Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chickens
2.2. Animal Experimental Design
2.3. Serological Indices
2.4. Sample Collection
2.5. RNA Isolation, Library Construction, and Sequencing
2.6. Alignment with Reference Genome and DEG Analysis
2.7. Functional Annotation of DEGs
3. Results
3.1. Comparison of Changes in Feather Coverage between Two Molting Modes
3.2. Detection of Serological Indices between FM and NM
3.3. RNA-Seq Analysis for Identifying DEGs among Eight Groups
3.4. DEGs in Hypothalamus in FM_1-vs-NM_1 Group
3.5. DEGs in Ovaries in FM_1-vs-NM_1 Group
3.6. DEGs in Hypothalamus in FM_2-vs-NM_2 Group
3.7. DEGs in Ovaries in FM_2-vs-NM_2 Group
3.8. DEGs in Hypothalamus and Ovaries in FM_1-vs-FM_2 and NM_1-vs-NM_2 Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiat, Y.; Vortman, Y.; Sapir, N. Feather moult and bird appearance are correlated with global warming over the last 200 years. Nat. Commun. 2019, 10, 2540. [Google Scholar] [CrossRef] [Green Version]
- Leeson, S.; Walsh, T. Feathering in commercial poultry I. Feather growth and composition. World’s Poult. Sci. J. 2004, 60, 42–51. [Google Scholar] [CrossRef]
- Gascoyne, J. Recent advances in turkey science. World’s Poult. Sci. J. 1988, 44, 112–121. [Google Scholar]
- Han, G.P.; Lee, K.-C.; Kang, H.K.; Oh, H.N.; Sul, W.J.; Kil, D.Y. Analysis of excreta bacterial community after forced molting in aged laying hens. Asian-Australas. J. Anim. Sci. 2019, 32, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Garlich, J.; Brake, J.; Parkhurst, C.; Thaxton, J.; Morgan, G. Physiological Profile of Caged Layers During One Production Year, Molt, and Postmolt: Egg Production, Egg Shell Quality, Liver, Femur, and Blood Parameters. Poult. Sci. 1984, 63, 339–343. [Google Scholar] [CrossRef]
- Andreatti Filho, R.L.; Milbradt, E.L.; Okamoto, A.S.; Silva, T.M.; Vellano, I.H.B.; Gross, L.S.; Oro, C.S.; Hataka, A. Salmonella Enteritidis infection, corticosterone levels, performance and egg quality in laying hens submitted to different methods of molting. Poult. Sci. 2019, 98, 4416–4425. [Google Scholar] [CrossRef]
- Abe, E.; Horikawa, H.; Masumura, T.; Sugahara, M.; Kubota, M.; Suda, T. Disorders of cholecalciferol metabolism in old egg-laying hens. J. Nutr. 1982, 112, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E. Comparison of fatty acid, cholesterol, vitamin A and E composition, and trans fats in eggs from brown and white egg strains that were molted or nonmolted. Poult. Sci. 2013, 92, 3259–3265. [Google Scholar] [CrossRef]
- Silva-Mendonça, M.C.A.; Fagundes, N.S.; Mendonça, G.A.; Gonçalves, F.C.; Fonseca, B.B.; Mundim, A.V.; Fernandes, E.A. Comparison of moulting methods for layers: High-zinc diet versus fasting. Br. Poult. Sci. 2015, 56, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Madekurozwa, M.-C.N.; Mpango, M.M. Ultrastructure of the tubular glands in the isthmus region of the oviduct in laying and natural moulting commercial egg-type chickens. Anat. Histol. Embryol. 2018, 47, 493–497. [Google Scholar] [CrossRef]
- Madekurozwa, M.C.; Mpango, M.M. The shell gland in laying and natural moulting commercial egg-type chickens: A histomorphological and ultrastructural study. Anat. Histol. Embryol. 2020, 49, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Jiang, K.; Wang, D.; Wang, Z.; Gu, Z.; Li, G.; Jiang, R.; Tian, Y.; Kang, X.; Li, H.; et al. Comparative analysis of hypothalamus transcriptome between laying hens with different egg-laying rates. Poult. Sci. 2021, 100, 101110. [Google Scholar] [CrossRef]
- Briley, S.M.; Jasti, S.; McCracken, J.M.; Hornick, J.E.; Fegley, B.; Pritchard, M.T.; Duncan, F.E. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 2016, 152, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zheng, Y.; Li, J.; Yu, Y.; Zhang, W.; Song, M.; Liu, Z.; Min, Z.; Hu, H.; Jing, Y.; et al. Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell 2020, 180, 585–600.e19. [Google Scholar] [CrossRef]
