Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice?
Abstract
:1. Introduction
2. Methods of Genetic Studies of Stroke
3. Known Monogenic Disorders
4. Polygenic Disorders
4.1. Cardioembolic Stroke
4.2. Large Artery Stroke
4.3. Small Vessel Disease
4.4. Other and Multiple Stroke Types
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Stroke Subtype | Candidate Gene | Chromosome | Polymorphisms | Reference |
---|---|---|---|---|
Large artery stroke | HDAC9 | 7p21.1 | rs2107595; rs11984041 | PMID: 26708676 |
CDKN2A/CDKN2B | 9p21.3 | rs23832073 | PMID: 22306652 | |
EDNRA | 4q31 | rs17612742 | PMID: 30356112 | |
TM4SF4-TM4Sn | 3q25 | rs7610618 | PMID: 32874429 | |
LINC01492 | 9q31 | rs10990643 | PMID: 31306060 | |
Cardioembolic stroke | PITX2 | 4q25 | rs2200733; rs10033464; rs2723334 | PMID: 18991354 PMID: 26935894 |
ZFHX3 | 16q22.3 | rs7193343-T; rs12932445 | PMID: 19597491 PMID: 26935894 | |
ZNF566 | 19q13.12 | N/A | ||
PDZK1IP1 | 1p33 | N/A | ||
RGS7 | 1q43 | rs146390073 | PMID: 32874429 | |
NKX2-5 | 5q35 | rs6891174 | PMID: 32874429 | |
Other and multiple types of strokes | HABP2 | 10q25.3 | rs41292628 | PMID: 30070759 |
ADCY2 | 5p15 | rs35510613 | PMID: 30070759 | |
ANK2 | 4q25 | rs34311906 | PMID: 32874429 | |
FGA | 4q31 | rs6825454 | PMID: 32874429 | |
LOC100505841 | 5q23 | rs2303655 | PMID: 33293549 | |
CDK6 | 7q21 | rs42039 | PMID: 32874429 | |
PDE3A | 12p12 | rs7304841 | PMID: 32874429 | |
FURIN-FES | 15q26 | rs4932370 | PMID: 32874429 | |
PRPF8 | 17p13 | rs11867415 | PMID: 32874429 | |
ILF3-SLC44A2 | 19p13 | rs2229383 | PMID: 32874429 | |
ABO | 9q34 | rs505922 | PMID: 23381943 | |
MMP12 | 11q22 | rs660599 | PMID: 25078452 | |
SH2B3 | 12q24 | rs3184504 | PMID: 32874429 | |
All types of strokes (ischemic and hemorrhagic) | CASZ1 | 1p36 | rs880315 | PMID: 32874429 |
WNT2B | 1p13 | rs12037987 | PMID: 32874429 | |
KCNK3 | 2p23 | rs12476527 | PMID: 32874429 | |
SLC22A7-ZNF318 | 6p21 | rs16896398 | PMID: 29531354 | |
chr9p21 | 9p21 | rs7859727 | PMID: 32874429 | |
SH3PXD2A | 10q24 | rs4630220 | PMID: 33293549 | |
TBX3 | 12q24 | rs35436 | PMID: 32874429 | |
LRCH1 | 13q14 | rs9526212 | PMID: 32874429 | |
SMARCA4-LDLR | 19p13 | rs8103309 | PMID: 32874429 | |
PMF1-SEMA4A | 1q22 | rs1052053 | PMID: 32874429 | |
FOXF2 | 6p25 | rs12204590 | PMID: 27068588 | |
ZCCHC14 | 16q24.2 | rs12445022 | PMID: 27997041 |
References
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Meschia, J.F.; Bushnell, C.; Boden-Albala, B.; Braun, L.T.; Bravata, D.M.; Chaturvedi, S.; Creager, M.A.; Eckel, R.H.; Elkind, M.S.V.; Fornage, M.; et al. Guidelines for the Primary Prevention of Stroke: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 3754–3832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isabel, C.; Calvet, D.; Mas, J.-L. Stroke prevention. Presse Médicale 2016, 45, e457–e471. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat. Rev. Clin. Oncol. 2011, 9, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Campanella, R.; Guarnaccia, L.; Caroli, M.; Zarino, B.; Carrabba, G.; La Verde, N.; Gaudino, C.; Rampini, A.; Luzzi, S.; Riboni, L.; et al. Personalized and translational approach for malignant brain tumors in the era of precision medicine: The strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J. Neurol. Sci. 2020, 417, 117083. [Google Scholar] [CrossRef] [PubMed]
