Variable Expressivity of the Beckwith-Wiedemann Syndrome in Four Pedigrees Segregating Loss-of-Function Variants of CDKN1C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Molecular Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Y.; Frisen, J.; Lee, M.H.; Massague, J.; Barbacid, M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997, 11, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Liegeois, N.J.; Wong, C.; Finegold, M.; Hou, H.; Thompson, J.C.; Silverman, A.; Harper, J.W.; DePinho, R.A.; Elledge, S.J. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 1997, 387, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.C.; Wood, M.D.; Tunster, S.J.; Barton, S.C.; Surani, M.A.; John, R.M. Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev. Biol. 2007, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creff, J.; Besson, A. Functional Versatility of the CDK Inhibitor p57(Kip2). Front. Cell Dev. Biol. 2020, 8, 584590. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, V.A.; Lee, H.; Parnaik, R.; Fleming, A.; Banerjee, A.; Ferraz-de-Souza, B.; Delot, E.C.; Rodriguez-Fernandez, I.A.; Braslavsky, D.; Bergada, I.; et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 2012, 44, 788–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccio, A.; Cubellis, M.V. Gain of function in CDKN1C. Nat. Genet. 2012, 44, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Brioude, F.; Oliver-Petit, I.; Blaise, A.; Praz, F.; Rossignol, S.; Le Jule, M.; Thibaud, N.; Faussat, A.M.; Tauber, M.; Le Bouc, Y.; et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J. Med. Genet. 2013, 50, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Binder, G.; Ziegler, J.; Schweizer, R.; Habhab, W.; Haack, T.B.; Heinrich, T.; Eggermann, T. Novel mutation points to a hot spot in CDKN1C causing Silver-Russell syndrome. Clin. Epigenetics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Brioude, F.; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.; Bertoletti, M.; et al. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol. 2018, 14, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Mussa, A.; Russo, S.; De Crescenzo, A.; Freschi, A.; Calzari, L.; Maitz, S.; Macchiaiolo, M.; Molinatto, C.; Baldassarre, G.; Mariani, M.; et al. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 2016, 24, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.H.; Gauthier, D.W.; Maizels, M. Prenatal diagnosis of Beckwith-Wiedemann syndrome. Prenat. Diagn. 2005, 25, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Carli, D.; Bertola, C.; Cardaropoli, S.; Ciuffreda, V.P.; Pieretto, M.; Ferrero, G.B.; Mussa, A. Prenatal features in Beckwith-Wiedemann syndrome and indications for prenatal testing. J. Med. Genet. 2020. [Google Scholar] [CrossRef] [PubMed]
- Brioude, F.; Netchine, I.; Praz, F.; Le Jule, M.; Calmel, C.; Lacombe, D.; Edery, P.; Catala, M.; Odent, S.; Isidor, B.; et al. Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization. Hum. Mutat. 2015, 36, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Eggermann, T.; Binder, G.; Brioude, F.; Maher, E.R.; Lapunzina, P.; Cubellis, M.V.; Bergada, I.; Prawitt, D.; Begemann, M. CDKN1C mutations: Two sides of the same coin. Trends Mol. Med. 2014, 20, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Mort, M.; Ivanov, D.; Cooper, D.N.; Chuzhanova, N.A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 2008, 29, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Imam, J.S.; Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 2007, 76, 