- Hanlon, C.; Takeshima, K.; Bédécarrats, G.Y. Changes in the Control of the Hypothalamic-Pituitary Gonadal Axis Across Three Differentially Selected Strains of Laying Hens (Gallus gallus domesticus). Front. Physiol. 2021, 12, 651491. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, X.; Mo, C.; Li, S.; Liu, Z.; Yang, G.; Zhao, Q.; Li, S.; Mou, C. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 2019, 99, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Che, T.; Li, F.; Tian, K.; Zhu, Q.; Mishra, S.K.; Dai, Y.; Li, M.; Li, D. The temporal expression patterns of brain transcriptome during chicken development and ageing. BMC Genom. 2018, 19, 917. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, H.; Yang, C.; Li, Q.; Qiu, M.; Song, X.; Yu, C.; Jiang, X.; Liu, L.; Hu, C.; et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim. Biotechnol. 2019, 30, 233–241. [Google Scholar] [CrossRef]
- Guo, L.-X.; Nie, F.-R.; Huang, A.-Q.; Wang, R.-N.; Li, M.-Y.; Deng, H.-Y.; Zhou, Y.-Z.; Zhou, X.-M.; Huang, Y.-K.; Zhou, J.; et al. Transcriptomic analysis of chicken immune response to infection of different doses of Newcastle disease vaccine. Gene 2021, 766, 145077. [Google Scholar] [CrossRef]
- Lee, J.; Magpayo, J.; Panchari, C.; Peng, S.-K. Primary malignant melanoma of the ovary arising in a cystic teratoma; case report and review of the literature. Dermatol. Online J. 2014, 20, 13030. [Google Scholar] [CrossRef] [PubMed]
- Gök, N.D.; Yildiz, K.; Corakçi, A. Primary malignant melanoma of the ovary: Case report and review of the literature. Turk. Patoloji Derg. 2011, 27, 169–172. [Google Scholar]
- Seguin, C.L.; Lietz, A.P.; Wright, J.D.; Wright, A.A.; Knudsen, A.B.; Pandharipande, P.V. Surveillance in Older Women with Incidental Ovarian Cysts: Maximal Projected Benefits by Age and Comorbidity Level. J. Am. Coll. Radiol. 2021, 18, 10–18. [Google Scholar] [CrossRef]
- Socha, J.; Hrabia, A. Response of the chicken ovary to GH treatment during a pause in laying induced by fasting. Domest. Anim. Endocrinol. 2019, 69, 84–95. [Google Scholar] [CrossRef]
- Kratzsch, J.; Pulzer, F. Thyroid gland development and defects. Best Pr. Res. Clin. Endocrinol. Metab. 2008, 22, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Mebis, L.; van den Berghe, G. The hypothalamus-pituitary-thyroid axis in critical illness. Neth. J. Med. 2009, 67, 332–340. [Google Scholar]
- Zhou, Y.; Zhang, H.; Zhang, G.; He, Y.; Zhang, P.; Sun, Z.; Gao, Y.; Tan, Y. Calcitonin gene-related peptide reduces Porphyromonas gingivalis LPS-induced TNF-α release and apoptosis in osteoblasts. Mol. Med. Rep. 2018, 17, 3246–3254. [Google Scholar]
- Li, J.; Yang, C.; Ran, J.; Jiang, X.; Du, H.; Li, Z.; Liu, Y.; Zhang, L. Genotype frequency contributions of Mx1 gene in eight chicken breeds under different selection pressures. 3 Biotech. 2018, 8, 483. [Google Scholar] [CrossRef]
- Burkhardt, N.B.; Röll, S.; Staudt, A.; Elleder, D.; Härtle, S.; Costa, T.; Alber, A.; Stevens, M.P.; Vervelde, L.; Schusser, B.; et al. The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Front. Immunol. 2019, 10, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baden, K.N.; Murray, J.; Capaldi, R.A.; Guillemin, K. Early Developmental Pathology Due to Cytochrome c Oxidase Deficiency Is Revealed by a New Zebrafish Model. J. Biol. Chem. 2007, 282, 34839–34849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomic, D.; Miller, K.P.; Kenny, H.A.; Woodruff, T.; Hoyer, P.; Flaws, J. Ovarian Follicle Development Requires Smad3. Mol. Endocrinol. 2004, 18, 2224–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Chen, Y.; Cheng, J.; Yuan, S.; Zhou, S.; Yan, W.; Liu, J.; Luo, A.; Wang, S. CCL5 secreted by senescent theca-interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J. Cell. Physiol. 2019, 234, 22554–22564. [Google Scholar] [CrossRef]
- Boljevic, I.; Malisic, E.; Kovacevic, M.M.; Jovanic, I.; Jankovic, R. Expression levels of genes involved in cell adhesion and motility correlate with poor clinicopathological features of epithelial ovarian cancer. J. Buon. 2020, 25, 1911–1917. [Google Scholar]