- Traylor, M.; Malik, R.; Nalls, M.A.; Cotlarciuc, I.; Radmanesh, F.; Thorleifsson, G.; Hanscombe, K.B.; Langefeld, C.; Saleheen, D.; Rost, N.S.; et al. Genetic variation at 16q24.2 is associated with small vessel stroke. Ann. Neurol. 2017, 81, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Pulit, S.L.; McArdle, P.F.; Wong, Q.; Malik, R.; Gwinn, K.; Achterberg, S.; Algra, A.; Amouyel, P.; Anderson, C.D.; Arnett, D.K.; et al. Loci associated with ischaemic stroke and its subtypes (SiGN): A genome-wide association study. Lancet Neurol. 2016, 15, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Ilinca, A.; Samuelsson, S.; Piccinelli, P.; Soller, M.; Kristoffersson, U.; Lindgren, A.G. A stroke gene panel for whole-exome sequencing. Eur. J. Hum. Genet. 2019, 27, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Bevan, S.; Traylor, M.; Adib-Samii, P.; Malik, R.; Paul, N.L.M.; Jackson, C.; Farrall, M.; Rothwell, P.M.; Sudlow, C.; Dichgans, M.; et al. Genetic Heritability of Ischemic Stroke and the Contribution of Previously Reported Candidate Gene and Genomewide Associations. Stroke 2012, 43, 3161–3167. [Google Scholar] [CrossRef]
- Chen, W.; Sinha, B.; Li, Y.; Benowitz, L.; Chen, Q.; Zhang, Z.; Patel, N.J.; Aziz-Sultan, A.M.; Chiocca, A.E.; Wang, X. Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke. Mol. Neurobiol. 2019, 56, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Floßmann, E.; Schulz, U.G.; Rothwell, P.M. Systematic Review of Methods and Results of Studies of the Genetic Epidemiology of Ischemic Stroke. Stroke 2004, 35, 212–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joutel, A.; Corpechot, C.; Ducros, A.; Vahedi, K.; Chabriat, H.; Mouton, P.; Alamowitch, S.; Domenga, V.; Cécillion, M.; Maréchal, E.; et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nat. Cell Biol. 1996, 383, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, S. Candidate Gene Identification Approach: Progress and Challenges. Int. J. Biol. Sci. 2007, 3, 420–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dichgans, M.; Markus, H.S. Frcp Genetic Association Studies in Stroke. Stroke 2005, 36, 2027–2031. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef]
- Kamps, R.; Brandão, R.D.; Bosch, B.J.V.D.; Paulussen, A.D.C.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xu, F.; Wu, J.; Schubert, J.; Li, A.M.M. Application of Next Generation Sequencing in Laboratory Medicine. Ann. Lab. Med. 2021, 41, 25–43. [Google Scholar] [CrossRef]
- Falcone, G.J.; Malik, R.; Dichgans, M.; Rosand, J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014, 13, 405–418. [Google Scholar] [CrossRef]
- Bersano, A.; Markus, H.S.; Quaglini, S.; Arbustini, E.; Lanfranconi, S.; Micieli, G.; Boncoraglio, G.B.; Taroni, F.; Gellera, C.; Baratta, S.; et al. Clinical Pregenetic Screening for Stroke Monogenic Diseases. Stroke 2016, 47, 1702–1709. [Google Scholar] [CrossRef] [Green Version]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.-G. CADASIL. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef]
- Rutten, J.W.; Haan, J.; Terwindt, G.M.; Van Duinen, S.G.; Boon, E.M.; Oberstein, S.A.L. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev. Mol. Diagn. 2014, 14, 593–603. [Google Scholar] [CrossRef]
