Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights
Abstract
:1. Introduction
2. Down Syndrome
3. 22q11.2 Deletion Syndrome
4. Ellis–Van Creveld Syndrome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nora, J.J. Causes of congenital heart diseases: Old and new modes, mechanisms, and models. Am. Heart J. 1993, 125, 1409–1419. [Google Scholar] [CrossRef]
- Greenwood, R.D.; Rosenthal, A.; Parisi, L.; Fyler, D.C.; Nadas, A.S. Extracardiac abnormalities in infants with congenital heart disease. Pediatrics 1975, 55, 485–492. [Google Scholar]
- Ferencz, C.; Rubin, J.D.; McCarter, R.J.; Brenner, J.I.; Neill, C.A.; Perry, L.W.; Hepner, S.I.; Downing, J.W. Congenital heart disease: Prevalence at livebirth. The Baltimore-Washington infant study. Am. J. Epidemiol. 1985, 121, 31–36. [Google Scholar] [CrossRef]
- Eskedal, L.; Hagemo, P.; Eskild, A.; Aamodt, G.; Seiler, K.S.; Thaulow, E. A population-based study of extra-cardiac anomalies in children with congenital cardiac malformations. Cardiol. Young 2004, 14, 600–607. [Google Scholar] [CrossRef]
- Egbe, A.; Uppu, S.; Lee, S.; Ho, D.; Srivastava, S. Prevalence of associated extracardiac malformations in the congenital heart disease population. Pediatr. Cardiol. 2014, 35, 1239–1245. [Google Scholar] [CrossRef]
- De la Cruz, M.V.; Sanchez Gomez, C.; Arteaga, M.M.; Arguello, C. Experimental study of the development of the truncus and the conus in the chick embryo. J. Anat. 1977, 123, 661–686. [Google Scholar]
- Kelly, R.G.; Brown, N.A.; Buckingham, M.E. The arterial pole of the mouse heart forms from Fgf10-Expressing cells in pharyngeal mesoderm. Dev. Cell 2001, 1, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Snarr, B.S.; O’Neal, J.L.; Chintalapudi, M.R.; Wirrig, E.E.; Phelps, A.L.; Kubalak, S.W.; Wessels, A. Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ. Res. 2007, 101, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.G. The second heart field. Curr. Top. Dev. Biol. 2012, 100, 33–65. [Google Scholar]
- Marino, B.; Digilio, M.C. Congenital Heart disease and genetic syndromes: Specific correlation between cardiac phenotype and genotype. Cardiovasc. Pathol. 2000, 9, 303–315. [Google Scholar] [CrossRef]
- Calcagni, G.; Unolt, M.; Digilio, M.C.; Baban, A.; Versacci, P.; Tartaglia, M.; Baldini, A.; Marino, B. Congenital heart disease and genetic syndromes: New insights into molecular mechanisms. Expert Rev. Mol. Diagn. 2017, 17, 861–870. [Google Scholar] [CrossRef]
- Marino, B.; Vairo, U.; Corno, A.; Nava, S.; Guccione, P.; Calabro, R.; Marcelletti, C. Atrioventricular Canal in down syndrome. Prevalence of associated cardiac malformations compared with patients without down syndrome. Am. J. Dis. Child. 1990, 144, 1120–1122. [Google Scholar] [CrossRef]
- Marino, B.; Papa, M.; Guccione, P.; Corno, A.; Marasini, M.; Calabro, R. Ventricular septal defect in down syndrome. Anatomic types and associated malformations. Am. J. Dis. Child. 1990, 144, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Marino, B. Congenital heart disease in patients with down’s syndrome: Anatomic and genetic aspects. Biomed. Pharmacother. 1993, 47, 197–200. [Google Scholar] [CrossRef]
- Marino, B.; Digilio, M.C.; Toscano, A.; Anaclerio, S.; Giannotti, A.; Feltri, C.; de Ioris, M.A.; Angioni, A.; Dallapiccola, B. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet. Med. 2001, 3, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momma, K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am. J. Cardiol. 2010, 105, 1617–1624. [Google Scholar] [CrossRef]
