Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,920)

Search Parameters:
Keywords = Oryza sativa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7982 KiB  
Article
Sowing Methods and Strigolactones Alleviate Damage to the Photosynthetic System of Rice Seedlings Under Salt Stress by Enhancing Antioxidant Capacity
by Shaobiao Duan, Liming Zhao, Weinan Chen, Qicheng Zhang, Jiangyuan Ya, Wenji Zhong, Qianqian Shang, Jinji Tu, Hongtao Xiang, Jianqin Zhang and Junhua Zhang
Antioxidants 2025, 14(8), 1020; https://doi.org/10.3390/antiox14081020 - 20 Aug 2025
Abstract
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal [...] Read more.
Seedling cultivation of rice (Oryza sativa L.) is a critical initial step in rice production. This study investigated the effects of sowing methods and strigolactone (GR24) on rice seedlings under salt stress. Results showed that drill-sown seedlings exhibited superior quality under normal conditions compared to broadcast-sown seedlings. Salt stress significantly increased the contents of Cl, Na+, reactive oxygen species (ROS), and malondialdehyde (MDA), disrupted chloroplast structure and hormonal balance, and reduced gas exchange parameters and chlorophyll fluorescence parameters. Notably, drill-sowing conferred stronger salt tolerance than broadcast-sowing. Exogenous application of GR24 enhanced activities of antioxidant enzymes—including superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT)—and elevated non-enzymatic antioxidant contents such as ascorbic acid (ASA), glutathione (GSH), total phenolics, and flavonoids, alongside related enzyme activities. Concurrently, GR24 reduced Na+ and Cl accumulation, lowered the Na+/K+ ratio, and increased the contents of K+, Ca2+, Mg2+, and hormones. Consequently, GR24 decreased MDA and ROS levels, protected membrane integrity, reduced electrolyte leakage, repaired chloroplast structure, and improved gas exchange and chlorophyll fluorescence parameters. Due to their superior spatial distribution and photosynthetic efficiency, drill-sown seedlings synergized with GR24 to enhance antioxidant capacity under salt stress, enabling more effective scavenging of peroxidative radicals, stabilization of the photosynthetic system, and mitigation of salt-induced growth inhibition. Ultimately, this combination demonstrated greater stress alleviation than broadcast-sown seedlings. Full article
Show Figures