- Bersano, A.; Kraemer, M.; Burlina, A.; Mancuso, M.; Finsterer, J.; Sacco, S.; Salvarani, C.; Caputi, L.; Chabriat, H.; Oberstein, S.L.; et al. Heritable and non-heritable uncommon causes of stroke. J. Neurol. 2020, 268, 1–28. [Google Scholar] [CrossRef]
- Wang, M.M. Cadasil. Handb. Clin. Neurol. 2018, 148, 733–743. [Google Scholar] [CrossRef]
- Onodera, O.; Nozaki, H.; Fukutake, T. HTRA1 Disorder Summary Genetic Counseling GeneReview Scope. In GeneReviews®; University of Washington: Seattle, WA, USA, 2021; pp. 1–16. [Google Scholar]
- Nozaki, H.; Nishizawa, M.; Onodera, O. Features of Cerebral Autosomal Recessive Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke 2014, 45, 3447–3453. [Google Scholar] [CrossRef]
- Garman, S.C.; Garboczi, D.N. The Molecular Defect Leading to Fabry Disease: Structure of Human α-Galactosidase. J. Mol. Biol. 2004, 337, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Lelis, A.; Mirocha, J.; Wilcox, W.R. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet. Med. 2007, 9, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.T. Narrative review: Fabry disease. Ann. Intern. Med. 2007, 146, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef]
- Goto, Y.I.; Nonaka, I.; Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990, 348, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.J.; Grady, J.P.; Ng, Y.S.; Gorman, G.S.; Schaefer, A.M.; Wilson, I.J.; Cordell, H.J.; Turnbull, U.M.; Taylor, R.W.; McFarland, R. Phenotypic heterogeneity in m.3243A>G mitochondrial disease: The role of nuclear factors. Ann. Clin. Transl. Neurol. 2018, 5, 333–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, R.Y.Y.; Markus, H.S. Monogenic causes of stroke: Now and the future. J. Neurol. 2015, 262, 2601–2616. [Google Scholar] [CrossRef]
- Cellini, E.; Disciglio, V.; Novara, F.; Barkovich, J.A.; Mencarelli, M.A.; Hayek, J.; Renieri, A.; Zuffardi, O.; Guerrini, R. Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am. J. Med. Genet. Part A 2012, 158A, 1793–1797. [Google Scholar] [CrossRef]
- Steffensen, L.B.; Rasmussen, L.M. A role for collagen type IV in cardiovascular disease? Am. J. Physiol. Circ. Physiol. 2018, 315, H610–H625. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, M.E.; Halley, D.J.; Smit, L.S.; Lequin, M.H.; Cobben, J.M.; de Coo, R.; van Harssel, J.; Sallevelt, S.; Woldringh, G.; van der Knaap, M.S.; et al. The expanding phenotype of COL4A1 and COL4A2 mutations: Clinical data on 13 newly identified families and a review of the literature. Genet. Med. 2015, 17, 843–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagaglia, S.; Selch, C.; Nisevic, J.R.; Mei, D.; Michalak, Z.; Hernandez-Hernandez, L.; Krithika, S.; Vezyroglou, K.; Varadkar, S.M.; Pepler, A.; et al. Neurologic phenotypes associated with COL4A1/2 mutations. Neurology 2018, 91, e2078–e2088. [Google Scholar] [CrossRef] [Green Version]
- Kuo, D.S.; Labelle-Dumais, C.; Gould, D.B. COL4A1 and COL4A2 mutations and disease: Insights into pathogenic mechanisms and potential therapeutic targets. Hum. Mol. Genet. 2012, 21, R97–R110. [Google Scholar] [CrossRef] [Green Version]
- Olubajo, F.; Kaliaperumal, C.; Choudhari, K.A. Vascular Ehlers-Danlos Syndrome: Literature review and surgical management of intracranial vascular complications. Clin. Neurol. Neurosurg. 2020, 193, 105775. [Google Scholar] [CrossRef]
