Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of SULTRs
2.2. Physical and Chemical Analysis of the SULTRs
2.3. Gene Structure and Conserved Motif Analysis
2.4. Gene Duplication Events, Chromosomal Locations and Orthogroup Analysis
2.5. Expression Analysis of SULTR Members in O. sativa ssp. indica
2.6. Plant Material and Treatments
2.7. RNA Isolation and RT-PCR Analysis of OsiSULTRs under Stress
3. Results
3.1. Identification and Comparative Phylogeny of SULTRs in Ten Gramineae Species
3.2. Expansion Patterns and Chromosome Location of SULTRs in 10 Gramineae Species
3.3. Gene Structure and Motif Patterns of SULTRs
3.4. Syntenic Relationship of SULTRs among the Selected Species
3.5. Constitutive Expression Pattern of SULTRs in Oryza sativa ssp. indica
3.6. Expression Profiling of SULTRs in Rice Roots under Stress Conditions
3.7. Expression Profiling of SULTRs in Rice Shoots under Stress Condition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buchner, P.; Parmar, S.; Kriegel, A.; Carpentier, M.; Hawkesford, M.J. The sulfate transporter family in wheat: Tissue-specific gene expression in relation to nutrition. Mol. Plant 2010, 3, 374–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, J.W.; Filner, P. Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol. 1969, 44, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Saito, K. Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr. Opin. Plant Biol. 2000, 3, 188–195. [Google Scholar] [CrossRef]
- Furner, I.J.; Sung, Z.R. Regulation of sulfate uptake in carrot cells: Properties of a hypercontrolled variant. Proc. Natl. Acad. Sci. USA 1982, 79, 1149–1153. [Google Scholar] [CrossRef] [Green Version]
- Smith, F.W.; Ealing, P.M.; Hawkesford, M.J.; Clarkson, D.T. Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 1995, 92, 9373–9377. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H. Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 2010, 281, 129–159. [Google Scholar] [CrossRef] [PubMed]
- El-Soda, M.; Kruijer, W.; Malosetti, M.; Koornneef, M.; Aarts, M.G. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. Plant Cell Environ. 2015, 38, 585–599. [Google Scholar] [CrossRef]
- Geng, Y.; Wu, R.; Wee, C.W.; Xie, F.; Wei, X.; Chan, P.M.; Tham, C.; Duan, L.; Dinneny, J.R. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 2013, 25, 2132–2154. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H. Functions of sulfate transporters in plants. Plant Cell Physiol. 2003, 44, S19. [Google Scholar]
- Sacchi, G.A.; Nocito, F.F. Plant sulfate transporters in the low phytic acid network: Some educated guesses. Plants 2019, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Wang, M.P.; Xia, Z.L. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress. J. Plant Physiol. 2018, 220, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Gigolashvili, T.; Kopriva, S. Transporters in plant sulfur metabolism. Front. Plant Sci. 2014, 5, 442. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhou, X.; Zuo, L.; Wang, H.; Yu, D. Identification and functional characterization of the sulfate transporter gene GmSULTR1; 2b in soybean. BMC Genom. 2016, 17, 373. [Google Scholar] [CrossRef] [Green Version]
- Buchner, P.; Stuiver, C.E.; Westerman, S.; Wirtz, M.; Hell, R.; Hawkesford, M.J.; De Kok, L.J. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H(2)S and pedospheric sulfate nutrition. Plant Physiol. 2004, 136, 3396–3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Asif, M.H.; Chakrabarty, D.; Tripathi, R.D.; Trivedi, P.K. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct. Integr. Genom. 2011, 11, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Buchner, P.; Takahashi, H.; Hawkesford, M.J. Plant sulphate transporters: Co-ordination of uptake, intracellular and long-distance transport. J. Exp. Bot. 2004, 55, 1765–1773. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, C.Y.; Liu, J.; Song, R.; Du, Y.X.; Li, J.Z.; Sun, H.Z.; Duan, G.L.; Zhao, Q.Z. Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol. Biol. Rep. 2016, 34, 556–565. [Google Scholar] [CrossRef]
