Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review
Abstract
:1. Introduction and Overview
- (1)
- A clinical exome sequencing (CES) covering genes associated with a known clinical association with disease (Mendeliom) [37].
- (2)
- Whole exome sequencing (WES), covering the protein coding segments (exons) of all known genes representing about 1–2% of the genome [38].
- (3)
- Whole genome sequencing (WGS) additionally covering regulatory genomic sequences, introns and other non-coding sequences.
2. cfDNA-Based Screening (NIPT) Other Than Chromosomes 21, 18 and 13
2.1. Screening for Sex Chromosomal Anomalies
2.2. Screening for Copy Number Variants (“Expanded NIPT”)
2.3. Screening for Rare Autosomal Trisomies (RATs)
3. New Diagnostic Tools in Prenatal Diagnosis
3.1. Chromosomal Microarray Analysis
3.2. Genome-Wide Sequencing
4. Conclusions
- NIPT is not a diagnosis. NIPT for the common trisomies, mostly trisomy 21, has the best performance of all screening approaches. Performance for trisomy 13 and 18 is still very good, more comparable to combined first trimester screening, including early anomaly scan [37]. This evidence is for singleton but also twin pregnancies.
- NIPT performance for sex chromosomal anomalies, mostly monosomy X, is much worse, due to biological factors. This should be taken into consideration in genetic counseling. Expansion of NIPT beyond the common trisomies is promising, but raises several technical and ethical challenges, which should be addressed.
- NIPT should always be combined with a skilled ultrasound examination.
- Invasive prenatal testing provides diagnosis. In invasive prenatal diagnostics, the use of chromosomal microarray analysis, and more recently, next-generation sequencing approaches, has expanded the prenatal diagnostic yield considerably. Next-generation sequencing approaches should be used additionally in fetal anomalies with a normal routine testing result (karyotype and/or chromosomal microarray analysis), not as a first-line test. Using these new techniques, parental pre- and post-test counseling is mandatory, and close collaboration in a multidisciplinary team is urgently needed.
- Adequate genetic pre- and post-test counseling is mandatory to ensure an informed consent of the patients as the basis for all genetic testing strategies and furthermore, to respect the right not to know if desired.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FPR | False positive rate |
NIPT | Non-invasive prenatal testing |
NIPD | Non-invasive prenatal diagnosis |
SCA | Sex chromosomal anomaly |
CMA | Chromosomal microarray |
CES | Clinical exome sequencing |
WES | Whole exome sequencing |
WGS | Whole genome sequencing |
CNV | Copy number variant |
RAT | Rare autosomal trisomy |
FTCS | First trimester combined screening |
NT | Nuchal translucency |
PPV | Positive predictive value |
UPD | Uniparental disomy |
CPM | Confined placental mosaicism |
IUGR | Intrauterine growth restriction |
CVS | Chorionic villous sampling |
TFM | True fetal mosaicism |
VUS | Variants of uncertain significance |
SNP | Single nucleotide polymorphism |
NGS | Next-generation sequencing |
AI | Artificial intelligence |
References
- Grande, M.; Arigita, M.; Borobio, V.; Jimenez, J.M.; Fernandez, S.; Borrell, A. First-trimester detection of structural abnormalities and the role of aneuploidy markers. Ultrasound Obstet. Gynecol. 2012, 39, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.S.; Cruz Ithier, M.A.; Rosen, T.; Ashkinadze, E. Advanced paternal age, infertility, and reproductive risks: A review of the literature. Prenat. Diagn. 