- Byers, P.H.; Belmont, J.; Black, J.; De Backer, J.; Frank, M.; Jeunemaitre, X.; Johnson, D.; Pepin, M.; Robert, L.; Sanders, L.; et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am. J. Med Genet. Part C Semin. Med. Genet. 2017, 175, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle cell disease. Nat. Rev. Dis. Prim. 2018, 4, 18010. [Google Scholar] [CrossRef] [Green Version]
- Sacharow, S.J.; Picker, J.D.; Levy, H.L. Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency Summary Genetic counseling. In GeneReviews; 1993–2021; Seattle Univ.: Seattle, WA, USA, 2017; pp. 1–21. [Google Scholar]
- Sakai, L.Y.; Keene, D.R.; Renard, M.; De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016, 591, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Bitterman, A.D.; Sponseller, P.D. Marfan Syndrome. J. Am. Acad. Orthop. Surg. 2017, 25, 603–609. [Google Scholar] [CrossRef]
- Le Saux, O.; Martin, L.; Aherrahrou, Z.; Leftheriotis, G.; Váradi, A.; Brampton, C.N. The molecular and physiological roles of ABCC6: More than meets the eye. Front. Genet. 2012, 3, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, D.P. Pseudoxanthoma elasticum. Orphanet J. Rare Dis. 2017, 12, 1–13. [Google Scholar] [CrossRef]
- Fox, C.S.; Polak, J.F.; Chazaro, I.; Cupples, A.; Wolf, P.A.; D’Agostino, R.A.; O’Donnell, C.J. Genetic and Environmental Contributions to Atherosclerosis Phenotypes in Men and Women. Stroke 2003, 34, 397–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudbjartsson, D.F.; Holm, H.; Gretarsdottir, S.; Thorleifsson, G.; Walters, G.B.; Thorgeirsson, G.; Gulcher, J.; Mathiesen, E.B.; Njølstad, I.; Nyrnes, A.; et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet. 2009, 41, 876–878. [Google Scholar] [CrossRef]
- Gretarsdottir, S.; Thorleifsson, G.; Manolescu, A.; Styrkarsdottir, U.; Helgadottir, A.; Gschwendtner, A.; Kostulas, K.; Kuhlenbäumer, G.; Bevan, S.; Bsc, T.J.; et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann. Neurol. 2008, 64, 402–409. [Google Scholar] [CrossRef]
- Zou, R.; Zhang, D.; Lv, L.; Shi, W.; Song, Z.; Yi, B.; Lai, B.; Chen, Q.; Yang, S.; Hua, P. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke. J. Transl. Med. 2019, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Traylor, M.; Pulit, S.L.; Bevan, S.; Hopewell, J.C.; Holliday, E.G.; Zhao, W.; Abrantes, P.; Amouyel, P.; Attia, J.R.; et al. Low-frequency and common genetic variation in ischemic stroke. Neurology 2016, 86, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, J.; Zorowitz, R.D.; Becker, K.; Keller, E.; Saposnik, G.; Strbian, D.; Dichgans, M.; Woo, D.; Reeves, M.; Thrift, A.; et al. Advances in Stroke 2017. Stroke 2018, 49, E174–E199. [Google Scholar] [CrossRef]
- Bellenguez, C.; Bevan, S.; Gschwendtner, A.; A Spencer, C.C.; I Burgess, A.; Pirinen, M.; Jackson, C.; Traylor, M.; Strange, A.; Su, Z.; et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 2012, 44, 328–333. [Google Scholar] [CrossRef]