- Unolt, M.; Versacci, P.; Anaclerio, S.; Lambiase, C.; Calcagni, G.; Trezzi, M.; Carotti, A.; Crowley, T.B.; Zackai, E.H.; Goldmuntz, E.; et al. Congenital heart diseases and cardiovascular abnormalities in 22q11.2 deletion syndrome: From well-established knowledge to new frontiers. Am. J. Med. Genet. A 2018, 176, 2087–2098. [Google Scholar] [CrossRef]
- Mastromoro, G.; Calcagni, G.; Versacci, P.; Putotto, C.; Chinali, M.; Lambiase, C.; Unolt, M.; Pelliccione, E.; Anaclerio, S.; Caprio, C.; et al. Left pulmonary artery in 22q11.2 deletion syndrome. Echocardiographic evaluation in patients without cardiac defects and role of Tbx1 in mice. PLoS ONE 2019, 14, e0211170. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.; Digilio, M.C.; Toscano, A.; Giannotti, A.; Dallapiccola, B. Congenital heart diseases in children with noonan syndrome: An expanded cardiac spectrum with high prevalence of atrioventricular canal. J. Pediatr. 1999, 135, 703–706. [Google Scholar] [CrossRef]
- Digilio, M.C.; Marino, B.; Ammirati, A.; Borzaga, U.; Giannotti, A.; Dallapiccola, B. Cardiac Malformations in patients with oral-facial-skeletal syndromes: Clinical similarities with heterotaxia. Am. J. Med. Genet. 1999, 84, 350–356. [Google Scholar] [CrossRef]
- Wren, C.; Oslizlok, P.; Bull, C. Natural history of supravalvular aortic stenosis and pulmonary artery stenosis. J. Am. Coll. Cardiol. 1990, 15, 1625–1630. [Google Scholar] [CrossRef]
- Collins, R.T., 2nd. Cardiovascular disease in Williams syndrome. Curr. Opin. Pediatr. 2018, 30, 609–615. [Google Scholar] [CrossRef]
- Jordan, V.K.; Zaveri, H.P.; Scott, D.A. 1p36 deletion syndrome: An update. Appl. Clin. Genet. 2015, 8, 189–200. [Google Scholar]
- Bonnet, D.; Pelet, A.; Legeai-Mallet, L.; Sidi, D.; Mathieu, M.; Parent, P.; Plauchu, H.; Serville, F.; Schinzel, A.; Weissenbach, J. A gene for Holt-Oram syndrome maps to the distal long arm of chromosome 12. Nat. Genet. 1994, 6, 405–408. [Google Scholar] [CrossRef]
- Baban, A.; Postma, A.V.; Marini, M.; Trocchio, G.; Santilli, A.; Pelegrini, M.; Sirleto, P.; Lerone, M.; Albanese, S.B.; Barnett, P.; et al. Identification of TBX5 mutations in a series of 94 patients with tetralogy of fallot. Am. J. Med. Genet. A 2014, 164, 3100–3107. [Google Scholar] [CrossRef]
- Anaclerio, S.; Di Ciommo, V.; Michielon, G.; Digilio, M.C.; Formigari, R.; Picchio, F.M.; Gargiulo, G.; Di Donato, R.; De Ioris, M.A.; Marino, B. Conotruncal heart defects: Impact of genetic syndromes on immediate operative mortality. Ital. Heart J. 2004, 5, 624–628. [Google Scholar] [PubMed]
- Formigari, R.; Di Donato, R.M.; Gargiulo, G.; Di Carlo, D.; Feltri, C.; Picchio, F.M.; Marino, B. Better surgical prognosis for patients with complete atrioventricular septal defect and Down’s syndrome. Ann. Thorac. Surg. 2004, 78, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Carotti, A.; Digilio, M.C.; Piacentini, G.; Saffirio, C.; Di Donato, R.M.; Marino, B. Cardiac defects and results of cardiac surgery in 22q11.2 deletion syndrome. Dev. Disabil. Res. Rev. 2008, 14, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Formigari, R.; Michielon, G.; Digilio, M.C.; Piacentini, G.; Carotti, A.; Giardini, A.; Di Donato, R.M.; Marino, B. Genetic syndromes and congenital heart defects: How is surgical management affected? Eur. J. Cardiothorac. Surg. 2009, 35, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, M.W.; Chung, W.K.; Kaltman, J.R.; Miller, T.A. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Digilio, M.C.; Marino, B. What is new in genetics of congenital heart defects? Front. Pediatr. 