Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants
Abstract
:1. Introduction
2. Principles of Yeast Humanization
3. The Study of Genetic Variants by High Throughput Approaches
4. The Study of Genetic Variation of Single Genes
4.1. Yeast Functional Assay for Genes Involved in Mendelian Diseases
4.1.1. Complementation Assays of Human Genes Coding for Enzymes or Subunits of Enzymes
4.1.2. Complementation Assays of Human Genes Coding for Transporters or Carriers
4.2. Yeast Assays for Genes Involved in Cancer
5. Limitations of the Yeast Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lupski, J.R.; Belmont, J.W.; Boerwinkle, E.; Gibbs, R.A. Clan Genomics and the Complex Architecture of Human Disease. Cell 2011, 147, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zheng, L.; Goncearenco, A.; Panchenko, A.R.; Li, M. Computational Approaches to Prioritize Cancer Driver Missense Mutations. Int. J. Mol. Sci. 2018, 19, 2113. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Castellana, S.; Mazza, T. Congruency in the prediction of pathogenic missense mutations: State-of-the-art web-based tools. Brief. Bioinform. 2013, 14, 448–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frousios, K.; Iliopoulos, C.S.; Schlitt, T.; Simpson, M.A. Predicting the functional consequences of non-synonymous DNA sequence variants—Evaluation of bioinformatics tools and development of a consensus strategy. Genomics 2013, 102, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnad, F.; Baucom, A.; Mukhyala, K.; Manning, G.; Zhang, Z. Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genom. 2013, 14 (Suppl. 3), S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boycott, K.M.; Campeau, P.; Howley, H.E.; Pavlidis, P.; Rogic, S.; Oriel, C.; Berman, J.N.; Hamilton, R.M.; Hicks, G.; Lipshitz, H.D.; et al. The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. Am. J. Hum. Genet. 2020, 106, 143–152. [Google Scholar] [CrossRef]
- Mizushima, N. The exponential growth of autophagy-related research: From the humble yeast to the Nobel Prize. FEBS Lett. 2017, 591, 681–689. [Google Scholar] [CrossRef]
- Giaever, G.; Nislow, C. The Yeast Deletion Collection: A Decade of Functional Genomics. Genetics 2014, 197, 451–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangler, M.F.; Yamamoto, S.; Chao, H.-T.; Posey, J.E.; Westerfield, M.; Postlethwait, J.; Hieter, P.; Boycott, K.M.; Campeau, P.M.; Bellen, H.J.; et al. Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics 2017, 207, 9–27. [Google Scholar] [CrossRef]
- Cervelli, T.; Lodovichi, S.; Bellè, F.; Galli, A. Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. Microb. Cell 2020, 7, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Dunham, M.J.; Fowler, D.M. Contemporary, yeast-based approaches to understanding human genetic variation. Curr. Opin. Genet. Dev. 2013, 23, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, J.M.; Young, J.H.; Kachroo, A.H.; Marcotte, E.M. Efforts to make and apply humanized yeast. Brief. Funct. Genom. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manon, S. Investigating BCL-2 Family Protein Interactions in Yeast. Adv. Struct. Saf. Stud. 2018, 1877, 93–109. [Google Scholar] [CrossRef]
- La Ferla, M.; Mercatanti, A.; Rocchi, G.; Lodovichi, S.; Cervelli, T.; Pignata, L.; Caligo, M.; Galli, A. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization. Mutat. Res. Mol. Mech. Mutagen. 2015, 774, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Millot, G.A.; Berger, A.; Lejour, V.; Boulé, J.-B.; Bobo, C.; Cullin, C.; Lopes, J.; Stoppa-Lyonnet, D.; Nicolas, A. Assessment of human nter and cterBRCA1mutations using growth and localization assays in yeast. Hum. Mutat. 2011, 32, 1470–1480. [Google Scholar] [CrossRef]