Figure 1

11 pages, 1631 KiB  
Article
OsMAPKKK69 Negatively Regulates Resistance to Blast and Bacterial Blight Diseases in Rice (Oryza sativa L.)
by Dewei Yang, Yidan Jin, Niqing He, Shaojun Lin, Zhaoping Cheng, Fenghuang Huang, Haifeng Zhang, Qingshun Q. Li and Wenquan Yu
Plants 2025, 14(16), 2566; https://doi.org/10.3390/plants14162566 - 18 Aug 2025
Abstract
Rice blast is one of the main diseases of rice, causing severe economic losses to agricultural production; thus, the search for blast resistance is a top priority for rice breeding. When challenged by the blast causal fungus Magnaporthe oryzae the expression level of [...] Read more.
Rice blast is one of the main diseases of rice, causing severe economic losses to agricultural production; thus, the search for blast resistance is a top priority for rice breeding. When challenged by the blast causal fungus Magnaporthe oryzae the expression level of OsMAPKKK69 gene in rice cultivar Nipponbar was found to increase significantly. Such an induction was also found in a different genetic material, cultivar Shufanggaonuo, indicating that OsMAPKKK69 plays an important role in blast disease response. However, the function of OsMAPKKK69 remains unclear. In this study, wild type ZH11 was selected as the background material to investigate the expression and functions of OsMAPKKK69 in rice disease resistance by constructing knockout mutants. The results showed that OsMAPKKK69 is mainly expressed in four-week-old shoots and localized in cell membrane, cytoplasm, and nucleus. The two allelic knockout mutants, osmapkkk69-1 and osmapkkk69-2, were more resistant to M. oryzae and bacterial blight Xanthomonas oryzae pv. Oryzae (Xoo). Further agronomic trait analysis revealed that the osmapkkk69-1 and osmapkkk69-2 mutants had reduced plant height, smaller grain size, a significant increase in tillering number, but also a significant increase in yield per plant. Our results show that OsMAPKKK69 is involved in the immune response of rice by negatively regulating the resistance to rice blast and blight diseases, and in regulating important agronomic traits. This study lays a foundation for revealing the molecular mechanism of OsMAPKKK69 in the immune response to rice diseases and provides novel genetic resources for rice breeding. Full article
(This article belongs to the Special Issue Rice-Pathogen Interaction and Rice Immunity)
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Genome-Wide Identification and Characterization of Universal Stress Protein (USP) Family Members in Lycium barbarum and Transcriptional Pattern Analysis in Response to Salt Stress
by Jintao Lu, Mengyao Bai, Jianhua Zhao, Dong Meng, Shanzhi Lin, Yu Xiu and Yuchao Chen
Horticulturae 2025, 11(8), 960; https://doi.org/10.3390/horticulturae11080960 - 14 Aug 2025
Viewed by 204
Abstract
Lycium barbarum is a traditional medicinal and edible plant species in China, exhibiting notable salt tolerance that enables cultivation in salt-affected soils. However, intensifying soil salinization has rendered severe salt stress a critical limiting factor for its fruit yield and quality. Universal stress [...] Read more.
Lycium barbarum is a traditional medicinal and edible plant species in China, exhibiting notable salt tolerance that enables cultivation in salt-affected soils. However, intensifying soil salinization has rendered severe salt stress a critical limiting factor for its fruit yield and quality. Universal stress proteins (USPs) serve as crucial regulators for plant abiotic stress responses through developmental process modulation. Nevertheless, the characteristics and functional divergence of USP gene family members remain unexplored in L. barbarum. Here, we performed genome-wide identification and characterization of the USP gene family in L. barbarum, revealing 52 members unevenly distributed across all 12 chromosomes. Phylogenetic analysis classified these LbUSP members into four distinct groups, demonstrating the integration of the conserved USP domain and diverse motifs within each group. Collinearity analysis indicated a stronger synteny of LbUSPs with orthologs in Solanum lycopersicum than with other species (Arabidopsis thaliana, Vitis vinifera, and Oryza sativa), demonstrating that gene duplication coupled with functional conservation represented the primary mechanism underlying USP family expansion in L. barbarum. In silico promoter screening detected abundant cis-acting elements associated with abiotic/biotic stress responses (MYB and MYC binding sites), phytohormone regulation (ABRE motif), and growth/development processes (Box-4 and G-box). Transcriptome sequencing and RT-qPCR validation revealed tissue-specific differential expression patterns of LbUSP8, LbUSP11, LbUSP12, LbUSP23, and LbUSP25 in roots and stems under salt stress, identifying them as prime candidates for mediating salt resistance in L. barbarum. Our findings establish a foundation for the functional characterization of LbUSPs and molecular breeding of salt-tolerant L. barbarum cultivars. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