2016, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Habashi, J.P.; Judge, D.P.; Holm, T.M.; Cohn, R.D.; Loeys, B.L.; Cooper, T.K.; Myers, L.; Klein, E.C.; Liu, G.; Calvi, C.; et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312, 117–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, T.M.; Keith, K.; Davies, B.; Conner, D.A.; Guha, P.; Kalaitzidis, D.; Wu, X.; Lauriol, J.; Wang, B.; Bauer, M.; et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J. Clin. Invest. 2011, 121, 1026–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lania, G.; Bresciani, A.; Bisbocci, M.; Francone, A.; Colonna, V.; Altamura, S.; Baldini, A. Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome. Hum. Mol. Genet. 2016, 25, 4369–4375. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.; de Zorzi, A. Congenital heart disease in trisomy 21 mosaicism. J. Pediatr. 1993, 122, 500–501. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Jay, P.Y. A single misstep in cardiac development explains the co-occurrence of tetralogy of fallot and complete atrioventricular septal defect in down syndrome. J. Pediatr. 2014, 165, 194–196. [Google Scholar] [CrossRef] [Green Version]
- De Biase, L.; Di Ciommo, V.; Ballerini, L.; Bevilacqua, M.; Marcelletti, C.; Marino, B. Prevalence of left-sided obstructive lesions in patients with atrioventricular canal without Down’s syndrome. J. Thorac. Cardiovasc. Surg. 1986, 91, 467–469. [Google Scholar] [CrossRef]
- Carotti, A.; Marino, B.; Oppido, G.; Marcelletti, C. Biventricular repair in patients with left isomerism. J. Thorac. Cardiovasc. Surg. 1995, 110, 1151–1153. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.; Corno, A.; Guccione, P.; Marcelletti, C. Ventricular septal defect and Down’s syndrome. Lancet 1991, 337, 245–246. [Google Scholar] [CrossRef]
- Versacci, P.; Di Carlo, D.; Digilio, M.C.; Marino, B. Cardiovascular disease in Down syndrome. Curr. Opin. Pediatr. 2018, 30, 616–622. [Google Scholar] [CrossRef]
- Baban, A.; Olivini, N.; Cantarutti, N.; Cali, F.; Vitello, C.; Valentini, D.; Adorisio, R.; Calcagni, G.; Alesi, V.; Di Mambro, C.; et al. Differences in morbidity and mortality in down syndrome are related to the type of congenital heart defect. Am. J. Med. Genet. A 2020, 182, 1342–1350. [Google Scholar] [CrossRef]
- Rosenquist, G.C.; Sweeney, L.J.; Amsel, J.; McAllister, H.A. Enlargement of the membranous ventricular septum: An internal stigma of Down’s syndrome. J. Pediatr. 1974, 85, 490–493. [Google Scholar] [CrossRef]
- Calkoen, E.; Adriaanse, B.; Haak, M.; Bartelings, M.; Kolesnik, A.; Niszczota, C.; van Vugt, J.; Roest, A.; Blom, N.; Gittenberger-de Groot, A.; et al. How normal is a ’normal’ heart in fetuses and infants with down syndrome? Fetal. Diagn. Ther. 2016, 39, 13–20. [Google Scholar] [CrossRef]
- de Rubens Figueroa, J.; del Pozzo Magana, B.; Pablos Hach, J.L.; Calderon Jimenez, C.; Castrejon Urbina, R. Heart malformations in children with down syndrome. Rev. Esp. Cardiol. 2003, 56, 894–899. [Google Scholar] [CrossRef]
- Marino, B.; Calcagni, G.; Digilio, C. Cardiac defects in Mexican children with Down syndrome. Rev. Esp. Cardiol. 2004, 57, 482. [Google Scholar] [CrossRef]
- Maslen, C.L.; Babcock, D.; Robinson, S.W.; Bean, L.J.; Dooley, K.J.; Willour, V.L.; Sherman, S.L. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am. J. Med. Genet. A 2006, 140, 2501–2505. [Google Scholar] [CrossRef]