- Inga, A.; Resnick, M. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Oncogene 2001, 20, 3409–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenreiro, S.; Franssens, V.; Winderickx, J.; Outeiro, T.F. Yeast models of Parkinson’s disease-associated molecular pathologies. Curr. Opin. Genet. Dev. 2017, 44, 74–83. [Google Scholar] [CrossRef]
- Lubrano, S.; Comelli, L.; Piccirilli, C.; Marranci, A.; Dapporto, F.; Tantillo, E.; Gemignani, F.; Gutkind, J.S.; Salvetti, A.; Chiorino, G.; et al. Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene 2019, 38, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Mercatanti, A.; Lodovichi, S.; Cervelli, T.; Galli, A. CRIMEtoYHU: A new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants. FEMS Yeast Res. 2017, 17, fox078. [Google Scholar] [CrossRef]
- Guimier, A.; Gordon, C.T.; Godard, F.; Ravenscroft, G.; Oufadem, M.; Vasnier, C.; Rambaud, C.; Nitschke, P.; Bole-Feysot, C.; Masson, C.; et al. Biallelic PPA2 Mutations Cause Sudden Unexpected Cardiac Arrest in Infancy. Am. J. Hum. Genet. 2016, 99, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Agmon, N.; Temple, J.; Tang, Z.; Schraink, T.; Baron, M.; Chen, J.; Mita, P.; A Martin, J.; Tu, B.P.; Yanai, I.; et al. Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Res. 2020, 48, 486–499. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-S.; Yu, M.; Kim, K.-Y.; Park, G.-H.; Kwack, K.; Kim, K.P. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae. PLoS ONE 2015, 10, e0124152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Yang, J.; Jeong, S.-H.; Kim, H.; Park, G.-H.; Shin, H.B.; Ro, M.; Kim, K.-Y.; Park, Y.; Kim, K.P.; et al. Yeast-based assays for characterization of the functional effects of single nucleotide polymorphisms in human DNA repair genes. PLoS ONE 2018, 13, e0193823. [Google Scholar] [CrossRef] [Green Version]
- Greene, A.L.; Snipe, J.R.; Gordenin, D.A.; Resnick, M.A. Functional Analysis of Human FEN1 in Saccharomyces Cerevisiae and Its Role in Genome Stability. Hum. Mol. Genet. 1999, 8, 2263–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Yang, F.; Tan, G.; Costanzo, M.; Oughtred, R.; Hirschman, J.; Theesfeld, C.L.; Bansal, P.; Sahni, N.; Yi, S.; et al. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res. 2016, 26, 670–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nottingham, R.M.; Ganley, I.; Barr, F.; Lambright, D.G.; Pfeffer, S.R. RUTBC1 Protein, a Rab9A Effector That Activates GTP Hydrolysis by Rab32 and Rab33B Proteins. J. Biol. Chem. 2011, 286, 33213–33222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Sun, S.; Tan, G.; Costanzo, M.; Hill, D.E.; Vidal, M.; Andrews, B.J.; Boone, C.; Roth, F.P. Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genet. 2017, 13, e1006779. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.; Tammpere, E.; Kofoed, M.; Keong, C.; Chiang, J.; Giaever, G.; Nislow, C.; Hieter, P. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants. Genetics 2015, 201, 1263–1274. [Google Scholar] [CrossRef] [Green Version]
- Tong, A.H.Y.; Boone, C. Synthetic Genetic Array Analysis in Saccharomyces cerevisiae. Yeast Protoc. 2006, 313, 171–192. [Google Scholar] [CrossRef]
- Kuzmin, E.; Sharifpoor, S.; Baryshnikova, A.; Costanzo, M.; Myers, C.L.; Andrews, B.J.; Boone, C. Synthetic Genetic Array Analysis for Global Mapping of Genetic Networks in Yeast. Methods Mol. Biol. 2014, 1205, 143–168. [Google Scholar] [CrossRef] [PubMed]
