Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Moral Statement
2.2. Animals and DNA Samples
2.3. Identification of HOXC8 Gene Polymorphism
2.4. Validation of Polymorphic Loci
2.5. Statistical Analysis
2.6. Phylogenetic Analysis
3. Results
3.1. Accuracy of GBTS
3.2. Analysis of HOXC8 Gene Polymorphisms and Population Genetics in Dezhou Donkey
3.3. Association Analysis
3.4. Construction of Phylogenetic Tree of HOXC8 Gene for Dezhou Donkey and Other Seven Species of Animals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, Z.; Wu, F.; Zhou, Z.; Li, M.; Gao, Y.; Yin, G.; Yu, J.; Lei, C.; Dang, R. Expression profiles and polymorphic identification of the ACSL1 gene and their association with body size traits in Dezhou donkeys. Arch. Anim. Breed. 2020, 63, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Li, S.; Wu, F.; Zhou, Z.; Gao, Y.; Yu, J.; Lei, C.; Dang, R. Genotypes and haplotype combination of ACSL3 gene sequence variants is associated with growth traits in Dezhou donkey. Gene 2020, 743, 144600. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, H.; Guo, Y.; Huang, J.; Sun, Y.; Min, J.; Wang, J.; Fang, X.; Zhao, Z.; Wang, S.; et al. Donkey genomes provide new insights into domestication and selection for coat color. Nat. Commun. 2020, 11, 6014. [Google Scholar] [CrossRef] [PubMed]
- King, J.W.B.; Roberts, R.C. Carcass length in the bacon pig; Its association with vertebrae numbers and prediction from radiographs of the young pig. Anim. Sci. 1960, 2, 59–65. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, M.; Ye, R.; Ma, Y.; Lei, C. Effects of increased vertebral number on carcass weight in PIC pigs. Anim. Sci. J. 2017, 88, 2057–2062. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Du, W.; He, S.; Liu, M.; Tian, C. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Mehtiö, T.; Pitkänen, T.; Leino, A.M.; Mäntysaari, E.A.; Kempe, R.; Negussie, E.; Lindauer, M.H. Genetic analyses of metabolic body weight, carcass weight and body conformation traits in Nordic dairy cattle. Animal 2021, 15, 100398. [Google Scholar] [CrossRef]
- Whaley, J.R.; Means, W.J.; Ritten, J.P.; Murphy, T.W.; Gifford, C.L.; Cunningham-Hollinger, H.C.; Woodruff, K.L.; McKibben, H.N.; Page, C.M.; Stewart, W.C. Harvest season, carcass weight, and fat measurement effects on lamb carcass characteristics and economic comparison of moderate and heavyweight lamb carcasses in the Western lamb processing industry. Transl. Anim. Sci. 2020, 4, S27–S31. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Lee, S.J.; Lee, E.Y.; Joo, S.T. Effects of carcass weight increase on meat quality and sensory properties of pork loin. J. Anim. Sci. Technol. 2020, 62, 753–760. [Google Scholar] [CrossRef]
- Rohrer, G.A.; Nonneman, D.J.; Wiedmann, R.T.; Schneider, J.F. A study of vertebra number in pigs confirms the association of certain and reveals additional QTL. BMC Genet. 2015, 16, 129. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Yu, D.; Hao, J.; Zhang, L.; Adeola, A.C.; Mao, B.; Gao, Y.; Wu, S.; Zhu, C.; et al. Single-cell RNA Sequencing Reveals Thoracolumbar Vertebra Heterogeneity and Rib-genesis in Pigs. Genom. Proteom. Bioinform. 2021, 19, 423–436. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, H.; Luo, X.; Ai, Y.; Jiang, M.; Wen, Y. Insight into unique somitogenesis of yak (Bos grunniens) with one additional thoracic vertebra. BMC Genom. 2020, 21, 201. [Google Scholar] [CrossRef] [Green Version]