- Traylor, M.; Mäkelä, K.-M.; Kilarski, L.; Holliday, E.G.; Devan, W.J.; Nalls, M.A.; Wiggins, K.L.; Zhao, W.; Cheng, Y.-C.; Achterberg, S.; et al. A Novel MMP12 Locus Is Associated with Large Artery Atherosclerotic Stroke Using a Genome-Wide Age-at-Onset Informed Approach. PLoS Genet. 2014, 10, e1004469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, H.; Cai, B.; Liu, Z.; Wu, W.; Chen, D.; Fang, L.; Chen, L.; Sun, W.; Liang, J.; Zhang, H. Genetic correlations and causal inferences in ischemic stroke. J. Neurol. 2020, 267, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Arnold, C.R.; Chu, A.Y.; Fornage, M.; Reyahi, A.; Bis, J.C.; Havulinna, A.S.; Sargurupremraj, M.; Smith, A.V.; Adams, H.H.H.; et al. Identification of additional risk loci for stroke and small vessel disease: A meta-analysis of genome-wide association studies Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the Stroke Gene. Lancet Neurol. 2017, 15, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Regenhardt, R.; Das, A.S.; Lo, E.H.; Caplan, L.R. Advances in Understanding the Pathophysiology of Lacunar Stroke. JAMA Neurol. 2018, 75, 1273–1281. [Google Scholar] [CrossRef]
- Jaworek, T.; Ryan, K.A.; Gaynor, B.J.; McArdle, P.F.; Stine, O.C.; Oconnor, T.D.; Lopez, H.; Aparicio, H.J.; Gao, Y.; Lin, X.; et al. Exome Array Analysis of Early-Onset Ischemic Stroke. Stroke 2020, 51, 3356–3360. [Google Scholar] [CrossRef] [PubMed]
- Sargurupremraj, M.; International Network against Thrombosis (INVENT) Consortium; Suzuki, H.; Jian, X.; Sarnowski, C.; Evans, T.E.; Bis, J.C.; Eiriksdottir, G.; Sakaue, S.; Terzikhan, N.; et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Williams, F.M.K.; Carter, A.M.; Hysi, P.G.; Msc, G.S.; Hodgkiss, D.; Soranzo, N.; Traylor, M.; Bevan, S.; Dichgans, M.; Rothwell, P.M.W.; et al. Ischemic stroke is associated with theABOlocus: The EuroCLOT study. Ann. Neurol. 2012, 73, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.; Stanne, T.M.; Pedersen, A.; Lorentzen, E.; Kara, E.; Martinez-Palacian, A.; Sand, N.P.R.; Jacobsen, A.F.; Sandset, P.M.; Sidelmann, J.J.; et al. Genome-wide analysis of genetic determinants of circulating factor VII-activating protease (FSAP) activity. J. Thromb. Haemost. 2018, 16, 2024–2034. [Google Scholar] [CrossRef] [Green Version]
- Byskov, K.; Boettger, T.; Ruehle, P.F.; Nielsen, N.V.; Etscheid, M.; Kanse, S.M. Factor VII activating protease (FSAP) regulates the expression of inflammatory genes in vascular smooth muscle and endothelial cells. Atherosclerosis 2017, 265, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Kilarski, L.; Achterberg, S.; Devan, W.J.; Traylor, M.; Malik, R.; Lindgren, A.; Pare, G.; Sharma, P.; Slowik, A.; Thijs, V.; et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 2014, 83, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.A.; Seshadri, S.; Bis, J.C.; Fornage, M.; DeStefano, A.L.; Aulchenko, Y.S.; Debette, S.; Lumley, T.; Folsom, A.R.; Van Den Herik, E.G.; et al. Genomewide Association Studies of Stroke. N. Engl. J. Med. 2009, 360, 1718–1728. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; AFGen Consortium; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.-K.; van der Laan, S.W.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Fuku, N.; Tanaka, M.; Aoyagi, Y.; Sawabe, M.; Metoki, N.; Yoshida, H.; Satoh, K.; Kato, K.; Watanabe, S.; et al. Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis 2009, 207, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Hata, J.; Ninomiya, T.; Matsuda, K.; Yonemoto, K.; Nakano, T.; Matsushita, T.; Yamazaki, K.; Ohnishi, Y.; Saito, S.; et al. A nonsynonymous SNP in PRKCH (protein kinase C η) increases the risk of cerebral infarction. Nat. Genet. 