- Young, B.P.; Post, K.L.; Chao, J.T.; Meili, F.; Haas, K.; Loewen, C.J.R. Sentinel Interaction Mapping (SIM)—A generic approach for the functional analysis of human disease gene variants using yeast. Dis. Model. Mech. 2020, 13, dmm.044560. [Google Scholar] [CrossRef]
- Young, B.P.; Loewen, C.J. Balony: A software package for analysis of data generated by synthetic genetic array experiments. BMC Bioinform. 2013, 14, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, K.L.; Belmadani, M.; Ganguly, P.; Meili, F.; Dingwall, R.; McDiarmid, T.A.; Meyers, W.M.; Herrington, C.; Young, B.P.; Callaghan, D.B.; et al. Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat. Commun. 2020, 11, 2073. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, T.; Vaughn, J.G.; Waisman, H.A. The identification of homocystine in the urine. Biochem. Biophys. Res. Commun. 1962, 9, 493–496. [Google Scholar] [CrossRef]
- Ono, B.; Shirahige, Y.; Nanjoh, A.; Andou, N.; Ohue, H.; Ishino-Arao, Y. Cysteine biosynthesis in Saccharomyces cerevisiae: Mutation that confers cystathionine beta-synthase deficiency. J. Bacteriol. 1988, 170, 5883–5889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, W.D.; Cox, D.R. A yeast assay for functional detection of mutations in the human cystathionine -synthase gene. Hum. Mol. Genet. 1995, 4, 1155–1161. [Google Scholar] [CrossRef]
- Mayfield, J.A.; Davies, M.W.; Dimster-Denk, D.; Pleskac, N.; McCarthy, S.; Boydston, E.A.; Fink, L.; Lin, X.X.; Narain, A.S.; Meighan, M.; et al. Surrogate Genetics and Metabolic Profiling for Characterization of Human Disease Alleles. Genetics 2012, 190, 1309–1323. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, R.A.; Schanze, D.; Kariminejad, A.; Nordgren, A.; Kariminejad, M.H.; Conner, P.; Grigelioniene, G.; Nilsson, D.; Nordenskjöld, M.; Wedell, A.; et al. Neu-Laxova Syndrome Is a Heterogeneous Metabolic Disorder Caused by Defects in Enzymes of the L-Serine Biosynthesis Pathway. Am. J. Hum. Genet. 2014, 95, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Sirr, A.; Lo, R.S.; Cromie, G.A.; Scott, A.C.; Ashmead, J.; Heyesus, M.; Dudley, A.M. A yeast-based complementation assay elucidates the functional impact of 200 missense variants in human PSAT1. J. Inherit. Metab. Dis. 2020, 43, 758–769. [Google Scholar] [CrossRef]
- Bastow, E.L.; Peswani, A.R.; Tarrant, D.S.J.; Pentland, D.R.; Chen, X.; Morgan, A.; Staniforth, G.L.; Tullet, J.M.; Rowe, M.L.; Howard, M.; et al. New links between SOD1 and metabolic dysfunction from a yeast model of Amyotrophic Lateral Sclerosis (ALS). J. Cell Sci. 2016, 129, 4118–4129. [Google Scholar] [CrossRef] [Green Version]
- Bollee, G.; Harambat, J.; Bensman, A.; Knebelmann, B.; Daudon, M.; Ceballos-Picot, I. Adenine Phosphoribosyltransferase Deficiency. Clin. J. Am. Soc. Nephrol. 2012, 7, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Huyet, J.; Ozeir, M.; Burgevin, M.-C.; Pinson, B.; Chesney, F.; Remy, J.-M.; Siddiqi, A.R.; Lupoli, R.; Pinon, G.; Saint-Marc, C.; et al. Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chem. Biol. 2018, 25, 666–676.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.R.; Couto, A.; Cabezas, A.; Pinto, R.M.; Ribeiro, J.; Canales, J.; Costas, M.J.; Cameselle, J.C. Bifunctional Homodimeric Triokinase/FMN Cyclase. J. Biol. Chem. 2014, 289, 10620–10636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wortmann, S.B.; Meunier, B.; Mestek-Boukhibar, L.; Broek, F.V.D.; Maldonado, E.M.; Clement, E.; Weghuber, D.; Spenger, J.; Jaros, Z.; Taha, F.; et al. Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease. Am. J. Hum. Genet. 2020, 106, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, M.K.; McMillan, H.J.; Kernohan, K.D.; Pena, I.A.; Meyer-Schuman, R.; Antonellis, A.; Boycott, K.M. A Novel Mutation in MARS in a Patient with Charcot-Marie-Tooth Disease, Axonal, Type 2U with Congenital Onset. J. Neuromuscul. Dis. 2019, 6, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Markovitz, R.; Ghosh, R.; Kuo, M.E.; Hong, W.; Lim, J.; Bernes, S.; Manberg, S.; Crosby, K.; Tanpaiboon, P.; Bharucha-Goebel, D.; et al. GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment. Am. J. Med. Genet. Part A 2020, 182, 1167–1176. [Google Scholar] [CrossRef]
- Siekierska, A.; Stamberger, H.; Deconinck, T.; Oprescu, S.N.; Partoens, M.; Zhang, Y.; Sourbron, J.; Adriaenssens, E.; Mullen, P.; Wiencek, P.; et al. Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish. Nat. Commun. 2019, 10, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, M.; McLaughlin, H.; Houlden, H.; Guo, M.; Yo-Tsen, L.; Hadjivassilious, M.; Speziani, F.; Yang, X.-L.; Antonellis, A.; Reilly, M.M.; et al. Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1247–1249. [Google Scholar] [CrossRef] [Green Version]
- Oprescu, S.N.; Griffin, L.B.; Beg, A.A.; Antonellis, A. Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations. Methods 2017, 113, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Clark, V.E.; Harmancı, A.S.; Bai, H.; Youngblood, M.W.; Lee, T.I.; Baranoski, J.F.; Ercan-Sencicek, A.G.; Abraham, B.; Weintraub, A.S.; Hnisz, D.; et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 2016, 48, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Haijes, H.; Koster, M.J.; Rehmann, H.; Li, D.; Hakonarson, H.; Cappuccio, G.; Hancarova, M.; Lehalle, D.; Reardon, W.; Schaefer, G.B.; et al. De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Am. J. Hum. Genet. 2019, 105, 283–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.W.; Arora, P.; Khayat, M.M.; Smith, L.J.; Lewis, A.M.; Rossetti, L.Z.; Jayaseelan, J.; Cristian, I.; Haynes, D.; DiTroia, S.; et al. Germline mutation in POLR2A: A heterogeneous, multi-systemic developmental disorder characterized by transcriptional dysregulation. Hum. Genet. Genom. Adv. 2021, 2, 100014. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Enriquez, A.; Rapadas, M.; Martin, E.M.; Wang, R.; Moreau, J.L.M.; Lim, E.; Szot, J.; Ip, E.K.; Hughes, J.N.; et al. NAD Deficiency, Congenital Malformations, and Niacin Supplementation. N. Engl. J. Med. 2017, 377, 544–552. [Google Scholar] [CrossRef]
- Kirkland, J.B. Niacin requirements for genomic stability. Mutat. Res. Mol. Mech. Mutagen. 2012, 733, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiforov, A.; Kulikova, V.; Ziegler, M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Suda, Y.; Tachikawa, H.; Yokota, A.; Nakanishi, H.; Yamashita, N.; Miura, Y.; Takahashi, N. Saccharomyces cerevisiae QNS1 codes for NAD+ synthetase that is functionally conserved in mammals. Yeast 2003, 20, 995–1005. [Google Scholar] [CrossRef]
- Szot, J.; Campagnolo, C.; Cao, Y.; Iyer, K.R.; Cuny, H.; Drysdale, T.; Flores-Daboub, J.A.; Bi, W.; Westerfield, L.; Liu, P.; et al. Bi-allelic Mutations in NADSYN1 Cause Multiple Organ Defects and Expand the Genotypic Spectrum of Congenital NAD Deficiency Disorders. Am. J. Hum. Genet. 2020, 106, 129–136. [Google Scholar] [CrossRef]
- O’Grady, G.L.; Best, H.A.; Sztal, T.; Schartner, V.; Sanjuan-Vazquez, M.; Donkervoort, S.; Neto, O.L.A.; Sutton, R.B.; Ilkovski, B.; Romero, N.B.; et al. Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. Am. J. Hum. Genet. 2016, 99, 1086–1105. [Google Scholar] [CrossRef] [Green Version]