- Ackerman, C.; Locke, A.E.; Feingold, E.; Reshey, B.; Espana, K.; Thusberg, J.; Mooney, S.; Bean, L.J.; Dooley, K.J.; Cua, C.L.; et al. An excess of deleterious variants in VEGF—A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am. J. Hum. Genet. 2012, 91, 646–659. [Google Scholar] [CrossRef] [Green Version]
- Sailani, M.R.; Makrythanasis, P.; Valsesia, A.; Santoni, F.A.; Deutsch, S.; Popadin, K.; Borel, C.; Migliavacca, E.; Sharp, A.J.; Duriaux Sail, G.; et al. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res. 2013, 23, 1410–1421. [Google Scholar] [CrossRef] [Green Version]
- Lyle, R.; Gehrig, C.; Neergaard-Henrichsen, C.; Deutsch, S.; Antonarakis, S.E. Gene expression from the aneuploid chromosome in a trisomy mouse model of Down syndrome. Genome Res. 2004, 14, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Rambo-Martin, B.L.; Mulle, J.G.; Cutler, D.J.; Bean, L.J.H.; Rosser, T.C.; Dooley, K.J.; Cua, C.; Capone, G.; Maslen, C.L.; Reeves, R.H.; et al. Analysis of copy number variants on chromosome 21 in Down syndrome-associated congenital heart defects. G3 2018, 8, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Asim, A.; Agarwal, S.; Panigrahi, I.; Sarangi, A.N.; Muthuswamy, S.; Kapoor, A. CRELD1 gene variants and atrioventricular septal defects in Down syndrome. Gene 2018, 641, 180–185. [Google Scholar] [CrossRef]
- Coppola, A.; Romito, A.; Borel, C.; Gehrig, C.; Gagnebin, M.; Falconnet, E.; Izzo, A.; Altucci, L.; Banfi, S.; Antonarakis, S.E.; et al. Cardiomyogenesis is controlled by the miR-99a/Let-7c cluster and epigenetic modifications. Stem Cell. Res. 2014, 12, 323–337. [Google Scholar] [CrossRef]
- Bras, A.; Rodrigues, A.S.; Gomes, B.; Rueff, J. Down syndrome and microRNAs. Biomed. Rep. 2018, 8, 11–16. [Google Scholar] [PubMed]
- Li, H.; Cherry, S.; Klinedinst, D.; DeLeon, V.; Redig, J.; Reshey, B.; Chin, M.T.; Sherman, S.L.; Maslen, C.L.; Reeves, R.H. Genetic modifiers predisposing to congenital heart disease in the sensitized Down syndrome population. Circ. Cardiovasc. Genet. 2012, 5, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Lana-Elola, E.; Watson-Scales, S.; Slender, A.; Gibbins, D.; Martineau, A.; Douglas, C.; Mohun, T.; Fisher, E.M.; Tybulewicz, V.L. Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse mapping panel. eLife 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Edie, S.; Klinedinst, D.; Jeong, J.S.; Blackshaw, S.; Maslen, C.L.; Reeves, R.H. Penetrance of Congenital heart disease in a mouse model of Down syndrome depends on a trisomic potentiator of a disomic modifier. Genetics 2016, 203, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, C.; Ciani, E.; Guidi, S.; Trazzi, S.; Bartesaghi, R. Early-occurring proliferation defects in peripheral tissues of the Ts65Dn mouse model of Down syndrome are associated with patched1 over expression. Lab. Investig. 2012, 92, 1648–1660. [Google Scholar] [CrossRef] [Green Version]
- Digilio, M.C.; Pugnaloni, F.; De Luca, A.; Calcagni, G.; Baban, A.; Dentici, M.L.; Versacci, P.; Dallapiccola, B.; Tartaglia, M.; Marino, B. Atrioventricular canal defect and genetic syndromes: The unifying role of sonic hedgehog. Clin. Genet. 2019, 95, 268–276. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Primers 2015, 1, 15071. [Google Scholar] [CrossRef] [Green Version]
- Goldmuntz, E. 22q11.2 Deletion syndrome and congenital heart disease. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 64–72. [Google Scholar] [CrossRef]