12 pages, 1737 KiB  
Article
Phenotypic Identification and Fine-Mapping of the Rice Narrow-Leaf Mutant nal25
by Kaizhen Xie, Fuan Niu, Peng Hu, Can Cheng, Huangwei Chu, Jihua Zhou, Bin Sun, Yuting Dai, Liming Cao and Anpeng Zhang
Plants 2025, 14(16), 2528; https://doi.org/10.3390/plants14162528 - 14 Aug 2025
Viewed by 210
Abstract
Leaf morphology significantly impacts rice (Oryza sativa L.) plant architecture and yield. Here, we identified and characterized a novel narrow-leaf mutant, nal25, derived from indica rice cultivar ‘Huazhan’ using EMS mutagenesis. Phenotypic analyses revealed that nal25 exhibited significantly narrower leaves, reduced [...] Read more.
Leaf morphology significantly impacts rice (Oryza sativa L.) plant architecture and yield. Here, we identified and characterized a novel narrow-leaf mutant, nal25, derived from indica rice cultivar ‘Huazhan’ using EMS mutagenesis. Phenotypic analyses revealed that nal25 exhibited significantly narrower leaves, reduced plant height, increased tiller number, and notably decreased grain size, seed setting rate, and thousand-grain weight compared to the wild type. Genetic analyses demonstrated that the narrow-leaf phenotype is controlled by a single recessive nuclear gene. Through precise localization analysis, the NAL25 gene was located within a region of approximately 103 kb on the long arm of rice chromosome 7. The sequencing results showed that the mutant nal25 had a T to C mutation at position 173 of the heat-shock protein gene LOC_Os07g09450 encoding the DnaJ domain in this interval, resulting in a change in amino acid 58 from leucine to proline. The qRT-PCR results showed that the expression level of NAL25 gene decreased in the mutant. The nal25 mutant obtained in this study exhibits stable mutant phenotypes, including dwarfism and excessive tillering, traits typically unfavorable for rice production. Nevertheless, it serves as valuable genetic material for forward genetics approaches to identify yield-related genes regulating leaf morphology and culm height. Thus, research on the nal25 mutant advances the development of rice varieties with ideal plant architecture, thereby stabilizing yield increases and safeguarding global food security. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

19 pages, 2531 KiB  
Review
Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review
by Yi Chen, Li Zhu, Xinyao Yan, Zhangjun Liao, Wen Teng, Yule Wang, Zhiguang Xing, Yun Chen and Lijun Liu
Agronomy 2025, 15(8), 1938; https://doi.org/10.3390/agronomy15081938 - 12 Aug 2025
Viewed by 366
Abstract
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, [...] Read more.
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, reduced effectiveness, and non-target toxicity, rendering them unsustainable for agricultural practices. Nanomaterials (NMs) present a promising alternative due to their small size, tunable release properties, and diverse mechanisms for disease resistance. This review examines how NMs can enhance rice disease management through (1) direct pathogen suppression; (2) the activation of plant defense pathways; (3) the formation of nanoscale barriers on leaves to obstruct pathogens; (4) targeted delivery and controlled release of fungicides; and (5) modulation of the microbiome to bolster resilience. Moreover, we critically analyze the agricultural potential and environmental implications of NMs, develop optimized application strategies, and, for the first time, propose the innovative ‘NMs-Rice-Soil’ Ternary System framework. This groundbreaking approach integrates nanotechnology, plant physiology, and soil ecology. The pioneering framework offers transformative solutions for sustainable crop protection, illustrating how strategically engineered NMs can synergistically enhance rice productivity, grain quality, and global food security through science-based risk management and interdisciplinary innovation. Full article
Show Figures