- Sainio, M.; Välipakka, S.; Rinaldi, B.; Lapatto, H.; Paetau, A.; Ojanen, S.; Brilhante, V.; Jokela, M.; Huovinen, S.; Auranen, M.; et al. Recessive PYROXD1 mutations cause adult-onset limb-girdle-type muscular dystrophy. J. Neurol. 2018, 266, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Sacher, M.; Shahrzad, N.; Kamel, H.; Milev, M.P. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2019, 20, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Milev, M.P.; Graziano, C.; Karall, D.; Kuper, W.F.E.; Al-Deri, N.; Cordelli, D.M.; Haack, T.B.; Danhauser, K.; Iuso, A.; Palombo, F.; et al. Bi-allelic mutations in TRAPPC2L result in a neurodevelopmental disorder and have an impact on RAB11 in fibroblasts. J. Med. Genet. 2018, 55, 753–764. [Google Scholar] [CrossRef]
- Van Bergen, N.J.; Guo, Y.; Al-Deri, N.; Lipatova, Z.; Stanga, D.; Zhao, S.; Murtazina, R.; Gyurkovska, V.; Pehlivan, D.; Mitani, T.; et al. Deficiencies in vesicular transport mediated by TRAPPC4 are associated with severe syndromic intellectual disability. Brain 2020, 143, 112–130. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, Z.; Van Bergen, N.; Stanga, D.; Sacher, M.; Christodoulou, J.; Segev, N. TRAPPing a neurological disorder: From yeast to humans. Autophagy 2020, 16, 965–966. [Google Scholar] [CrossRef] [PubMed]
- Skjørringe, T.; Pedersen, P.A.; Thorborg, S.S.; Nissen, P.; Gourdon, P.; Møller, L.B. Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease. Sci. Rep. 2017, 7, 757. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Han, S.-Y.; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. USA 2003, 100, 8424–8429. [Google Scholar] [CrossRef] [Green Version]
- Carbonnier, V.; Leroy, B.; Rosenberg, S.; Soussi, T. Comprehensive assessment of TP53 loss of function using multiple combinatorial mutagenesis libraries. Sci. Rep. 2020, 10, 20368. [Google Scholar] [CrossRef]
- Monti, P.; Bosco, B.; Gomes, S.; Saraiva, L.; Fronza, G.; Inga, A. Yeast As a Chassis for Developing Functional Assays to Study Human P53. J. Vis. Exp. 2019, 150, e59071. [Google Scholar] [CrossRef] [Green Version]
- Andres-Pons, A.; Rodríguez-Escudero, I.; Gil, A.; Blanco, A.; Vega, A.; Molina, M.; Pulido, R.; Cid, V.J. In vivo Functional Analysis of the Counterbalance of Hyperactive Phosphatidylinositol 3-Kinase p110 Catalytic Oncoproteins by the Tumor Suppressor PTEN. Cancer Res. 2007, 67, 9731–9739. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Escudero, I.; Roelants, F.M.; Thorner, J.; Nombela, C.; Molina, M.; Cid, V.J. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem. J. 2005, 390, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Escudero, I.; Oliver, M.D.; Andrés-Pons, A.; Molina, M.; Cid, V.J.; Pulido, R. A comprehensive functional analysis of PTEN mutations: Implications in tumor- and autism-related syndromes. Hum. Mol. Genet. 2011, 20, 4132–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.; August, A.; Hanafusa, H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl. Acad. Sci. USA 1996, 93, 13595–13599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caligo, M.; Bonatti, F.; Guidugli, L.; Aretini, P.; Galli, A. A yeast recombination assay to characterize humanBRCA1missense variants of unknown pathological significance. Hum. Mutat. 2009, 30, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Thouvenot, P.; Ben Yamin, B.; Fourriere, L.; Lescure, A.; Boudier, T.; Del Nery, E.; Chauchereau, A.; Goldgar, D.E.; Houdayer, C.; Stoppa-Lyonnet, D.; et al. Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making. PLoS Genet. 2016, 12, e1006096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiskus, W.; Mitsiades, N. B-Raf Inhibition in the Clinic: Present and Future. Annu. Rev. Med. 2016, 67, 29–43. [Google Scholar] [CrossRef]