- Jianmei, Y.; Yongli, W.; Zhengping, F.; Mingling, K.; Xiaoyun, G.; Deke, A. Correlation Analysis for Beef Performance and Multi-vertebra Properties of Jinchuan Yak. Acta Ecol. Anim. Domastici 2015, 36, 26–30. [Google Scholar]
- Siwu, G. Screening of Important Candidate SNPs Related to Carcass Traits in Sheep. Master’s Thesis, Hebei University of Engineering, Wuhan, China, 2021. [Google Scholar]
- Mikawa, S.; Hayashi, T.; Nii, M.; Shimanuki, S.; Morozumi, T.; Awata, T. Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae. J. Anim. Sci. 2005, 83, 2247–2254. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Cao, Y.; Wei, J.; You, S.; Jiang, Y.; Cai, K.; Wumaier, W.; Guo, D.; Qi, J.; et al. Multi-vertebrae variation potentially contribute to carcass length and weight of Kazakh sheep. Small Rumin. Res. 2017, 150, 8–10. [Google Scholar] [CrossRef]
- Jamdar, M.N.; Ema, A.N. A Note on the Vertebral Formula of the Donkey. Br. Vet. J. 1982, 138, 209–211. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Q.; Wang, T.; Chai, W.; Zhan, Y.; Akhtar, F.; Zhang, Z.; Li, Y.; Shi, X.; Wang, C. Multi-Thoracolumbar Variations and NR6A1 Gene Polymorphisms Potentially Associated with Body Size and Carcass Traits of Dezhou Donkey. Animals 2022, 12, 1349. [Google Scholar] [CrossRef]
- Wellik, D.M. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 2007, 236, 2454–2463. [Google Scholar] [CrossRef] [Green Version]
- Taotao, L.; Meilin, J.; Xiaojuan, F.; Huihua, W.; Jian, L.; Ran, D.; Caihong, W. The Hox Gene Family and Its Effects on Spine Formation in Animals. Acta Vet. Zootech. Sin. 2022, 53, 999–1009. [Google Scholar]
- Van Den Akker, E.; Fromental-Ramain, C.; de Graaff, W.; Le Mouellic, H.; Brûlet, P.; Chambon, P.; Deschamps, J. Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 2001, 128, 1911–1921. [Google Scholar] [CrossRef]
- Jing, Z.; Liling, Z.; Qi, C.; Batu. Relationship between methylation of Hoxc8 gene and the numbers of thoracic vertebrae in Mongolia sheep. Heilongjiang Anim. Sci. Vet. 2011, 5, 5–8. [Google Scholar] [CrossRef]
- Jiao, T.; Yili, L.; Shuqiong, X.; Shilong, M.; Mingfeng, J. Advances in Candidate Genes on Vertebral Number Trait of Pig. Chin. J. Anim. Sci. 2022, 58, 92–98. [Google Scholar] [CrossRef]
- Zhao, B.; Pan, Y.; Qiao, L.; Liu, J.; Yang, K.; Liang, Y.; Liu, W. miR-301a inhibits adipogenic differentiation of adipose-derived stromal vascular fractions by targeting HOXC8 in sheep. Anim. Sci. J. 2021, 92, e13661. [Google Scholar] [CrossRef] [PubMed]
- Houghton, L.; Rosenthal, N. Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev. Dyn. 1999, 216, 385–397. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, Y.; Han, Y.; Liu, Z.; Wang, Y.; Wang, C. Estimation of Liveweight from Body Measurements through Best Fitted Regression Model in Dezhou Donkey Breed. J. Equine Vet. Sci. 2021, 101, 103457. [Google Scholar] [CrossRef]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kruger, C.; Kappen, C. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice. PLoS ONE 2010, 5, e8978. [Google Scholar] [CrossRef]