2019, 39, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagan, K.O.; Maier, V.; Sonek, J.; Abele, H.; Lüthgens, K.; Schmid, M.; Wagner, P.; Hoopmann, M. False-Positive Rate in First-Trimester Screening Based on Ultrasound and Cell-Free DNA versus First-Trimester Combined Screening with Additional Ultrasound Markers. Fetal Diagn. Ther. 2018, 45, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.E.; Jacobsson, B.; Swamy, G.K.; Laurent, L.C.; Ranzini, A.C.; Brar, H.; Tomlinson, M.W.; Pereira, L.; Spitz, J.L.; Hollemon, D.; et al. Cell-free DNA Analysis for Noninvasive Examination of Trisomy. N. Engl. J. Med. 2015, 372, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- Pescia, G.; Guex, N.; Iseli, C.; Brennan, L.; Osteras, M.; Xenarios, I.; Farinelli, L.; Conrad, B. Cell-free DNA testing of an extended range of chromoso-mal anomalies: Clinical experience with 6388 consecutive cases. Genet. Med. 2017, 19, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, D.W.; Wilkins-Haug, L. Integration of Noninvasive DNA Testing for Aneuploidy into Prenatal Care: What Has Happened Since the Rubber Met the Road? Clin. Chem. 2014, 60, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Kostenko, E.; Chantraine, F.; Vandeweyer, K.; Schmid, M.; Lefevre, A.; Hertz, D.; Zelle, L.; Bartha, J.L.; Di Renzo, G.C. Clinical and Economic Impact of Adopting Noninvasive Prenatal Testing as a Primary Screening Method for Fetal Aneuploidies in the General Pregnancy Population. Fetal Diagn. Ther. 2018, 45, 413–423. [Google Scholar] [CrossRef]
- Gil, M.M.; Accurti, V.; Santacruz, B.; Plana, M.N.; Nicolaides, K.H. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: Updated meta-analysis: Cell-free DNA in screening for aneuploidies. Ultrasound Obstet. Gynecol. 2017, 50, 302–314. [Google Scholar] [CrossRef]
- Bianchi, D.W.; Parker, R.L.; Wentworth, J.; Madankumar, R.; Saffer, C.; Das, A.F.; Craig, J.A.; Chudova, D.I.; Devers, P.L.; Jones, K.W.; et al. DNA Sequencing versus Standard Prenatal Aneuploidy Screening. N. Engl. J. Med. 2014, 370, 799–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwarsson, E.; Conner, P. Detection rates and residual risk for a postnatal diagnosis of an atypical chromosome aberration fol-lowing combined first-trimester screening. Prenat. Diagn. 2020, 40, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Petersen, O.B.; Vogel, I.; Ekelund, C.; Hyett, J.; Tabor, A.; Christiansen, M.; Farlie, R.; Hoseth, E.; Ibsen, M.H.; Jensen, H.S.; et al. Potential diagnostic consequences of applying non-invasive prenatal testing: Population-based study from a country with existing first-trimester screening: What is missed by NIPT? Ultrasound Obstet. Gynecol. 2014, 43, 265–271. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Raine-Fenning, N.J.; Timor-Tritsch, I.; Seshadri, S. Practice Guidelines: Performance of first-trimester fetal ultrasound scan: ISUOG Guidelines. Ultrasound Obstet. Gynecol. 2013, 41, 102–113. [Google Scholar] [PubMed]
- Zalel, Y. Non-invasive prenatal testing—It’s all a matter of timing. Ultrasound Obstet. Gynecol. 2015, 45, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Bardi, F.; Bosschieter, P.; Verheij, J.; Go, A.; Haak, M.; Bekker, M.; Sikkel, E.; Coumans, A.; Pajkrt, E.; Bilardo, C. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat. Diagn. 2020, 40, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.; Fernando, S.; Menezes, M.; Costa, F.D.S.; Ramkrishna, J.; Meagher, S.; Rolnik, D.L. The importance of ultrasound preceding cell-free DNA screening for fetal chromosomal abnormalities. Prenat. Diagn. 2020, 40, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Guseh, S.H. Noninvasive prenatal testing: From aneuploidy to single genes. Qual. Life Res. 2020, 139, 1141–1148. [Google Scholar] [CrossRef]
- Baer, R.J.; Norton, M.E.; Shaw, G.M.; Flessel, M.C.; Goldman, S.; Currier, R.J.; Jelliffe-Pawlowski, L.L. Risk of selected structural abnormalities in infants after increased nuchal translucency measurement. Am. J. Obstet. Gynecol. 2014, 211, 675.e1–675.e19. [Google Scholar] [CrossRef]