51–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lykke-Andersen, S.; Jensen, T.H. Nonsense-mediated mRNA decay: An intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 2015, 16, 665–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, M.A.; Pirinen, M.; Conrad, D.F.; Lek, M.; Tsang, E.K.; Karczewski, K.J.; Maller, J.B.; Kukurba, K.R.; DeLuca, D.S.; Fromer, M.; et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 2015, 348, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggermann, T.; Bruck, J.; Knopp, C.; Fekete, G.; Kratz, C.; Tasic, V.; Kurth, I.; Elbracht, M.; Eggermann, K.; Begemann, M. Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: What has to be considered and why it is important. J. Mol. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Percesepe, A.; Bertucci, E.; Ferrari, P.; Lugli, L.; Ferrari, F.; Mazza, V.; Forabosco, A. Familial Beckwith-Wiedemann syndrome due to CDKN1C mutation manifesting with recurring omphalocele. Prenat. Diagn. 2008, 28, 447–449. [Google Scholar] [CrossRef] [PubMed]
Individual | Anthropometric Data at Birth (gw, W, L) | Clinical Features | Clinical Score | Protein Change (NP000067.1, 316aa) | cDNA Change (NM_000076.2); Genomic Location (Chr 11, GRCh38/hg38) | dbSNPs | gnomAD | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Macroglossia | Exomphalos | Facial Naevus Simplex | Ear Signs | Transient Hypoglycaemia | Hepatomegaly | Umbilical Hernia | Diastasis Recti | Adrenal Cortex Cytomegaly | ||||||||
F1_II-1 | 40, 3160 g, 50 cm | + | − | + | − | + | − | + | − | − | 5 a | p.Trp79Cys | c.237G>C g.2885253C>G | nr | nr | - |
F1_II-3 | 38, 3000 g, 48.5 cm | + | + | + | + | − | − | + | − | − | 7 a | |||||
F2_I-2 | - | + | + | − | − | − | − | − | − | − | 4 a | p.Ala211Glyfs*26 | c.627_637del g.2884853_2884863del | nr | nr | - |
F2_II-1 | 37, 3270 g, 49 cm | + | + | + | + | − | + | − | + | − | 8 a | |||||
F3_III-1 | 38, 3400 g, 53 cm * | + | + | + | + | + | − | − | − | − | 6 a | p.Gln66* | c.196C>T g.2885294G>A | nr | nr | - |
F3_III-2 † | 38, 3500 g, 50 cm | + | + | − | − | − | − | − | − | − | 4 a | |||||
F4_fetus 1 | - | − | + | − | − | − | − | − | − | − | 6 b | p.Ser244* | c.731C>A g.2884759G>T | rs483352993 | nr | [13] |
F4_fetus 3 | - | − | + | − | − | − | − | − | − | + | 6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparago, A.; Cerrato, F.; Pignata, L.; Cammarata-Scalisi, F.; Garavelli, L.; Piscopo, C.; Vancini, A.; Riccio, A. Variable Expressivity of the Beckwith-Wiedemann Syndrome in Four Pedigrees Segregating Loss-of-Function Variants of CDKN1C. Genes 2021, 12, 706. https://doi.org/10.3390/genes12050706
Sparago A, Cerrato F, Pignata L, Cammarata-Scalisi F, Garavelli L, Piscopo C, Vancini A, Riccio A. Variable Expressivity of the Beckwith-Wiedemann Syndrome in Four Pedigrees Segregating Loss-of-Function Variants of CDKN1C. Genes. 2021; 12(5):706. https://doi.org/10.3390/genes12050706
Chicago/Turabian StyleSparago, Angela, Flavia Cerrato, Laura Pignata, Francisco Cammarata-Scalisi, Livia Garavelli, Carmelo Piscopo, Alessandra Vancini, and Andrea Riccio. 2021. "Variable Expressivity of the Beckwith-Wiedemann Syndrome in Four Pedigrees Segregating Loss-of-Function Variants of CDKN1C" Genes 12, no. 5: 706. https://doi.org/10.3390/genes12050706
APA StyleSparago, A., Cerrato, F., Pignata, L., Cammarata-Scalisi, F., Garavelli, L., Piscopo, C., Vancini, A., & Riccio, A. (2021). Variable Expressivity of the Beckwith-Wiedemann Syndrome in Four Pedigrees Segregating Loss-of-Function Variants of CDKN1C. Genes, 12(5), 706. https://doi.org/10.3390/genes12050706