of USP21 was significantly associated with hypercholesterolemia. These data suggest that Usp21 plays a role in mice and human lipid metabolism and that its polymorphism may be a diagnostic marker for human hypercholesterolemia. Full article
(This article belongs to the Special Issue Novel Insight into Epigenomic Studies of Human Disease)
Show Figures

Graphical abstract

Back to TopTop