- Sotiriadis, A.; Papatheodorou, S.; Eleftheriades, M.; Makrydimas, G. Nuchal translucency and major congenital heart defects in fetuses with normal karyotype: A meta-analysis: NT and cardiac defects. Ultrasound Obstet. Gynecol. 2013, 42, 383–389. [Google Scholar] [CrossRef]
- Syngelaki, A.; Hammami, A.; Bower, S.; Zidere, V.; Akolekar, R.; Nicolaides, K.H. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2019, 54, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Kagan, K.O.; Staboulidou, I.; Syngelaki, A.; Cruz, J.; Nicolaides, K.H. The 11–13-week scan: Diagnosis and outcome of holoprosen-cephaly, exomphalos and megacystis. Ultrasound Obstet. Gynecol. 2010, 36, 10–14. [Google Scholar] [CrossRef]
- Meler, E.; Sisterna, S.; Borrell, A. Genetic syndromes associated with isolated fetal growth restriction. Prenat. Diagn. 2019, 40, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Borrell, A.; Grande, M.; Meler, E.; Sabrià, J.; Mazarico, E.; Muñoz, A.; Rodriguez-Revenga, L.; Badenas, C.; Figueras, F. Genomic Microarray in Fetuses with Early Growth Re-striction: A Multicenter Study. Fetal Diagn. Ther. 2017, 42, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal microarray versus karyotyping for pre-natal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Grande, M.; Jansen, F.A.R.; Blumenfeld, Y.J.; Fisher, A.; Odibo, A.O.; Haak, M.C.; Borrell, A. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: A systematic review and meta-analysis: Microarray and increased nuchal translucency. Ultrasound Obstet. Gynecol. 2015, 46, 650–658. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Maher, E.J.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; et al. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis: Prenatal CMA: Cohort study and systematic review. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar] [CrossRef]
- Eggermann, T. Prenatal Detection of Uniparental Disomies (UPD): Intended and Incidental Finding in the Era of Next Generation Genomics. Genes 2020, 11, 1454. [Google Scholar] [CrossRef]
- Levy, B.; Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018, 109, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.C.; Platt, L.D.; Rebarber, A.; Zachary, J.; Grobman, W.A.; Wapner, R.J. Association of Copy Number Variants With Spe-cific Ultrasonographically Detected Fetal Anomalies. Obstet. Gynecol. 2014, 124, 83–90. [Google Scholar] [CrossRef]
- Jansen, F.A.R.; Blumenfeld, Y.J.; Fisher, A.; Cobben, J.M.; Odibo, A.O.; Borrell, A.; Haak, M.C. Array comparative genomic hybridization and fetal congenital heart defects: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2014, 45, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Cheung, S.; Maliszewski, K.; Patel, A.; Pursley, A.; Lenchner, E.; Bacino, C.; Beaudet, A.; Divon, M.; Bornstein, E. Universal Prenatal Chromosomal Microarray Analysis: Additive Value and Clinical Dilemmas in Fetuses with a Normal Karyotype. Am. J. Perinatol. 2016, 34, 340–348. [Google Scholar] [CrossRef]
- Lund, I.C.B.; Christensen, R.; Petersen, O.B.; Vogel, I.; Vestergaard, E.M. Chromosomal microarray in fetuses with increased nuchal translucency. Ultrasound Obstet. Gynecol. 2014, 45, 95–100. [Google Scholar] [CrossRef]
- Maya, I.; Yacobson, S.; Kahana, S.; Yeshaya, J.; Tenne, T.; Agmon-Fishman, I.; Cohen-Vig, L.; Shohat, M.; Basel-Vanagaite, L.; Sharony, R. Cut-off value of nuchal translucency as indica-tion for chromosomal microarray analysis: NT and CMA. Ultrasound Obstet. Gynecol. 2017, 50, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebniak, M.I.; De Wit, M.C.; Diderich, K.E.M.; Govaerts, L.C.P.; Joosten, M.; Knapen, M.F.C.M.; Bos, M.J.; Looye-Bruinsma, G.A.G.; Koningen, M.; Go, A.T.J.I.; et al. Enlarged NT (≥3.5 mm) in the first trimester—Not all chromosome aberrations can be detected by NIPT. Mol. Cytogenet. 