- Yueh, Y.G.; Gardner, D.P.; Kappen, C. Evidence for regulation of cartilage differentiation by the homeobox gene Hox-8. Proc. Natl. Acad. Sci. USA 1998, 95, 9956–9961. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Zhong, Y.; Liu, J.; Shen, Q.; Wei, R.; Zhu, H.; Zhang, X.; Xia, X.; Yao, M.; Ni, M. The Role of miR-4256/HOXC8 Signaling Axis in the Gastric Cancer Progression: Evidence From lncRNA-miRNA-mRNA Network Analysis. Front. Oncol. 2021, 11, 793678. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, X.; Ni, W.; Fan, H.; Xu, J.; Chen, Y.; Zhu, J.; Gu, X.; Yang, L.; Ni, R.; et al. Upregulated HOXC8 Expression Is Associated with Poor Prognosis and Oxaliplatin Resistance in Hepatocellular Carcinoma. Dig. Dis. Sci. 2015, 60, 3351–3363. [Google Scholar] [CrossRef]
- Shah, M.; Cardenas, R.; Wang, B.; Persson, J.; Mongan, N.P.; Grabowska, A.; Allegrucci, C. HOXC8 regulates self-renewal, differentiation and transformation of breast cancer stem cells. Mol. Cancer 2017, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Juan, A.H.; Kim, M.S.; Ruddle, F.H. Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells. Proc. Natl. Acad. Sci. USA 2006, 103, 10305–10309. [Google Scholar] [CrossRef] [Green Version]
- De Las Heras-Saldana, S.; Chung, K.Y.; Lee, S.H.; Gondor, C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genom. 2019, 20, 156. [Google Scholar] [CrossRef] [Green Version]
- Lindholm-Perry, A.K.; Rohrer, G.A.; Kuehn, L.A.; Keele, J.W.; Holl, J.W.; Shackelford, S.D.; Wheeler, T.L.; Nonneman, D.J. Genomic regions associated with kyphosis in swine. BMC Genet. 2010, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Genini, S.; Nguyen, T.T.; Malek, M.; Talbot, R.; Gebert, S.; Rohrer, G.; Nonneman, D.; Stranzinger, G.; Vögeli, P. Radiation hybrid mapping of 18 positional and physiological candidate genes for arthrogryposis multiplex congenital on porcine chromosome 5. Anim. Genet. 2006, 37, 239–244. [Google Scholar] [CrossRef]
- Qi, C.; Jing, Z.; Ling, Z.; Yuehui, M. Methylation analysis of Hoxc8 exon-1 in multi-vertebrate Mongolian sheep. Chin. J. Anim. Sci. 2009, 45, 10–14. [Google Scholar]
- Wang, Y.; Miao, X.; Zhao, Z.; Wang, Y.; Li, S.; Wang, C. Transcriptome Atlas of 16 Donkey Tissues. Front. Genet. 2021, 12, 682734. [Google Scholar] [CrossRef]
- Yan, S.Q.; Hou, J.N.; Bai, C.Y.; Jiang, Y.; Zhang, X.J.; Ren, H.L.; Sun, B.X.; Zhao, Z.H.; Sun, J.H. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox (Alopex lagopus). Anim. Genet. 2014, 45, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Guojing, L.; Zhihua, J.; Xiuge, W.; Jinming, H.; Yinxue, X. Association of SPEF2 gene splices variant and functional SNP with semen quality traits in Chinese Holstein bulls. J. Nanjing Agric. Univ. 2014, 37, 119–125. [Google Scholar] [CrossRef]
- Karastergiou, K.; Fried, S.K.; Xie, H.; Lee, M.J.; Devaux, A.; Rosencrantz, M.A.; Chang, R.J.; Smith, S.R. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J. Clin. Endocrinol. Metab. 2013, 98, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Gesta, S.; Lee, K.Y.; Tran, T.T.; Saadatirad, P.; Kahn, C.R. Adipose depots possess unique developmental gene signatures. Obesity 2010, 18, 872–878. [Google Scholar] [CrossRef]
- Krumlauf, R. Hox genes, clusters and collinearity. Int. J. Dev. Biol. 2018, 62, 659–663. [Google Scholar] [CrossRef]
- Juan, A.H.; Ruddle, F.H. Enhancer timing of Hox gene expression: Deletion of the endogenous Hoxc8 early enhancer. Development 2003, 130, 4823–4834. [Google Scholar] [CrossRef]
SNP Position | Primer Sequence (5′-3′) | PCR Size (bp) | Ta (°C) |
---|---|---|---|
g.15177692G>A | F:5′-TTGGACCAGGAACAGAGCTG-3′ | 539 | 58 |
R:5′-GTCGCTCAGAACTCACCATA-3′ | |||
g.15178184C>T | F:5′-GACAGCAAAGGGGAGGAAGG-3’ | 317 | 58 |