2007, 39, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Ko, T.; Chen, C.; Lee, M.M.; Chang, Y.; Chang, C.; Huang, K.; Chang, T.; Lee, J.; Chang, K.; et al. Identification of PTCSC3 as a Novel Locus for Large-Vessel Ischemic Stroke: A Genome-Wide Association Study. J. Am. Hear. Assoc. 2016, 5, e003003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Zhang, Z.; Ma, M.; Xu, G.; Liu, X. A Quantitative Assessment of the Association Between 1425G/A Polymorphism in PRKCH and Risk of Stroke. Neuromol. Med. 2014, 16, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, V.; Tuttolomondo, A.; Pecoraro, R.; Di Raimondo, D.; Vassallo, V.; Pinto, A. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine. Curr. Pharm. Des. 2016, 22, 4658–4668. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; On behalf of KIRIIND (KIR Infectious and Inflammatory Diseases) Collaborative Group; Di Raimondo, D.; Pecoraro, R.; Casuccio, A.; Di Bona, D.; Aiello, A.; Accardi, G.; Arnao, V.; Clemente, G.; et al. HLA and killer cell immunoglobulin-like receptor (KIRs) genotyping in patients with acute ischemic stroke. J. Neuroinflamm. 2019, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and vascular effect of the mediterranean diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [Green Version]
- Igo, R.P.; Kinzy, T.G.; Bailey, J.N.C. Genetic Risk Scores. Curr. Protoc. Hum. Genet. 2019, 104, e95. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Bevan, S.; Nalls, M.A.; Holliday, E.G.; Devan, W.J.; Cheng, Y.-C.; Ibrahim-Verbaas, C.A.; Verhaaren, B.F.; Bis, J.C.; Joon, A.Y.; et al. Multilocus Genetic Risk Score Associates With Ischemic Stroke in Case–Control and Prospective Cohort Studies. Stroke 2014, 45, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fava, C.; Sjögren, M.; Olsson, S.; Lövkvist, H.; Jood, K.; Engström, G.; Hedblad, B.; Norrving, B.; Jern, C.; Lindgren, A.; et al. A genetic risk score for hypertension associates with the risk of ischemic stroke in a Swedish case–control study. Eur. J. Hum. Genet. 2014, 23, 969–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachiya, T.; Hata, J.; Hirakawa, Y.; Yoshida, D.; Furuta, Y.; Kitazono, T.; Shimizu, A.; Ninomiya, T. Genome-Wide Polygenic Score and the Risk of Ischemic Stroke in a Prospective Cohort. Stroke 2020, 51, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Marston, N.A.; Patel, P.N.; Kamanu, F.K.; Nordio, F.; Melloni, G.M.; Roselli, C.; Gurmu, Y.; Weng, L.-C.; Bonaca, M.P.; Giugliano, R.P.; et al. Clinical Application of a Novel Genetic Risk Score for Ischemic Stroke in Patients With Cardiometabolic Disease. Circulation 2021, 143, 470–478. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Dong, J.; Tang, Y.; Ni, H.-Y.; Zhang, Y.; Su, P.; Liang, H.-Y.; Yao, M.-C.; Yuan, H.-J.; Wang, D.-L.; et al. Opening a New Time Window for Treatment of Stroke by Targeting HDAC2. J. Neurosci. 2017, 37, 6712–6728. [Google Scholar] [CrossRef] [Green Version]
- Ghezali, L.; Capone, C.; Baron-Menguy, C.; Ratelade, J.; Christensen, S.; Østergaard Pedersen, L.; Domenga-Denier, V.; Pedersen, J.T.; Joutel, A. Notch3ECD immunotherapy improves cerebrovascular responses in CADASIL mice. Ann. Neurol. 2018, 84, 246–259. [Google Scholar] [CrossRef]
Large Artery Atherosclerosis | Unspecified Hypercholesterolemia Hypertension |
---|---|
Large artery structural abnormalities | Tortuosity/dolichoectasia Dissection Occlusion: Moyamoya-like/ fibromuscular dysplasia |