2016, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, S.; Yan, H.; Chen, J.; Li, N.; Wang, J.; Liu, Y.; Zhang, H.; Li, S.; Zhang, W.; Chen, D.; et al. Genetic Examination for Fetuses with Increased Fetal Nuchal Translucency by Genomic Technology. Cytogenet. Genome Res. 2020, 160, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, E.; Gulersen, M.; Krantz, D.; Cheung, S.W.; Maliszewski, K.; Divon, M.Y. Microarray analysis: First-trimester maternal serum free β-hCG and the risk of significant copy number variants. Prenat. Diagn. 2018, 38, 971–978. [Google Scholar] [CrossRef]
- Abou Tayoun, A.N.; Spinner, N.B.; Rehm, H.L.; Green, R.C.; Bianchi, D.W. Prenatal DNA Sequencing: Clinical, Counseling, and Diagnostic Laboratory Considerations: Prenatal DNA sequencing: Clinical and laboratory considerations. Prenat. Diagn. 2018, 38, 26–32. [Google Scholar] [CrossRef]
- Borrell, A. A new comprehensive paradigm for prenatal diagnosis: Seeing the forest through the trees. Ultrasound Obstet. Gynecol. 2018, 52, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Warr, A.; Robert, C.; Hume, D.; Archibald, A.; Deeb, N.; Watson, M. Exome Sequencing: Current and Future Perspectives. G3 Genes Genomes Genet. 2015, 5, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Lefkowitz, R.B.; Tynan, J.A.; Liu, T.; Wu, Y.; Mazloom, A.R.; Almasri, E.; Hogg, G.; Angkachatchai, V.; Zhao, C.; Grosu, D.S.; et al. Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants. Am. J. Obstet. Gynecol. 2016, 215, 227.e1–227.e16. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, Q.; Mao, X.; Lei, W.; He, M.; Lu, W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum. Genom. 2019, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Kantor, V.; Dhamankar, R.; Valenti, L.; Lyons, D.; Trefogli, M.; Balosbalos, I.; Kao, C.; Hakonarson, H.; Martin, K.A. Validation of SNP-based Noninvasive Prenatal Screening Test to Detect Maternal X Chromosome Abnormalities. Eur. J. Hum. Genet. 2019, 27, 1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grati, F.R.; Gross, S.J. Noninvasive screening by cell-free DNA for 22q11.2 deletion: Benefits, limitations, and challenges. Prenat. Diagn. 2019, 39, 70–80. [Google Scholar] [CrossRef]
- Bianchi, D.W. Turner syndrome: New insights from prenatal genomics and transcriptomics. Am. J. Med. Genet. Part. C Semin. Med. Genet. 2019, 181, 29–33. [Google Scholar] [CrossRef]
- Brison, N.; Van Den Bogaert, K.; Dehaspe, L.; van den Oever, J.M.E.; Janssens, K.; Blaumeiser, B.; Peeters, H.; Van Esch, H.; Van Buggenhout, G.; Vogels, A.; et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Genet. Med. 2017, 19, 306–313. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians and Gynecologists. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin Summary, Number 226. Obstet. Gynecol. 2020, 136, 859–867. [Google Scholar] [CrossRef]
- Kozlowski, P.; Burkhardt, T.; Gembruch, U.; Gonser, M.; Kähler, C.; Kagan, K.-O.; Von Kaisenberg, C.; Klaritsch, P.; Merz, E.; Steiner, H.; et al. DEGUM, ÖGUM, SGUM and FMF Germany Recommendations for the Implementation of First-Trimester Screening, Detailed Ultrasound, Cell-Free DNA Screening and Diagnostic Procedures. Ultraschall Med. Eur. J. Ultrasound 2018, 40, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Finning, K.M.; Chitty, L.S. Non-invasive fetal sex determination: Impact on clinical practice. Semin. Fetal Neonatal Med. 2008, 13, 69–75. [Google Scholar] [CrossRef]
- Devaney, S.A.; Palomaki, G.E.; Scott, J.A.; Bianchi, D.W. Noninvasive Fetal Sex Determination Using Cell-Free Fetal DNA. JAMA 2011, 306, 627–636. [Google Scholar] [CrossRef]
- Hill, M.; Finning, K.; Martin, P.; Hogg, J.; Meaney, C.; Norbury, G.; Daniels, G.; Chitty, L.S. Non-invasive prenatal determination of fetal sex: Translating research into clinical practice. Clin. Genet. 2011, 80, 68–75. [Google Scholar] [CrossRef]