Figure 1

19 pages, 2379 KiB  
Article
Effects of Shading on Metabolism and Grain Yield of Irrigated Rice During Crop Development
by Stefânia Nunes Pires, Fernanda Reolon de Souza, Bruna Evelyn Paschoal Silva, Natan da Silva Fagundes, Simone Ribeiro Lucho, Luis Antonio de Avila and Sidnei Deuner
Plants 2025, 14(16), 2491; https://doi.org/10.3390/plants14162491 - 11 Aug 2025
Viewed by 309
Abstract
Rice (Oryza sativa L.) plays a pivotal role in the Brazilian economy, serving as a staple food for more than half of the world’s population and thereby contributing to global food security. Projections of future climate change scenarios indicate an increase in [...] Read more.
Rice (Oryza sativa L.) plays a pivotal role in the Brazilian economy, serving as a staple food for more than half of the world’s population and thereby contributing to global food security. Projections of future climate change scenarios indicate an increase in extreme weather events. Among climate variables that impact the development and productivity of irrigated rice, solar radiation is one of the most important in defining productive potential. Understanding the risks imposed on agricultural production by the occurrence of days with reduced luminosity availability is crucial for guiding adequate responses that mitigate the negative impacts of climate variability. Therefore, this study aimed to investigate the effect of shade on the metabolism and productivity of irrigated rice plants, with a specific focus on the synthesis of photosynthetic pigments, carbohydrate accumulation, invertase activity, and the nutritional status and grain yield of rice. For this, the study was conducted on the field rice cultivars IRGA 424 RI, BRS PAMPA, and BRS PAMPEIRA, which were subjected to 35% shading using black nylon netting installed when the plants reached the reproductive stage (R0). The restriction was maintained until the R4 stage, and later, from the R4 stage until the R9 stage. After the imposition of treatments, evaluations took place at the phenological stages R2, R4, R6, and R8. In shaded plants, a higher content of photosynthetic pigments and a lower accumulation of carbohydrates were observed, which was reflected in an increase in the activity of invertase enzymes. These conditions were able to potentiate effects on the nutritional status of the plants, in addition to reducing productivity and 1000-grain weight and increasing spikelet sterility, due to changes in the source–sink relationship, with effects more pronounced in cultivars BRS PAMPA and BRS PAMPEIRA during the R4–R9 period. Full article
(This article belongs to the Special Issue The Impact of Stress Conditions on Crop Quality)
Show Figures

Figure 1

17 pages, 10183 KiB  
Article
Genome-Wide Identification, Molecular Evolution, and Abiotic Stress-Responsive Regulation of Cupin Superfamily Genes in Rice (Oryza sativa L.)
by Hongwei Chen, Mingze Xiao, Wenqi Shang, Xianju Wang, Hong Gao, Wenjing Zheng and Zuobin Ma
Agronomy 2025, 15(8), 1925; https://doi.org/10.3390/agronomy15081925 - 9 Aug 2025
Viewed by 243
Abstract
The Cupin superfamily, characterized by a conserved β-barrel structure, plays crucial roles in plant growth, development, and stress responses. However, comprehensive analyses of this gene family in rice remains limited. Here, we performed a genome-wide identification, molecular evolution, and expression analysis of Cupin [...] Read more.
The Cupin superfamily, characterized by a conserved β-barrel structure, plays crucial roles in plant growth, development, and stress responses. However, comprehensive analyses of this gene family in rice remains limited. Here, we performed a genome-wide identification, molecular evolution, and expression analysis of Cupin genes in rice under abiotic stress. Utilizing the telomere-to-telomere (T2T) genome of rice, 54 Cupin genes (OsCupins) were identified and classified into four subfamilies (GLP, PIRIN, TRR14, and ARD) based on phylogenetic relationships with Arabidopsis homologs. These genes were unevenly distributed across ten chromosomes, with tandem and segmental duplications driving their expansion. Structural and synteny analyses revealed conserved motifs and orthologous relationships with sorghum and Arabidopsis. The promoter regions of OsCupins were enriched in stress-responsive cis-elements, including ABRE, MYB, and MYC motifs. qRT-PCR data demonstrated the significant upregulation of multiple OsCupins (e.g., OsGLP15, OsGLP38, and OsGLP43) under NaCl and PEG 6000 treatments. Functional validation in yeast showed that the overexpression of OsGLP15, OsGLP38, or OsGLP43 enhanced salt and drought tolerance in yeast, with OsGLP43 exhibiting the strongest stress resilience. Our findings provide insights into the evolutionary dynamics and stress-responsive regulatory mechanisms of the Cupin superfamily in rice, offering potential targets for enhancing abiotic stress tolerance in this critical crop. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Effects of Different Planting Environments on the Fragrance of Dalixiang (Oryza sativa L.)
by Tao Que, Yanlong Gong, Qian Wang, Zhongni Wang, Wuhua Long, Xian Wu and Susong Zhu
Appl. Sci. 2025, 15(16), 8781; https://doi.org/10.3390/app15168781 - 8 Aug 2025
Viewed by 187
Abstract
In addition to being governed by genetic factors, environmental factors also play a crucial role in influencing the fragrance of rice. In this research, the high-quality rice variety Dalixiang was selected as the experimental material to investigate the impacts of soil nutrients in [...] Read more.
In addition to being governed by genetic factors, environmental factors also play a crucial role in influencing the fragrance of rice. In this research, the high-quality rice variety Dalixiang was selected as the experimental material to investigate the impacts of soil nutrients in Guiyang and Meitan on its fragrance. The results indicated that the levels of ammonium nitrogen, organic matter, total nitrogen, available nitrogen, and the pH value in the soil of Meitan were lower compared to those in Guiyang. Conversely, the contents of total potassium, available phosphorus, and available potassium were higher in Meitan. Specifically, the concentrations of 2-acetyl-1-pyrroline (2AP) in the leaves of Dalixiang at the heading stage and in the grains at the maturity stage at the Meitan planting site were 0.13 mg/kg and 0.56 mg/kg, respectively. These values were significantly lower than the 0.17 mg/kg and 0.64 mg/kg measured at the Guiyang planting site. This phenomenon is associated with the higher expression levels of the betaine aldehyde dehydrogenase (OsBadh2) gene, enhanced enzyme activities, and a greater content of γ-aminobutyric acid (GABA) in the leaves of Dalixiang at the Meitan planting site. In contrast, the expression levels of genes related to triose phosphate isomerase (OsTPI), proline dehydrogenase (OsProDH), ornithine aminotransferase (OsOAT), and Delta1-pyrroline-5-carboxylic acid synthetase (OsP5CS), along with their corresponding enzyme activities, as well as the contents of methylglyoxal, proline, and ornithine, were lower. In conclusion, due to the influence of the Guiyang environment, the biosynthesis of Dalixiang 2AP was promoted, which made the Dalixiang planted in Guiyang stronger than that planted in Meitan. This study provides a theoretical basis for the selection of the best planting area of Dalixiang and the improvement of Dalixiang flavor through agronomic cultivation techniques. Full article
Show Figures