Small-vessel disease | Isolated lacunar infarct Multiple lacunar infarcts White matter hyperintensities Hypertension |
Cardioembolic | Arrhythmia: atrial fibrillation/flutter Morphological defect, such as patent foramen ovale Myopathy |
Coagulopathy | Venous thrombosis Arterial thrombosis Hyperviscosity |
Metabolic | Mitochondrial Defect of intermediary metabolism |
Disorder | Gene | Inheritance | Stroke Mechanism | Clinical Manifestation | Diagnostic Test |
---|---|---|---|---|---|
CADASIL | NOTCH3 | Autosomal dominant | SVD | Migraine with aura, recurrent strokes | Molecular genetic tests, skin biopsy |
CARASIL | HTRA1 | Autosomal recessive | SVD | Recurrent strokes, vascular dementia, severe back pain, premature alopecia | Molecular genetic tests |
Fabry’s disease | GAL | X-linked | Large-artery disease, SVD | Neuropathic, abdominal pain, angiokeratoma, renal and cardiac failure, | Molecular genetic tests, α galactosidase activity |
MELAS | mtDNA | Maternal | Complex (microvascular and neuronal factors) | Seizures, headache, ataxia, hearing loss, muscle weakness | Muscle biopsy, mutational analysis of mtDNA |
RVCL | TREX1 | Autosomal dominant | SVD | Visual loss, migraines, cognitive impairment, strokes | Molecular genetic tests |
FOXC1-deletion related SVD | FOXC1 | De novo or inherited mutations, reciprocal translocations | SVD | Subcortical infarcts, ARS, hearing impairment, cerebellar malformations | Molecular genetic tests |
COL4A1-A2 syndromes | COL4A1 and COL4A2 | Autosomal dominant | SVD | Lacunar infarcts, hemorrhages, including cerebral, developmental delay, seizures, migraine without aura, visual loss, nephropathy, myopathy arrhythmias | Molecular genetic tests |
vEDS | COL3A1 | Autosomal dominant | Arterial dissection | Easy bruising, thin skin with visible veins, characteristic facial features, arterial, uterine or intestinal ruptures | Biochemical analysis, molecular genetic tests |
Sickle-cell disease | H88 | Autosomal recessive | Large-artery disease, SVD, hemodynamic insufficiency | Pain crises, seizures, myelopathy, anemia, bacterial infection, pulmonary, abdominal and vaso-occlusive crises | Peripheral blood smear, electrophoresis, mutational analysis |
Homocystinuria | CBS | Autosomal recessive | Large-artery disease, CE, SVD, arterial dissection | Mental retardation, atraumatic dislocation of lenses, Marfan-like skeletal deformations, premature atherosclerosis, thromboembolic | Urine analysis, homocysteine and methionine in plasma measurementsMolecular genetic tests |
Marfan syndrome | FBN1 | Autosomal dominant | CE and arterial dissection | Pectus carinatum or excavatum, upper-to-lower segment ratio <0.86, or arm-span-to-height ratio >1.5; scoliosis >20%; ectopia lentis; dilation or dissection of the ascending aorta; lumbosacral dural ectasia | Clinical diagnosisMolecular genetic tests |
Pseudoxanthoma elasticum | ABCC6 | Autosomal recessive | Large-artery disease and SVD | Increased elasticity and yellow-orange popular lesions of skin, ocular changes (angioid streaks), hypertension | Skin biopsy, molecular genetic tests |
Disorder | Gene | Inheritance | Stroke mechanism | Clinical manifestation | Diagnostic test |
CADASIL | NOTCH3 | Autosomal dominant | SVD | Migraine with aura, recurrent strokes | Molecular genetic tests, skin biopsy |