- Michaloglou, C.; Vredeveld, L.C.W.; Mooi, W.J.; Peeper, D.S. BRAFE600 in benign and malignant human tumours. Oncogene 2007, 27, 877–895. [Google Scholar] [CrossRef] [Green Version]
- Hirao, A.; Kong, Y.-Y.; Matsuoka, S.; Wakeham, A.; Ruland, J.; Yoshida, H.; Liu, D.; Elledge, S.J.; Mak, T.W. DNA Damage-Induced Activation of p53 by the Checkpoint Kinase Chk2. Science 2000, 287, 1824–1827. [Google Scholar] [CrossRef]
- Falck, J.; Mailand, N.; Syljuåsen, R.G.; Bartek, J.; Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001, 410, 842–847. [Google Scholar] [CrossRef]
- Brown, A.L.; Lee, C.-H.; Schwarz, J.K.; Mitiku, N.; Piwnica-Worms, H.; Chung, J.H. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 1999, 96, 3745–3750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, C.; Smith, L.; La Thangue, N.B. Chk2 activates E2F-1 in response to DNA damage. Nat. Cell Biol. 2003, 5, 401–409. [Google Scholar] [CrossRef]
- Yang, S.; Kuo, C.; Bisi, J.E.; Kim, M.K. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat. Cell Biol. 2002, 4, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Stolarova, L.; Kleiblova, P.; Janatova, M.; Soukupova, J.; Zemankova, P.; Macurek, L.; Kleibl, Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020, 9, 2675. [Google Scholar] [CrossRef] [PubMed]
- Delimitsou, A.; Fostira, F.; Kalfakakou, D.; Apostolou, P.; Konstantopoulou, I.; Kroupis, C.; Papavassiliou, A.G.; Kleibl, Z.; Stratikos, E.; Voutsinas, G.E.; et al. Functional characterization of CHEK2 variants in a Saccharomyces cerevisiae system. Hum. Mutat. 2019, 40, 631–648. [Google Scholar] [CrossRef]
- Rustin, P.; Munnich, A.; Rotig, A. Succinate dehydrogenase and human diseases: New insights into a well-known enzyme. Eur. J. Hum. Genet. 2002, 10, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.J. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology 2017, 72, 106–116. [Google Scholar] [CrossRef]
- Bannon, A.E.; Kent, J.D.; Forquer, I.; Town, A.; Klug, L.R.; McCann, K.; Beadling, C.; Harismendy, O.; Sicklick, J.K.; Corless, C.L.; et al. Biochemical, Molecular, and Clinical Characterization of Succinate Dehydrogenase Subunit A Variants of Unknown Significance. Clin. Cancer Res. 2017, 23, 6733–6743. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Saberidokht, B.; Subramaniam, S.; Grama, A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst. Biol. 2015, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Franssens, V.; Bynens, T.; Brande, J.V.D.; Vandermeeren, K.; Verduyckt, M.; Winderickx, J. The Benefits of Humanized Yeast Models to Study Parkinson’s Disease. Oxidative Med. Cell. Longev. 2013, 2013, 760629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, S.; Kainz, K.; Zimmermann, A.; Bauer, M.A.; Pendl, T.; Poglitsch, M.; Madeo, F.; Carmona-Gutierrez, D. Studying Huntington’s Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front. Mol. Neurosci. 2018, 11, 318. [Google Scholar] [CrossRef] [PubMed]
- Seynnaeve, D.; Del Vecchio, M.; Fruhmann, G.; Verelst, J.; Cools, M.; Beckers, J.; Mulvihill, D.P.; Winderickx, J.; Franssens, V. Recent Insights on Alzheimer’s Disease Originating from Yeast Models. Int. J. Mol. Sci. 2018, 19, 1947. [Google Scholar] [CrossRef] [Green Version]