Figure 1

22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 - 7 Aug 2025
Viewed by 277
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

18 pages, 5973 KiB  
Article
Genome-Wide Identification and Characterisation of the 4-Coumarate–CoA Ligase (4CL) Gene Family in Gastrodia elata and Their Transcriptional Response to Fungal Infection
by Shan Sha, Kailang Mu, Qiumei Luo, Shi Yao, Tianyu Tang, Wei Sun, Zhigang Ju and Yuxin Pang
Int. J. Mol. Sci. 2025, 26(15), 7610; https://doi.org/10.3390/ijms26157610 - 6 Aug 2025
Viewed by 221
Abstract
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have [...] Read more.
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have not been investigated. We mined the G. elata genome for 4CL homologues, mapped their chromosomal locations, and analysed their gene structures, conserved motifs, phylogenetic relationships, promoter cis-elements and codon usage bias. Publicly available transcriptomes were used to examine tissue-specific expression and responses to fungal infection. Subcellular localisation of selected proteins was verified by transient expression in Arabidopsis protoplasts. Fourteen Ge4CL genes were identified and grouped into three clades. Two members, Ge4CL2 and Ge4CL5, were strongly upregulated in tubers challenged with fungal pathogens. Ge4CL2 localised to the nucleus, whereas Ge4CL5 localised to both the nucleus and the cytoplasm. Codon usage analysis suggested that Escherichia coli and Oryza sativa are suitable heterologous hosts for Ge4CL expression. This study provides the first genome-wide catalogue of 4CL genes in G. elata and suggests that Ge4CL2 and Ge4CL5 may participate in antifungal defence, although functional confirmation is still required. The dataset furnishes a foundation for functional characterisation and the molecular breeding of disease-resistant G. elata cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Viewed by 297
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