CARASIL | HTRA1 | Autosomal recessive | SVD | Recurrent strokes, vascular dementia, severe back pain, premature alopecia | Molecular genetic tests |
Fabry’s disease | GAL | X-linked | Large-artery disease, SVD | Neuropathic, abdominal pain, angiokeratoma, renal and cardiac failure, | Molecular genetic tests, α galactosidase activity |
MELAS | mtDNA | Maternal | Complex (microvascular and neuronal factors) | Seizures, headache, ataxia, hearing loss, muscle weakness | Muscle biopsy, mutational analysis of mtDNA |
RVCL | TREX1 | Autosomal dominant | SVD | Visual loss, migraines, cognitive impairment, strokes | Molecular genetic tests |
FOXC1-deletion related SVD | FOXC1 | De novo or inherited mutations, reciprocal translocations | SVD | Subcortical infarcts, ARS, hearing impairment, cerebellar malformations | Molecular genetic tests |
COL4A1-A2 syndromes | COL4A1 and COL4A2 | Autosomal dominant, de novo mutation | SVD | Hemorrhages, including cerebral, hemiparesis, developmental delay, seizures, lacunar infarcts, migraine without aura, visual loss, nephropathy, myopathy arrhythmias | Molecular genetic tests |
vEDS | COL3A1 | Autosomal dominant | Arterial dissection | Easy bruising, thin skin with visible veins, characteristic facial features, arterial, uterine or intestinal ruptures | Biochemical analysis, molecular genetic tests |
Sickle-cell disease | H88 | Autosomal recessive | Large-artery disease, SVD, hemodynamic insufficiency | Pain crises, seizures, myelopathy, anemia, bacterial infection, pulmonary, abdominal and vaso-occlusive crises | Peripheral blood smear, electrophoresis, mutational analysis |
Homocystinuria | CBS | Autosomal recessive | Large-artery disease, CE, SVD, arterial dissection | Mental retardation, atraumatic dislocation of lenses, Marfan-like skeletal deformations, premature atherosclerosis, thromboembolic | Urine analysis, homocysteine and methionine in plasma measurements(molecular genetic tests) |
Marfan’s syndrome | FBN1 | Autosomal dominant | CE and arterial dissection | Pectus carinatum or excavatum, upper-to-lower segment ratio <0.86, or arm-span-to-height ratio >1.5; scoliosis >20%; ectopia lentis; dilation or dissection of the ascending aorta; lumbosacral dural ectasia | Clinical diagnosis(molecular genetic tests) |
Pseudoxanthoma elasticum | ABCC6 | Autosomal recessive | Large-artery disease and SVD | Increased elasticity and yellow-orange popular lesions of skin, ocular changes (angioid streaks), hypertension | Skin biopsy, molecular genetic tests |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekkert, A.; Šliachtenko, A.; Grigaitė, J.; Burnytė, B.; Utkus, A.; Jatužis, D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes 2022, 13, 48. https://doi.org/10.3390/genes13010048
Ekkert A, Šliachtenko A, Grigaitė J, Burnytė B, Utkus A, Jatužis D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes. 2022; 13(1):48. https://doi.org/10.3390/genes13010048
Chicago/Turabian StyleEkkert, Aleksandra, Aleksandra Šliachtenko, Julija Grigaitė, Birutė Burnytė, Algirdas Utkus, and Dalius Jatužis. 2022. "Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice?" Genes 13, no. 1: 48. https://doi.org/10.3390/genes13010048
APA StyleEkkert, A., Šliachtenko, A., Grigaitė, J., Burnytė, B., Utkus, A., & Jatužis, D. (2022). Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes, 13(1), 48. https://doi.org/10.3390/genes13010048