- Rump, P.; de Leeuw, N.; van Essen, A.J.; Verschuuren-Bemelmans, C.C.; Veenstra-Knol, H.E.; Swinkels, M.E.; Oostdijk, W.; Ruivenkamp, C.; Reardon, W.; de Munnik, S.; et al. Central 22q11.2 deletions. Am. J. Med. Genet. A 2014, 164, 2707–2723. [Google Scholar] [CrossRef]
- Marino, B.; Digilio, M.C.; Toscano, A.; Giannotti, A.; Dallapiccola, B. Congenital heart defects in patients with DiGeorge/velocardiofacial syndrome and del22q11. Genet. Couns. 1999, 10, 25–33. [Google Scholar]
- Anaclerio, S.; Marino, B.; Carotti, A.; Digilio, M.C.; Toscano, A.; Gitto, P.; Giannotti, A.; Di Donato, R.; Dallapiccola, B. Pulmonary atresia with ventricular septal defect: Prevalence of deletion 22q11 in the different anatomic patterns. Ital. Heart J. 2001, 2, 384–387. [Google Scholar]
- Toscano, A.; Anaclerio, S.; Digilio, M.C.; Giannotti, A.; Fariello, G.; Dallapiccola, B.; Marino, B. Ventricular septal defect and deletion of chromosome 22q11: Anatomical types and aortic arch anomalies. Eur. J. Pediatr. 2002, 161, 116–117. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Tonnesen, M.K.; Laufer-Cahana, A.; Finucane, B.; Driscoll, D.A.; Emanuel, B.S.; Zackai, E.H. Phenotype of the 22q11.2 Deletion in individuals identified through an affected relative: Cast a wide FISHing net! Genet. Med. 2001, 3, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Vergaelen, E.; Swillen, A.; Van Esch, H.; Claes, S.; Van Goethem, G.; Devriendt, K. 3 Generation pedigree with paternal transmission of the 22q11.2 deletion syndrome: Intrafamilial phenotypic variability. Eur. J. Med. Genet. 2015, 58, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Merscher, S.; Funke, B.; Epstein, J.A.; Heyer, J.; Puech, A.; Lu, M.M.; Xavier, R.J.; Demay, M.B.; Russell, R.G.; Factor, S.; et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001, 104, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, E.A.; Vitelli, F.; Su, H.; Morishima, M.; Huynh, T.; Pramparo, T.; Jurecic, V.; Ogunrinu, G.; Sutherland, H.F.; Scambler, P.J.; et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001, 410, 97–101. [Google Scholar] [CrossRef]
- Xu, H.; Morishima, M.; Wylie, J.N.; Schwartz, R.J.; Bruneau, B.G.; Lindsay, E.A.; Baldini, A. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 2004, 131, 3217–3227. [Google Scholar] [CrossRef] [Green Version]
- Yagi, H.; Furutani, Y.; Hamada, H.; Sasaki, T.; Asakawa, S.; Minoshima, S.; Ichida, F.; Joo, K.; Kimura, M.; Imamura, S.; et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003, 362, 1366–1373. [Google Scholar] [CrossRef]
- Zweier, C.; Sticht, H.; Aydin-Yaylagul, I.; Campbell, C.E.; Rauch, A. Human TBX1 Missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am. J. Hum. Genet. 2007, 80, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Diacou, A.; Johnston, H.R.; Musfee, F.I.; McDonald-McGinn, D.M.; McGinn, D.; Crowley, T.B.; Repetto, G.M.; Swillen, A.; Breckpot, J.; et al. Complete sequence of the 22q11.2 allele in 1053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects. Am. J. Hum. Genet. 2020, 106, 26–40. [Google Scholar] [CrossRef]
- Michielon, G.; Marino, B.; Formigari, R.; Gargiulo, G.; Picchio, F.; Digilio, M.C.; Anaclerio, S.; Oricchio, G.; Sanders, S.P.; Di Donato, R.M. Genetic syndromes and outcome after surgical correction of tetralogy of fallot. Ann. Thorac. Surg. 2006, 81, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Michielon, G.; Marino, B.; Oricchio, G.; Digilio, M.C.; Iorio, F.; Filippelli, S.; Placidi, S.; Di Donato, R.M. Impact of DEL22q11, trisomy 21, and other genetic syndromes on surgical outcome of conotruncal heart defects. J. Thorac. Cardiovasc. Surg. 2009, 138, 565–570.e2. [Google Scholar] [CrossRef] [Green Version]