- Ohtsuki, S.; Kamoi, M.; Watanabe, Y.; Suzuki, H.; Hori, S.; Terasaki, T. Correlation of Induction of ATP Binding Cassette Transporter A5 (ABCA5) and ABCB1 mRNAs with Differentiation State of Human Colon Tumor. Biol. Pharm. Bull. 2007, 30, 1144–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xian, L.; He, W.; Pang, F.; Hu, Y. ADIPOQ gene polymorphisms and susceptibility to polycystic ovary syndrome: A HuGE survey and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 117–124. [Google Scholar] [CrossRef]
- Kohan, K.; Carvajal, R.; Gabler, F.; Vantman, D.; Romero, C.; Vega, M. Role of the transcriptional factors FOXO1 and PPARG on gene expression of SLC2A4 in endometrial tissue from women with polycystic ovary syndrome. Reproduction 2010, 140, 123–131. [Google Scholar] [CrossRef]
- Luo, G.F.; Chen, C.Y.; Wang, J.; Yue, H.Y.; Tian, Y.; Yang, P. FOXD3 may be a new cellular target biomarker as a hypermethylation gene in human ovarian cancer. Cancer Cell Int. 2019, 19, 44. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhang, J.; Wang, X.; Yang, J.; Chen, D.; Huff, V.; Liu, Y.-X. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum. Mol. Genet. 2014, 23, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, C.; Chen, M.; Zhou, J.; Zhang, L.; Duo, S.; Jiang, L.; Hou, X.; Gao, F. Inactivation of Wt1 causes pre-granulosa cell to steroidogenic cell transformation and defect of ovary development†. Biol. Reprod. 2020, 103, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, J.; Bo, L.; Wu, Z.; Zhou, A.; Xu, W.; Mao, C. WT1 influences apoptosis and proliferation of immature mice granular cells through regulation of the wnt/β-catenin signal pathway. Cell. Mol. Biol. 2019, 65, 138–145. [Google Scholar] [CrossRef]
- Stordal, B.; Timms, K.; Farrelly, A.; Gallagher, D.; Busschots, S.; Renaud, M.; Thery, J.; Williams, D.; Potter, J.; Tran, T.; et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol. Oncol. 2013, 7, 567–579. [Google Scholar] [CrossRef] [Green Version]
- Rux, D.R.; Wellik, D.M. Hox genes in the adult skeleton: Novel functions beyond embryonic development. Dev. Dynam. 2017, 246, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Berridge, M.J. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol. Rev. 2016, 96, 1261–1296. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Ma, Y.; Zhou, S.; Bao, T.; Mi, Y.; Zeng, W.; Li, J.; Zhang, C. Metformin Prevents Follicular Atresia in Aging Laying Chickens through Activation of PI3K/AKT and Calcium Signaling Pathways. Oxidative Med. Cell. Longev. 2020, 2020, 3648040. [Google Scholar] [CrossRef]
- Wang, M.; Lv, G.; Jiang, C.; Xie, S.; Wang, G. miR-302a inhibits human HepG2 and SMMC-7721 cells proliferation and promotes apoptosis by targeting MAP3K2 and PBX3. Sci. Rep. 2019, 9, 2032. [Google Scholar] [CrossRef]
- Chermuła, B.; Brązert, M.; Iżycki, D.; Ciesiółka, S.; Kranc, W.; Celichowski, P.; Ożegowska, K.; Nawrocki, M.J.; Jankowski, M.; Jeseta, M.; et al. New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. Biomed. Res. Int. 2019, 2019, 6545210. [Google Scholar] [CrossRef]
- Xu, W.; Li, L.; Sun, J.; Zhu, S.; Yan, Z.; Gao, L.; Gao, C.; Cui, Y.; Mao, C. Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. Aging 2018, 10, 4093–4106. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Aoki, N.; Mori, C.; Fujita, E.; Matsushima, T.; Homma, K.J.; Yamaguchi, S. The dorsal arcopallium of chicks displays the expression of orthologs of mammalian fear related serotonin receptor subfamily genes. Sci. Rep. 2020, 10, 21183. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.; Ockleford, C.D.; Byrne, S.; Hubbard, A.; Woolley, S.T. Leucocyte and endothelial cell adhesion molecule expression in porcine histiocytic leiomyofibrosarcoma. J. Comp. Pathol. 1996, 115, 429–440. [Google Scholar] [CrossRef]