- Spear, E.D.; Alford, R.; Babatz, T.D.; Wood, K.M.; Mossberg, O.W.; Odinammadu, K.; Shilagardi, K.; Gray, J.J.; Michaelis, S. A humanized yeast system to analyze cleavage of prelamin A by ZMPSTE24. Methods 2019, 157, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Babatz, T.D.; Spear, E.D.; Xu, W.; Sun, O.L.; Nie, L.; Carpenter, E.P.; Michaelis, S. Site specificity determinants for prelamin A cleavage by the zinc metalloprotease ZMPSTE24. J. Biol. Chem. 2021, 296, 100165. [Google Scholar] [CrossRef] [PubMed]
- Gorby, C.; Bellón, J.S.; Wilmes, S.; Warda, W.; Pohler, E.; Fyfe, P.K.; Cozzani, A.; Ferrand, C.; Walter, M.R.; Mitra, S.; et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 2020, 13, eabc0653. [Google Scholar] [CrossRef] [PubMed]
- Lehner, B. Genotype to phenotype: Lessons from model organisms for human genetics. Nat. Rev. Genet. 2013, 14, 168–178. [Google Scholar] [CrossRef] [PubMed]
Name of the Human Gene | Molecular Function | Biological Process | Disease |
---|---|---|---|
Cystathionine β-synthase (CBS) | Cystathionine β-synthase activity. Hydro-lyase catalyzing the first step of the trans sulfuration pathway. | Cysteine biosynthetic process | Cystathionine β-synthase deficiency |
Phosphoserine aminotransferase (PSAT1) | Pyridoxal phosphate binding. | L-serine biosynthetic process | Phosphoserine aminotransferase deficiency (PSATD); Neu-Laxova syndrome 2 (NLS2) |
Superoxide dismutase (SOD1) | Superoxide dismutase activity. Destroys radicals which are normally produced within the cells. | Cellular response to oxidative stress | Familiar amyotrophic lateral sclerosis 1 (fALS1); Spastic tetraplegia and axial hypotonia, progressive (STAHP) |
Adenine phosphoribosyl transferase (APRT) | Transferase activity and adenine binding. Catalyzes a salvage reaction resulting in the formation of AMP. | Nucleoside metabolic process | Adenine phosphoribosyltransferase deficiency (APRTD) |
Triokinase/FMN cyclase (TKFC) | Kinase activity on dihydroxyacetone and of glyceraldehydes. It catalyzes the splitting of ribonucleoside diphosphate-X compounds. | Cellular carbohydrate metabolic process | Triokinase and FMN cyclase deficiency syndrome (TKFCD) |
Methionine-tRNA synthetase (MARS1) | Methionine-tRNA ligase activity. Catalyzes the ATP-dependent ligation of methionine to the 3′-end of its cognate tRNA. | tRNA aminoacylation for protein translation | Charcot-Marie-Tooth disease 2U (CMT2U); interstitial lung and liver disease |
Glycyl-tRNA synthetase (GARS1) | Glycyl-tRNA ligase activity. Catalyzes the ATP-dependent ligation of glycine to the 3′-end of its cognate tRNA. | tRNA aminoacylation for protein translation | Charcot-Marie-Tooth disease 2D (CMT2D); infantile James type (SMAJI); neuronopathy distal hereditary motor (HMN5A). |
Valyl-tRNAsynthetase (VARS1) | Valine-tRNA ligase activity. Catalyzes the ATP-dependent ligation of glycine to the 3′-end of its cognate tRNA. | tRNA aminoacylation for protein translation | Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy (NDMSCA) |
DNA-directed RNA polymerase II subunit RPB1 (POLR2A) | DNA-directed 5′-3′ RNA polymerase activity. | RNA metabolic process | Neurodevelopmental disorder with hypotonia and variable intellectual and behavioral abnormalities (NEDHIB) |
Glutamine-dependent NAD (+) synthetase (NADSYN1) | NAD+ synthase (glutamine-hydrolyzing) activity. | de novo NAD biosyntheticprocess | NAD deficiency disorder; Vertebral, cardiac, renal, and limb defects syndrome 3 (VCRL3) |