- Carotti, A.; Albanese, S.B.; Filippelli, S.; Rava, L.; Guccione, P.; Pongiglione, G.; Di Donato, R.M. Determinants of outcome after surgical treatment of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. J. Thorac. Cardiovasc. Surg. 2010, 140, 1092–1103. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowska, L.; Kawalec, W.; Turska-Kmiec, A.; Krajewska-Walasek, M.; Brzezinska-Rajszys, G.; Daszkowska, J.; Maruszewski, B.; Burczynski, P. Chromosome 22q11.2 microdeletion in children with conotruncal heart defects: Frequency, associated cardiovascular anomalies, and outcome following cardiac surgery. Eur. J. Pediatr. 2008, 167, 1135–1140. [Google Scholar] [CrossRef]
- Mercer-Rosa, L.; Pinto, N.; Yang, W.; Tanel, R.; Goldmuntz, E. 22q11.2 deletion syndrome is associated with perioperative outcome in tetralogy of fallot. J. Thorac. Cardiovasc. Surg. 2013, 146, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Beighton, P.; Giedion, Z.A.; Gorlin, R.; Hall, J.; Horton, B.; Kozlowski, K.; Lachman, R.; Langer, L.O.; Maroteaux, P.; Poznanski, A.; et al. International classification of osteochondrodysplasias. International Working Group on Constitutional Diseases of Bone. Am. J. Med. Genet. 1992, 44, 223–229. [Google Scholar] [CrossRef]
- Levin, S.E.; Dansky, R.; Milner, S.; Benatar, A.; Govendrageloo, K.; du Plessis, J. Atrioventricular septal defect and type A postaxial polydactyly without other major associated anomalies: A specific association. Pediatr. Cardiol. 1995, 16, 242–246. [Google Scholar] [CrossRef]
- Onat, T. Post-axial hexodactily and single atrium: A new syndrome? Hum. Genet. 1994, 94, 104–106. [Google Scholar] [CrossRef]
- Digilio, M.C.; Marino, B.; Giannotti, A.; Dallapiccola, B. Single atrium, atrioventricular canal/postaxial hexodactyly indicating Ellis-van Creveld syndrome. Hum. Genet. 1995, 96, 251–253. [Google Scholar] [CrossRef]
- Digilio, M.C.; Marino, B.; Giannotti, A.; Dallapiccola, B. The atrioventricular canal defect is the congenital heart disease connecting short rib-polydactyly and oral-facial-digital syndromes. Am. J. Med. Genet. 1997, 68, 110–112. [Google Scholar] [CrossRef]
- Digilio, M.C.; Marino, B.; Giannotti, A.; Dallapiccola, B. Orocardiodigital syndrome: An oral-facial-digital type II variant associated with atrioventricular canal. J. Med. Genet. 1996, 33, 416–418. [Google Scholar] [CrossRef]
- Ruiz-Perez, V.L.; Ide, S.E.; Strom, T.M.; Lorenz, B.; Wilson, D.; Woods, K.; King, L.; Francomano, C.; Freisinger, P.; Spranger, S.; et al. Mutations in a new gene in Ellis-Van Creveld syndrome and Weyers acrodental dysostosis. Nat. Genet. 2000, 24, 283–286. [Google Scholar] [CrossRef]
- Ruiz-Perez, V.L.; Tompson, S.W.; Blair, H.J.; Espinoza-Valdez, C.; Lapunzina, P.; Silva, E.O.; Hamel, B.; Gibbs, J.L.; Young, I.D.; Wright, M.J.; et al. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-Van Creveld syndrome. Am. J. Hum. Genet. 2003, 72, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Piceci-Sparascio, F.; Palencia-Campos, A.; Soto-Bielicka, P.; D’Anzi, A.; Guida, V.; Rosati, J.; Caparros-Martin, J.A.; Torrente, I.; D’Asdia, M.C.; Versacci, P.; et al. Common atrium/atrioventricular canal defect and postaxial polydactyly: A Mild clinical subtype of Ellis-Van Creveld syndrome caused by hypomorphic mutations in the EVC gene. Hum. Mutat. 2020, 41, 2087–2093. [Google Scholar] [CrossRef]