- Zhao, H.; Frank, T.; Tan, Y.; Zhou, C.; Jabnoune, M.; Arpat, A.B.; Cui, H.; Huang, J.; He, Z.; Poirier, Y.; et al. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol. 2016, 211, 926–939. [Google Scholar] [CrossRef] [Green Version]
- Mameaux, S.; Cockram, J.; Thiel, T.; Steuernagel, B.; Stein, N.; Taudien, S.; Jack, P.; Werner, P.; Gray, J.C.; Greenland, A.J.; et al. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae. Plant Biotechnol. J. 2012, 10, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Snak, C.; Schnadelbach, A.S.; van den Berg, C.; Oliveira, R.P. Phylogenetic relationships of Echinolaena and Ichnanthus within Panicoideae (Poaceae) reveal two new genera of tropical grasses. Mol. Phylogen. Evol. 2016, 105, 212–233. [Google Scholar] [CrossRef]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for better sequence analysis. Nucleic. Acids. Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic. Acids. Res. 2011, 39, D225–D229. [Google Scholar] [CrossRef] [Green Version]
- Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic. Acids. Res. 2003, 31, 3497–3500. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Klee, E.W.; Ellis, L.B. Evaluating eukaryotic secreted protein prediction. BMC Bioinform. 2005, 6, 256. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic. Acids. Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic. Acids. Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome. Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiao, J.; Wu, J.; Zhang, H.; Liu, G.; Wang, X.; Dai, L. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 2012, 419, 779–781. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating γ-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Korneliussen, T.S.; Moltke, I.; Albrechtsen, A.; Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform. 2013, 14, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splicing junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcrit assembly and quantification by RNA-Seq reveals unannotated transcripts and isform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Shibagaki, N.; Rose, A.; McDermott, J.P.; Fujiwara, T.; Hayashi, H.; Yoneyama, T.; Davies, J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29, 475–486. [Google Scholar] [CrossRef]
- Xiong, H.; Yu, J.; Miao, J.; Li, J.; Zhang, H.; Wang, X.; Liu, P.; Zhao, Y.; Jiang, C.; Yin, Z.; et al. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiol. 2018, 178, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Mostofa, M.G.; Fujita, M. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 2013, 22, 959–973. [Google Scholar] [CrossRef]
- Jacquemin, J.; Ammiraju, J.S.S.; Haberer, G.; Billheimer, D.D.; Yu, Y.; Liu, L.N.C.; Rivera, L.F.; Mayer, K.; Chen, M.S.; Wing, R.A. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion. Mol. Plant 2014, 7, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, S.; Himmelbach, A.; Colmsee, C.; Zhang, X.Q.; Barrero, R.A.; Zhang, Q.; Li, L.; Bayer, M.; Bolser, D.; Taudien, S.; et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data 2017, 4, 170044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swigonova, Z.; Lai, J.; Ma, J.; Ramakrishna, W.; Llaca, V.; Bennetzen, J.L.; Messing, J. Close split of sorghum and maize genome progenitors. Genome Res. 2004, 14, 1916–1923. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 2011, 62, 157–184. [Google Scholar] [CrossRef]
- Gabaldon, T.; Koonin, E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013, 14, 360–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbudak, M.A.; Filiz, E.; Kontbay, K. Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.). Biometals 2018, 31, 91–105. [Google Scholar] [CrossRef]