- Hayward, J.; Chitty, L.S. Beyond screening for chromosomal abnormalities: Advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin. Fetal Neonatal Med. 2018, 23, 94–101. [Google Scholar] [CrossRef]
- Shaw, J.; Scotchman, E.; Chandler, N.; Chitty, L.S. Preimplantation Genetic Testing: Non-invasive prenatal testing for aneuploidy, copy-number variants and single-gene disorders. Reproduction 2020, 160, A1–A11. [Google Scholar] [CrossRef]
- Jenkins, L.A.; Deans, Z.C.; Lewis, C.; Allen, S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice: Delivering an accredited non-invasive prenatal diagnosis service. Prenat. Diagn. 2018, 38, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Saucier, J.B.; Feng, Y.; Jiang, Y.; Sinson, J.; McCombs, A.K.; Schmitt, E.S.; Peacock, S.; Chen, S.; et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 2019, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Tsao, D.S.; Silas, S.; Landry, B.P.; Itzep, N.P.; Nguyen, A.B.; Greenberg, S.; Kanne, C.K.; Sheehan, V.A.; Sharma, R.; Shukla, R.; et al. A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wu, Y.; Hu, Z.; Zhang, H.; Pu, D.; Yan, H.; Zhang, S.; Jiang, H.; Liu, Q.; Yuan, Y.; et al. Simultaneous detection of fetal aneuploidy, de novo FGFR3 mutations and paternally derived β-thalassemia by a novel method of noninvasive prenatal testing. Prenat. Diagn. 2021, 41, 440–448. [Google Scholar] [CrossRef]
- Beaudet, A.L. Using fetal cells for prenatal diagnosis: History and recent progress. Am. J. Med. Genet. Part C Semin. Med. Genet. 2016, 172, 123–127. [Google Scholar] [CrossRef]
- Vossaert, L.; Wang, Q.; Salman, R.; Zhuo, X.; Qu, C.; Henke, D.; Seubert, R.; Chow, J.; U’ren, L.; Enright, B.; et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat. Diagn. 2018, 38, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, I.; Benachi, A.; Saker, A.; Bonnefont, J.-P.; Mouawia, H.; Broncy, L.; Frydman, R.; Brival, M.; Lacour, B.; Dachez, R.; et al. Cervical trophoblasts for non-invasive single-cell genotyping and prenatal diagnosis. Placenta 2016, 37, 56–60. [Google Scholar] [CrossRef]
- Jeppesen, L.D.; Hatt, L.; Singh, R.; Ravn, K.; Kølvraa, M.; Schelde, P.; Uldbjerg, N.; Vogel, I.; Lildballe, D.L. Cell-based non-invasive prenatal diagnosis in a pregnancy at risk of cystic fibrosis. Prenat. Diagn. 2020, 41, 234–240. [Google Scholar] [CrossRef]
- Vestergaard, E.M.; Singh, R.; Schelde, P.; Hatt, L.; Ravn, K.; Christensen, R.; Lildballe, D.L.; Petersen, O.B.; Uldbjerg, N.; Vogel, I. On the road to replacing invasive testing with cell-based NIPT: Five clinical cases with aneuploidies, microduplication, unbalanced structural rearrangement, or mosaicism. Prenat. Diagn. 2017, 37, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Breman, A.M.; Chow, J.C.; U’Ren, L.; Normand, E.A.; Qdaisat, S.; Zhao, L.; Henke, D.M.; Chen, R.; Shaw, C.A.; Jackson, L.; et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing. Prenat. Diagn. 2016, 36, 1009–1019. [Google Scholar] [CrossRef] [Green Version]
- Van der Meij, K.R.M.; Sistermans, E.A.; Macville, M.V.E.; Stevens, S.J.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.; Boter, M.; Diderich, K.E.; et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am. J. Hum. Genet. 2019, 105, 1091–1101. [Google Scholar] [CrossRef]
- Viuff, M.H.; Stochholm, K.; Uldbjerg, N.; Nielsen, B.B.; Gravholt, C.H. The Danish Fetal Medicine Study Group Only a minority of sex chromosome abnormalities are detected by a national prenatal screening program for Down syndrome. Hum. Reprod. 2015, 30, 2419–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaser, K.G.; Stevens, B.; Davis, J.; Northrup, H.; Ramdaney, A. Close but not quite: Two cases of sex chromosome aneuploidies outside the scope of cell free DNA screening. Prenat. Diagn. 2018, 38, 617–619. [Google Scholar] [CrossRef]