- Sund, K.L.; Roelker, S.; Ramachandran, V.; Durbin, L.; Benson, D.W. Analysis of Ellis Van Creveld syndrome gene products: Implications for cardiovascular development and disease. Hum. Mol. Genet. 2009, 18, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Dorn, K.V.; Hughes, C.E.; Rohatgi, R. A smoothened-Evc2 complex transduces the hedgehog signal at primary cilia. Dev. Cell. 2012, 23, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Blair, H.J.; Tompson, S.; Liu, Y.N.; Campbell, J.; MacArthur, K.; Ponting, C.P.; Ruiz-Perez, V.L.; Goodship, J.A. Evc2 is a positive modulator of hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus. BMC Biol. 2011, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- D’Asdia, M.C.; Torrente, I.; Consoli, F.; Ferese, R.; Magliozzi, M.; Bernardini, L.; Guida, V.; Digilio, M.C.; Marino, B.; Dallapiccola, B.; et al. Novel and recurrent EVC and EVC2 mutations in Ellis-Van Creveld syndrome and Weyers acrofacial dyostosis. Eur. J. Med. Genet. 2013, 56, 80–87. [Google Scholar] [CrossRef]
- Caparros-Martin, J.A.; De Luca, A.; Cartault, F.; Aglan, M.; Temtamy, S.; Otaify, G.A.; Mehrez, M.; Valencia, M.; Vazquez, L.; Alessandri, J.L.; et al. Specific variants in WDR35 cause a distinctive form of Ellis-Van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. Hum. Mol. Genet. 2015, 24, 4126–4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niceta, M.; Margiotti, K.; Digilio, M.C.; Guida, V.; Bruselles, A.; Pizzi, S.; Ferraris, A.; Memo, L.; Laforgia, N.; Dentici, M.L.; et al. Biallelic mutations in DYNC2LI1 are a rare cause of Ellis-Van Creveld syndrome. Clin. Genet. 2018, 93, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.P.; Dantas, T.J.; Duran, I.; Wu, S.; Lachman, R.S.; University of Washington Center for Mendelian Genomics Consortium; Nelson, S.F.; Cohn, D.H.; Vallee, R.B.; Krakow, D. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun. 2015, 6, 7092. [Google Scholar] [CrossRef]
- Huang, Y.; Roelink, H.; McKnight, G.S. Protein kinase a deficiency causes axially localized neural tube defects in mice. J. Biol. Chem. 2002, 277, 19889–19896. [Google Scholar] [CrossRef] [Green Version]
Gene | Chromosome Location | OMIM | Prevalence |
---|---|---|---|
EVC | 4p16.2 | 604831 | 31–62% |
EVC2 | 4p16.2 | 607261 | 21–38% |
WDR35 | 2p24.1 | 613602 | <1% |
DYNC2LI1 | 2p21 | 617083 | ~2% |
GLI1 | 12q13.3 | 165220 | <1% |
PRKACA | 19p13.12 | 601639 | <1% |
PRKACB | 1p31.1 | 176892 | <1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcagni, G.; Pugnaloni, F.; Digilio, M.C.; Unolt, M.; Putotto, C.; Niceta, M.; Baban, A.; Piceci Sparascio, F.; Drago, F.; De Luca, A.; et al. Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes 2021, 12, 1047. https://doi.org/10.3390/genes12071047
Calcagni G, Pugnaloni F, Digilio MC, Unolt M, Putotto C, Niceta M, Baban A, Piceci Sparascio F, Drago F, De Luca A, et al. Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes. 2021; 12(7):1047. https://doi.org/10.3390/genes12071047
Chicago/Turabian StyleCalcagni, Giulio, Flaminia Pugnaloni, Maria Cristina Digilio, Marta Unolt, Carolina Putotto, Marcello Niceta, Anwar Baban, Francesca Piceci Sparascio, Fabrizio Drago, Alessandro De Luca, and et al. 2021. "Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights" Genes 12, no. 7: 1047. https://doi.org/10.3390/genes12071047
APA StyleCalcagni, G., Pugnaloni, F., Digilio, M. C., Unolt, M., Putotto, C., Niceta, M., Baban, A., Piceci Sparascio, F., Drago, F., De Luca, A., Tartaglia, M., Marino, B., & Versacci, P. (2021). Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes, 12(7), 1047. https://doi.org/10.3390/genes12071047