Bd | Hv | Ob | Og | Osj | Osi | Or | Sb | Si | Zm | Tajima’s D | |
---|---|---|---|---|---|---|---|---|---|---|---|
OG1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | −1.4196 |
OG2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | −1.5876 |
OG3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | −0.7869 |
OG4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1.3148 |
OG5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1.5443 |
OG6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | −1.4481 |
OG7 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | −1.1917 |
OG8 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | −0.2679 |
Seq_A | Seq_B | Ka | Ks | Ka/Ks | Duplication Mode | Time (MY) | Purifying Selection |
---|---|---|---|---|---|---|---|
BdSULTR3 | BdSULTR4 | 0.4762 | 2.5145 | 0.189384 | Tandem duplication | 138.15 | Yes |
HvSULTR3 | HvSULTR4 | 0.0411 | 0.1831 | 0.224279 | Tandem duplication | 10.06 | Yes |
HvSULTR4 | HvSULTR5 | 0.4533 | 2.7496 | 0.164851 | Tandem duplication | 151.07 | Yes |
ObSULTR3 | ObSULTR4 | 0.4364 | 2.5439 | 0.1716 | Tandem duplication | 139.77 | Yes |
ObSULTR4 | ObSULTR5 | 0.1529 | 0.5991 | 0.2553 | Tandem duplication | 32.92 | Yes |
ObSULTR3 | ObSULTR11 | 0.1707 | 1.4530 | 0.1175 | WGD/segmental duplication | 80.72 | Yes |
OgSULTR3 | OgSULTR4 | 0.2169 | 3.0507 | 0.0711 | Tandem duplication | 167.62 | Yes |
OgSULTR4 | OgSULTR5 | 0.4233 | 2.7101 | 0.1562 | Tandem duplication | 148.9 | Yes |
OgSULTR5 | OgSULTR6 | 0.2578 | 0.6580 | 0.3918 | Tandem duplication | 36.15 | Yes |
OsiSULTR4 | OsiSULTR5 | 0.2184 | 3.0630 | 0.0713 | Tandem duplication | 168.30 | Yes |
OsiSULTR6 | OsiSULTR7 | 0.1275 | 0.5593 | 0.2280 | Tandem duplication | 30.73 | Yes |
OsiSULTR3 | OsiSULTR12 | 0.1745 | 1.3397 | 0.1302 | WGD/segmental duplication | 74.43 | Yes |
OsjSULTR4 | OsjSULTR5 | 0.2951 | 2.8665 | 0.1029 | Tandem duplication | 157.5 | Yes |
OsjSULTR5 | OsjSULTR6 | 0.4427 | 2.9321 | 0.1510 | Tandem duplication | 161.10 | Yes |
OsjSULTR6 | OsjSULTR7 | 0.1530 | 0.6024 | 0.2540 | Tandem duplication | 33.1 | Yes |
OsjSULTR3 | OsjSULTR13 | 0.1755 | 1.8594 | 0.0944 | WGD/segmental duplication | 102.16 | Yes |
OrSULTR3 | OrSULTR4 | 0.4487 | 2.5274 | 0.1775 | Tandem duplication | 138.87 | Yes |
OrSULTR2 | OrSULTR10 | 0.1726 | 1.2921 | 0.1335 | WGD/segmental duplication | 70.99 | Yes |
SbSULTR2 | SbSULTR3 | 0.4604 | 2.4867 | 0.1852 | Tandem duplication | 136.63 | Yes |
SbSULTR3 | SbSULTR4 | 0.2288 | 3.0597 | 0.0748 | Tandem duplication | 168.11 | Yes |
SiSULTR1 | SiSULTR2 | 0.9085 | 1.2309 | 0.7380 | Tandem duplication | 67.63 | Yes |
SiSULTR8 | SiSULTR9 | 0.4499 | 2.4567 | 0.1831 | Tandem duplication | 134.98 | Yes |
SiSULTR9 | SiSULTR10 | 0.2022 | 2.7663 | 0.0731 | Tandem duplication | 151.99 | Yes |
ZmSULT2 | ZmSULT3 | 0.4496 | 2.5814 | 0.1741 | Tandem duplication | 141.84 | Yes |
ZmSULT9 | ZmSULT10 | 0.0972 | 0.1082 | 0.8986 | Tandem duplication | 5.94 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Long, W.; Hu, H.; Liang, T.; Luo, X.; Hu, Z.; Zhu, R.; Wu, X. Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa. Genes 2021, 12, 634. https://doi.org/10.3390/genes12050634
Yuan Z, Long W, Hu H, Liang T, Luo X, Hu Z, Zhu R, Wu X. Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa. Genes. 2021; 12(5):634. https://doi.org/10.3390/genes12050634
Chicago/Turabian StyleYuan, Zhengqing, Weixiong Long, Haifei Hu, Ting Liang, Xiaoyun Luo, Zhongli Hu, Renshan Zhu, and Xianting Wu. 2021. "Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa" Genes 12, no. 5: 634. https://doi.org/10.3390/genes12050634
APA StyleYuan, Z., Long, W., Hu, H., Liang, T., Luo, X., Hu, Z., Zhu, R., & Wu, X. (2021). Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa. Genes, 12(5), 634. https://doi.org/10.3390/genes12050634