- Ramdaney, A.; Hoskovec, J.; Harkenrider, J.; Soto, E.; Murphy, L. Clinical experience with sex chromosome aneuploidies detected by noninvasive prenatal testing (NIPT): Accuracy and patient decision-making. Prenat. Diagn. 2018, 38, 841–848. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, Q.; Liu, S.; Liu, J.; Bai, T.; Jing, X.; Xia, T.; Liu, Y.; Cheng, J.; Li, Z.; et al. Clinical application of noninvasive prenatal screening for sex chromosome aneuploidies in 50,301 pregnancies: Initial experience in a Chinese hospital. Sci. Rep. 2019, 9, 7767. [Google Scholar] [CrossRef]
- Grati, F.R. Chromosomal Mosaicism in Human Feto-Placental Development: Implications for Prenatal Diagnosis. J. Clin. Med. 2014, 3, 809–837. [Google Scholar] [CrossRef] [Green Version]
- Malvestiti, F.; Agrati, C.; Grimi, B.; Pompilii, E.; Izzi, C.; Martinoni, L.; Gaetani, E.; Liuti, M.R.; Trotta, A.; Maggi, F.; et al. Interpreting mosaicism in chorionic villi: Results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis: Interpreting mosaicism in chorionic villi. Prenat. Diagn. 2015, 35, 1117–1127. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, Q.; Chen, Y.; Shi, Y.; Zheng, F.; Liu, J.; Yu, B. High false-positive non-invasive prenatal screening results for sex chromosome abnormalities: Are maternal factors the culprit? Prenat. Diagn. 2020, 40, 463–469. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Tian, F.; Zhang, J.; Song, Z.; Wu, Y.; Han, X.; Hu, W.; Ma, D.; Cram, D.; et al. Maternal Mosaicism Is a Significant Contributor to Discordant Sex Chromosomal Aneuploidies Associated with Noninvasive Prenatal Testing. Clin. Chem. 2014, 60, 251–259. [Google Scholar] [CrossRef]
- Sandow, R.; Scott, F.P.; Schluter, P.J.; Rolnik, D.L.; Menezes, M.; Nisbet, D.; McLennan, A.C. Increasing maternal age is not a significant cause of false-positive results for monosomy X in non-invasive prenatal testing. Prenat. Diagn. 2020, 40, 1466–1473. [Google Scholar] [CrossRef]
- Levy, B.; Burnside, R.D. Are all chromosome microarrays the same? What clinicians need to know. Prenat. Diagn. 2019, 39, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebniak, M.I.; Joosten, M.; Knapen, M.F.C.; Arends, L.R.; Polak, M.; van Veen, S.; Go, A.T.J.I.; Van Opstal, D. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurbich, T.A.; Ilinsky, V.V. ClassifyCNV: A tool for clinical annotation of copy-number variants. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Ge-netics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Romero, S.T.; Geiersbach, K.B.; Paxton, C.N.; Rose, N.C.; Schisterman, E.F.; Branch, D.W.; Silver, R.M. Differentiation of genetic abnormalities in early pregnancy loss. Ultrasound Obstet. Gynecol. 2015, 45, 89–94. [Google Scholar] [CrossRef]
- Advani, H.V.; Barrett, A.N.; Evans, M.I.; Choolani, M. Challenges in non-invasive prenatal screening for sub-chromosomal copy number variations using cell-free DNA. Prenat. Diagn. 2017, 37, 1067–1075. [Google Scholar] [CrossRef]
- Lo, K.K.; Karampetsou, E.; Boustred, C.; McKay, F.; Mason, S.; Hill, M.; Plagnol, V.; Chitty, L.S. Limited Clinical Utility of Non-invasive Prenatal Testing for Subchromosomal Abnormalities. Am. J. Hum. Genet. 2016, 98, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, L.; Wu, J.; Zhou, P.; Fu, J.; Sun, J.; Cai, W.; Liu, H.; Yang, Y. Noninvasive prenatal testing for chromosome aneuploidies and subchromo-somal microdeletions/microduplications in a cohort of 8141 single pregnancies. Hum. Genom. 2019, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Bianchi, D.W.; Huang, H.; Sehnert, A.J.; Rava, R.P. Noninvasive Detection of Fetal Subchromosome Abnormalities via Deep Sequencing of Maternal Plasma. Am. J. Hum. Genet. 