- Johnstone, O.; Lasko, P. Interaction with eIF5B is essential for Vasa function during development. Development 2004, 131, 4167–4178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.-Z.; Zhou, Y.-P.; Zhen, Y.; Xu, Y.; Cheng, P.-X.; Wang, H.-N.; Deng, F.-J. Cloning and Characterization of the SSB-1 and SSB-4 Genes Expressed in Zebrafish Gonads. Biochem. Genet. 2009, 47, 179–190. [Google Scholar] [CrossRef]
- Zinski, J.; Tajer, B.; Mullins, M.C. TGF-β Family Signaling in Early Vertebrate Development. Cold Spring Harb. Perspect. Biol. 2018, 10, a033274. [Google Scholar] [CrossRef] [Green Version]
- Mangoni, A.A.; Rodionov, R.N.; McEvoy, M.; Zinellu, A.; Carru, C.; Sotgia, S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing 2019, 48, 776–782. [Google Scholar] [CrossRef]
- Hilliar, M.; Huyen, N.; Girish, C.; Barekatain, R.; Wu, S.; Swick, R. Supplementing glycine, serine, and threonine in low protein diets for meat type chickens. Poult. Sci. 2019, 98, 6857–6865. [Google Scholar] [CrossRef]
- Silva, K.E.; Huber, L.-A.; Mansilla, W.D.; Shoveller, A.K.; Htoo, J.K.; Cant, J.P.; De Lange, C.F.M. The effect of reduced dietary glycine and serine and supplemental threonine on growth performance, protein deposition in carcass and viscera, and skin collagen abundance of nursery pigs fed low crude protein diets. J. Anim. Sci. 2020, 98, skaa157. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, X.; Zhang, S.; Guo, C.; Li, J.; Mi, Y.; Zhang, C. Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging 2018, 10, 2016–2036. [Google Scholar] [CrossRef]
- McCully, K.S. Chemical Pathology of Homocysteine VIII. Effects of Tocotrienol, Geranylgeraniol, and Squalene on Thioretinaco Ozonide, Mitochondrial Permeability, and Oxidative Phosphorylation in Arteriosclerosis, Cancer, Neurodegeneration and Aging. Ann. Clin. Lab. Sci. 2020, 50, 567–577. [Google Scholar]
- Lesnefsky, E.J.; Hoppel, C.L. Oxidative phosphorylation and aging. Ageing Res. Rev. 2006, 5, 402–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tang, C.; Yan, G.; Feng, B. Gene Expression Profiling of H9c2 Cells Subjected to H2O2-Induced Apoptosis with/without AF-HF001. Biol. Pharm. Bull. 2016, 39, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Periods | Molting Type | Age (Days) | ELR | Description |
---|---|---|---|---|
FM_1 | FM | 469 | 0.002 | Hens shed many feathers and ELR dropped to almost zero after fasting during FM |
FM_2 | FM | 527 | 0.873 | Hens grew new feathers and ELR returned to second peak of egg production after FM |
NM_1 | NM | 572 | 0.417 | Hens shed many feathers during NM |
NM_2 | NM | 721 | 0.251 | Hens grew new feathers after NM |
Serological Indices | FM_1 | FM_2 | NM_1 | NM_2 |
---|---|---|---|---|
GH (ng/mL) | 12.77 ± 2.27 a | 16.98 ± 2.99 a | 5.16 ± 0.33 b | 5.30 ± 0.19 b |
TSH(µIU/mL) | 11.89 ± 1.91 a | 13.16 ± 1.20 a | 3.95 ± 0.45 b | 4.47 ± 0.31 b |
CT(ng/L) | 41.55 ± 6.51 a | 41.99 ± 8.36 a | 132.67 ± 3.60 b | 94.71 ± 2.41 c |
T4(ng/mL) | 191.08 ± 18.39 a | 169.57 ± 31.80 a | 21.56 ± 0.94 b | 19.22 ± 1.46 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Ning, Z.; Chen, Y.; Wen, J.; Jia, Y.; Wang, L.; Lv, X.; Yang, W.; Qu, C.; Li, H.; et al. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes 2022, 13, 89. https://doi.org/10.3390/genes13010089
Zhang T, Ning Z, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, et al. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes. 2022; 13(1):89. https://doi.org/10.3390/genes13010089
Chicago/Turabian StyleZhang, Tongyu, Zhonghua Ning, Yu Chen, Junhui Wen, Yaxiong Jia, Liang Wang, Xueze Lv, Weifang Yang, Changqing Qu, Haiying Li, and et al. 2022. "Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens" Genes 13, no. 1: 89. https://doi.org/10.3390/genes13010089
APA StyleZhang, T., Ning, Z., Chen, Y., Wen, J., Jia, Y., Wang, L., Lv, X., Yang, W., Qu, C., Li, H., Wang, H., & Qu, L. (2022). Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes, 13(1), 89. https://doi.org/10.3390/genes13010089