Pyridine nucleotide-disulfide oxidoreductase domain-containing protein 1(PYROXD1) | Superoxide dismutase activity. Destroys radicals which are normally produced within the cells. | Cellular response to oxidative stress | Myofibrillar myopathy-8 (MFM8) |
Trafficking protein particle complex subunit 2-like protein (TRAPPC2L) | Core component of the TRAPP complexes. Targeting and fusion of endoplasmic reticulum-to-Golgi transport vesicles. | Endoplasmic reticulum to Golgi vesicle-mediated transport | Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis (PEERB) |
Trafficking protein particle complex subunit 4 (TRAPPC4) | Core component of the TRAPP complexes. Targeting and fusion of endoplasmic reticulum-to-Golgi transport vesicles. | Endoplasmic reticulum to Golgi vesicle-mediated transport | Neurodevelopmental disorder with epilepsy, spasticity, and brain atrophy (NEDESBA) |
Copper-transporting ATPase 1 (ATP7A) | Copper ion transmembrane transporter activity. | Cellular copper ion homeostasis | Menkes disease (MNK); Occipital horn syndrome (OHS); Distal spinal muscular atrophy, X-linked, 3 (DSMAX3) |
Human Gene | Yeast Ortholog | Essentiality | Phenotype |
---|---|---|---|
CBS | CYS4 | Non-essential | Auxotrophic for cysteine, glutathione, vitamin B6 |
PSAT1 | SER1 | Non-essential | Auxotrophic for serine |
SOD1 | SOD1 | Non-essential | Growth curve, expression level of mutants; mitochondrial oxygen consumption |
APRT | APT1, APT2 | Non-essential | Auxotrophic for purine in the triple mutant ade2∆ apt1∆ aah1∆ |
TKFC | DAK1, DAK2 | Non-essential | Ability to grow in dihydroxyacetone (DHA) |
MARS1 | MES1 | Essential | Growth defect |
GARS1 | GRS1 | Essential | Growth defect |
VARS1 | VAS1 | Essential | Growth defect |
POLR2A | RPB1 | Essential | Growth defect |
NADSYN1 | QNS1 | Essential | Auxotrophic for nicotinamide riboside (NR) |
PYROXD1 | No ortholog, gene with similar activity | - | Growth in the presence of H2O2 |
TRAPPC2L | TCA17 | Non-essential | yeast strain ts tca17∆TRS130-HA |
TRAPPC4 | TRS23 | Essential | Trs23ts |
ATP7A | CCC2 | Non-essential | Growth under iron limited condition |
Name of the Human Gene | Molecular Function | Biological Process | Disease |
---|---|---|---|
BRAF | Serine-threonin kinase | Activation of MAPKK activity (RAS/RAF/MEK/ERK kinase pathway) | Melanoma, Papillary thyroid carcinoma, colon rectal cancer, hairy cell leukemia |
CHEK2 | Serine-threonin kinase | DNA damage checkpoint | Li-Fraumeni syndrome 2, breast cancer |
SDHA | Electron transfer activity; succinate dehydrogenase (ubiquinone) activity | Mitochondrial electron transport, succinate to ubiquinone | SDH-deficient neoplasia, gastrointestinal stromal tuomor (GIST) |
Human Gene | Yeast Ortholog | Essentiality | Phenotype |
---|---|---|---|
BRAF | No ortholog | - | Growth in high concentration of NaCl, in the strain ste11∆ssk2∆ssk22∆ |
CHEK2 | RAD53 | Non-essential | Growth in the presence of MMS |
SDHA | SDH1 | Non-essential | Growth in non-fermentable carbon source |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervelli, T.; Galli, A. Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes 2021, 12, 1303. https://doi.org/10.3390/genes12091303
Cervelli T, Galli A. Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes. 2021; 12(9):1303. https://doi.org/10.3390/genes12091303
Chicago/Turabian StyleCervelli, Tiziana, and Alvaro Galli. 2021. "Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants" Genes 12, no. 9: 1303. https://doi.org/10.3390/genes12091303
APA StyleCervelli, T., & Galli, A. (2021). Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. Genes, 12(9), 1303. https://doi.org/10.3390/genes12091303