17 pages, 1211 KiB  
Review
Physiology, Genetics, and Breeding Strategies for Improving Anaerobic Germinability Under Flooding Stress in Rice
by Panchali Chakraborty and Swapan Chakrabarty
Stresses 2025, 5(3), 49; https://doi.org/10.3390/stresses5030049 - 3 Aug 2025
Viewed by 277
Abstract
Anaerobic germination (AG) is a pivotal trait for successful direct-seeded rice cultivation, encompassing rainfed and irrigated conditions. Elite rice cultivars are often vulnerable to flooding during germination, resulting in poor crop establishment. This drawback has led to the exploration of AG-tolerant rice landraces, [...] Read more.
Anaerobic germination (AG) is a pivotal trait for successful direct-seeded rice cultivation, encompassing rainfed and irrigated conditions. Elite rice cultivars are often vulnerable to flooding during germination, resulting in poor crop establishment. This drawback has led to the exploration of AG-tolerant rice landraces, which offer valuable insights into the genetic underpinnings of AG tolerance. Over the years, substantial progress has been made in identifying significant quantitative trait loci (QTLs) associated with AG tolerance, forming the basis for targeted breeding efforts. However, the intricate gene regulatory network governing AG tolerance remains enigmatic. This comprehensive review presents recent advances in understanding the physiological and genetic mechanisms underlying AG tolerance. It focuses on their practical implications in breeding elite rice cultivars tailored for direct-seeding systems. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

17 pages, 16726 KiB  
Article
Genome-Wide Identification, Characterization, and Comparison of C3HC4 Family Genes in Salt Tolerance Between Barley and Rice
by Kerun Chen, Shuai Wang, Xiaohan Xu, Xintong Zheng, Hongkai Wu, Linzhou Huang, Liping Dai, Chenfang Zhan, Dali Zeng and Liangbo Fu
Plants 2025, 14(15), 2404; https://doi.org/10.3390/plants14152404 - 3 Aug 2025
Viewed by 429
Abstract
Soil salinization constitutes a major constraint on global agricultural production, with marked divergence in salt adaptation strategies between salt-tolerant barley (Hordeum vulgare) and salt-sensitive rice (Oryza sativa). This study systematically investigated the evolution and functional specialization of the C3HC4-type [...] Read more.
Soil salinization constitutes a major constraint on global agricultural production, with marked divergence in salt adaptation strategies between salt-tolerant barley (Hordeum vulgare) and salt-sensitive rice (Oryza sativa). This study systematically investigated the evolution and functional specialization of the C3HC4-type RING zinc finger gene family, known to mediate abiotic stress responses through E3 ubiquitin ligase activity, in these contrasting cereal species. Through comparative genomics, we identified 123 HvC3HC4 genes and 90 OsC3HC4 genes, phylogenetically classified into four conserved subgroups. Differences in C3HC4 genes in phylogenetic relationships, chromosomal distribution, gene structure, motif composition, gene duplication events, and cis-elements in the promoter region were observed between barley and rice. Moreover, HvC3HC4s in barley tissues preferentially adopted an energy-conserving strategy, which may be a key mechanism for barley’s higher salt tolerance. Additionally, we found that C3HC4 genes were evolutionarily conserved in salt-tolerant species. The current results reveal striking differences in salt tolerance between barley and rice mediated by the C3HC4 gene family and offer valuable insight for potential genetic engineering applications in improving crop resilience to salinity stress. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 277
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

4 pages, 153 KiB  
Editorial
The Mechanisms and Pathways of Crop Responses to Stress
by Weibing Yang and Tie Cai
Agronomy 2025, 15(8), 1866; https://doi.org/10.3390/agronomy15081866 - 31 Jul 2025
Viewed by 294
Abstract
Rice (Oryza sativa L [...] Full article
Back to TopTop