2013, 92, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Weise, A.; Mrasek, K.; Klein, E.; Mulatinho, M.; Llerena, J.C.; Hardekopf, D.; Pekova, S.; Bhatt, S.; Kosyakova, N.; Liehr, T.; et al. Microdeletion and Microduplication Syndromes. J. Histochem. Cytochem. 2012, 60, 346–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wapner, R.J.; Babiarz, J.E.; Levy, B.; Stosic, M.; Zimmermann, B.; Sigurjonsson, S.; Wayham, N.; Ryan, A.; Banjevic, M.; Lacroute, P.; et al. Expanding the scope of noninvasive prenatal testing: Detection of fetal microdeletion syndromes. Am. J. Obstet. Gynecol. 2015, 212, 332.e1–332.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, K.; Iyengar, S.; Kalyan, A.; Lan, C.; Simon, A.L.; Stosic, M.; Kobara, K.; Ravi, H.; Truong, T.; Ryan, A.; et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions. Clin. Genet. 2018, 93, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Helgeson, J.; Wardrop, J.; Boomer, T.; Almasri, E.; Paxton, W.B.; Saldivar, J.S.; Dharajiya, N.; Monroe, T.J.; Farkas, D.H.; Grosu, D.S.; et al. Clinical outcome of subchromosomal events detected by whole-genome noninvasive prenatal testing. Prenat. Diagn. 2015, 35, 999–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.K.; Cheung, S.W.; Smith, J.L.; Bi, W.; Ward, P.A.; Peacock, S.; Braxton, A.; Van Den Veyver, I.B.; Breman, A.M. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am. J. Obstet. Gynecol. 2017, 217, 691.e1–691.e6. [Google Scholar] [CrossRef] [Green Version]
- Kagan, K.O.; Hoopmann, M.; Pfaff, T.; Prodan, N.; Wagner, P.; Schmid, M.; Dufke, A.; Mau-Holzmann, U.; Brucker, S.; Marcato, L.; et al. First Trimester Screening for Common Trisomies and Microdeletion 22q11.2 Syndrome Using Cell-Free DNA: A Prospective Clinical Study. Fetal Diagn. Ther. 2020, 47, 841–851. [Google Scholar] [CrossRef]
- Dondorp, W.; De Wert, G.; Bombard, Y.; Bianchi, D.W.; Bergmann, C.; Borry, P.; Chitty, L.S.; Fellmann, F.; Forzano, F.; Hall, A.; et al. Non-invasive prenatal testing for aneuploidy and beyond: Challenges of responsible innovation in prenatal screening. Summary and recommendations. Eur. J. Hum. Genet. 2015, 23, 1438–1450. [Google Scholar] [CrossRef] [Green Version]
- Benn, P.; Malvestiti, F.; Grimi, B.; Maggi, F.; Simoni, G.; Grati, F.R. Rare autosomal trisomies: Comparison of detection through cell-free DNA analysis and direct chromosome preparation of chorionic villus samples. Ultrasound Obstet. Gynecol. 2019, 54, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Yaron, Y.; Pauta, M.; Badenas, C.; Soler, A.; Borobio, V.; Illanes, C.; Paz-Y-Miño, F.; Martinez-Portilla, R.; Borrell, A. Maternal plasma genome-wide cell-free DNA can detect fetal aneuploidy in early and recurrent pregnancy loss and can be used to direct further workup. Hum. Reprod. 2020, 35, 1222–1229. [Google Scholar] [CrossRef]
- Pauta, M.; Grande, M.; Rodriguez-Revenga, L.; Kolomietz, E.; Borrell, A. Added value of chromosomal microarray analysis over karyotyping in early pregnancy loss: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Lu, H.; Li, M.; Guan, Y.; Yang, F.; Xu, M.; Dong, J.; Zhang, Q.; An, N.; Zhou, Y. The Clinical Utility of Non-invasive Prenatal Testing for Pregnant Women with Different Diagnostic Indications. Front. Genet. 2020, 11, 624. [Google Scholar] [CrossRef]
- Eggermann, T.; Soellner, L.; Buiting, K.; Kotzot, D. Mosaicism and uniparental disomy in prenatal diagnosis. Trends Mol. Med. 2015, 21, 77–87. [Google Scholar] [CrossRef]
- Scott, F.; Bonifacio, M.; Sandow, R.; Ellis, K.; Smet, M.-E.; McLennan, A. Rare autosomal trisomies: Important and not so rare. Prenat. Diagn. 2018, 38, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, L.; Fang, Y.; Wang, N.; Zhang, M.; Liu, T.; Wang, Y.; Hu, S.; Zhang, Y.; Wu, Q.; Wang, Y.; et al. Clinical management of pregnancies with positive screening results for rare autosomal aneuploidies at a single center. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- Benn, P.; Grati, F.R. Genome-wide non-invasive prenatal screening for all cytogenetically visible imbalances. Ultrasound Obstet. Gynecol. 2018, 51, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Imbert-Bouteille, M.; Chiesa, J.; Gaillard, J.-B.; Dorvaux, V.; Altounian, L.; Gatinois, V.; Mousty, E.; Finge, S.; Bourquard, P.; Vermeesch, J.R.; et al. An incidental finding of maternal multiple myeloma by non invasive prenatal testing. Prenat. Diagn. 2017, 37, 1257–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benn, P.; Plon, S.E.; Bianchi, D.W. Current Controversies in Prenatal Diagnosis 2: NIPT results suggesting maternal cancer should always be disclosed. Prenat. Diagn. 2018, 39, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Le Caignec, C. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J. Med. Genet. 2005, 42, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, M.S.; Mourad, M.J.; Wapner, R.J. Evolving applications of microarray analysis in prenatal diagnosis. Curr. Opin. Obstet. Gynecol. 2011, 23, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Society for Maternal-Fetal Medicine (SMFM); Dugoff, L.; Norton, M.E.; Kuller, J.A. The use of chromosomal microarray for prenatal diagnosis. Am. J. Obstet. Gynecol. 2016, 215, B2–B9. [Google Scholar] [CrossRef] [Green Version]
- Maya, I.; Sharony, R.; Yacobson, S.; Kahana, S.; Yeshaya, J.; Tenne, T.; Agmon-Fishman, I.; Cohen-Vig, L.; Goldberg, Y.; Berger, R.; et al. When genotype is not predictive of phenotype: Implica-tions for genetic counseling based on 21,594 chromosomal microarray analysis examinations. Genet. Med. 2018, 20, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Van den Veyver, I.B.; Eng, C.M. Genome-Wide Sequencing for Prenatal Detection of Fetal Single-Gene Disorders. Cold Spring Harb. Perspect. Med. 2015, 5, a023077. [Google Scholar] [CrossRef] [Green Version]
- Abou Tayoun, A.; Mason-Suares, H. Considerations for whole exome sequencing unique to prenatal care. Hum. Genet. 2020, 139, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Best, S.; Wou, K.; Vora, N.; Van der Veyver, I.B.; Wapner, R.; Chitty, L.S. Promises, pitfalls and practicalities of prenatal whole exo-me sequencing: Promises and pitfalls of prenatal whole exome sequencing. Prenat. Diagn. 2018, 38, 10–19. [Google Scholar] [CrossRef]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K.; et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Drury, S.; Williams, H.; Trump, N.; Boustred, C.; Gene, G.O.S.; Lench, N.; Scott, R.H.; Chitty, L.S. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities: Exome sequencing for prenatal diagnosis. Prenat. Diagn. 2015, 35, 1010–1017. [Google Scholar] [CrossRef] [Green Version]
- The International Society for Prenatal Diagnosis; The Society for Maternal and Fetal Medicine; The Perinatal Quality Foundation. Joint Position Statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis: Genomewide sequencing for fetal diagnosis. Prenat. Diagn. 2018, 38, 6–9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedei, I.; Wolter, A.; Weber, A.; Signore, F.; Axt-Fliedner, R. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes 2021, 12, 501. https://doi.org/10.3390/genes12040501
Bedei I, Wolter A, Weber A, Signore F, Axt-Fliedner R. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes. 2021; 12(4):501. https://doi.org/10.3390/genes12040501
Chicago/Turabian StyleBedei, Ivonne, Aline Wolter, Axel Weber, Fabrizio Signore, and Roland Axt-Fliedner. 2021. "Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review" Genes 12, no. 4: 501. https://doi.org/10.3390/genes12040501
APA StyleBedei, I., Wolter, A., Weber, A., Signore, F., & Axt-Fliedner, R. (2021). Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes, 12(4), 501. https://doi.org/10.3390/genes12040501