R:5′-TGCTAGGGTTAGTGTATGAGATTGA-3′ | |||
g.15179224C>T | F:5′-CACTTCATCCTTCGGTTCTGGA-3′ | 507 | 60 |
R: 5′-GCCACTCTGCACTTGTAAACA-3′ |
Region | Genomic Location | Wild-Type | Mutant | Mutation in Ensembl Database | Mutation in NCBI Database | Mutation in European Variation Archive | AA Coding Residue | Amino Acid Change |
---|---|---|---|---|---|---|---|---|
Downstream | 15177467 | G | A | NO | NO | NO | - | - |
15177692 | G | A | NO | NO | NO | - | - | |
15177975 | T | TATTA | NO | NO | NO | - | - | |
15178184 | C | T | NO | NO | NO | - | - | |
15178385 | C | G | NO | NO | NO | - | - | |
15178428 | C | T | NO | NO | NO | - | - | |
15178486 | C | T | NO | NO | NO | - | - | |
15178804 | A | G | NO | NO | NO | - | - | |
15178804 | A | GG | NO | NO | NO | - | - | |
15178806 | G | C | NO | NO | NO | - | - | |
Intron | 15179224 | C | T | NO | NO | NO | - | - |
15179674 | G | A | NO | NO | NO | - | - |
Site | Location | Genotype Frequency | Allele Frequency | PIC | Ne | Ho | H | He | HWE | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chi-Square | p Value | ||||||||||||
g.15177692G>A | Downstream (dist = 1137) | GG (393) | GA (7) | AA (0) | G | A | 0.018 | 1.018 | 0.983 | 0.050 | 0.017 | 0.031 | 0.860 |
0.983 | 0.017 | 0.000 | 0.991 | 0.009 | |||||||||
g.15178184C>T | Downstream (dist = 645) | CC (373) | CT (27) | TT (0) | C | T | 0.064 | 1.070 | 0.935 | 0.148 | 0.065 | 0.488 | 0.485 |
0.933 | 0.067 | 0.000 | 0.966 | 0.034 | |||||||||
g.15179224C>T | Intron | CC (394) | CT (6) | TT (0) | C | T | 0.014 | 1.015 | 0.985 | 0.044 | 0.015 | 0.023 | 0.880 |
0.985 | 0.015 | 0.000 | 0.993 | 0.007 | |||||||||
g.15179674G>A | Intron | GG (373) | GA (25) | AA (2) | G | A | 0.067 | 1.075 | 0.930 | 0.156 | 0.070 | 4.453 | 0.035 |
0.932 | 0.063 | 0.005 | 0.964 | 0.036 |
Site | Genotype | BH/cm | BL/cm | CC/cm | HW/kg | CW/kg | LN | LL/cm | TN | TL/cm | TLN |
---|---|---|---|---|---|---|---|---|---|---|---|
g.15177692G>A | GG (393) | 134.81 ± 0.26 | 132.55 ± 0.31 | 144.85 ± 0.26 | 24.15 ± 0.14 | 151.32 ± 0.97 | 5.21 ± 0.02 | 24.12 ± 0.11 | 17.86 ± 0.02 | 72.81 ± 0.18 | 23.07 ± 0.02 |
GA (7) | 135.71 ± 1.91 | 132.43 ± 2.32 | 146.43 ± 1.92 | 24.04 ± 1.07 | 155.29 ± 7.25 | 5.14 ± 0.15 | 23.57 ± 0.81 | 18.00 ± 0.14 | 73.14 ± 1.36 | 23.14 ± 0.13 | |
g.15178184C>T | CC (373) | 134.87 ± 0.26 | 132.60 ± 0.32 | 144.87 ± 0.26 | 24.12 ± 0.15 | 151.43 ± 0.99 | 5.21 ± 0.02 | 24.09 ± 0.11 | 17.86 ± 0.02 | 72.83 ± 0.19 | 23.07 ± 0.02 |
CT (27) | 134.22 ± 0.97 | 131.89 ± 1.18 | 144.98 ± 0.98 | 24.51 ± 0.54 | 150.83 ± 3.69 | 5.22 ± 0.08 | 24.30 ± 0.41 | 17.85 ± 0.07 | 72.63 ± 0.69 | 23.07 ± 0.07 | |
g.15179224C>T | CC (394) | 134.85 ± 0.25 | 132.59 ± 0.31 | 144.89 ± 0.26 | 24.17 ± 0.14 | 151.87 ± 0.95 A | 5.21 ± 0.02 | 24.14 ± 0.11 a | 17.86 ± 0.02 | 72.86 ± 0.18 | 23.07 ± 0.02 |
CT (6) | 133.33 ± 2.06 | 129.83 ± 2.50 | 144.00 ± 2.08 | 22.57 ± 1.15 | 119.92 ± 7.67 B | 5.17 ± 0.17 | 22.25 ± 0.87 b | 17.83 ± 0.16 | 70.33 ± 1.47 | 23.00 ± 0.14 | |
g.15179674G>A | GG (373) | 134.96 ± 0.26 | 132.72 ± 0.32 | 144.93 ± 0.26 | 24.15 ± 0.15 | 151.69 ± 0.99 | 5.21 ± 0.02 a | 24.10 ± 0.11 | 17.86 ± 0.02 | 72.81 ± 0.19 | 23.07 ± 0.02 |
GA (25) | 133.16 ± 1.01 | 130.08 ± 1.22 | 144.38 ± 1.02 | 23.91 ± 0.57 | 146.78 ± 3.84 | 5.20 ± 0.08 a | 23.79 ± 0.42 | 17.88 ± 0.08 | 73.03 ± 0.74 | 23.08 ± 0.07 | |
AA (2) | 131.00 ± 3.56 | 131.00 ± 4.33 | 142.00 ± 3.60 | 22.15 ± 2.00 | 152.50 ± 13.56 | 6.00 ± 0.29 b | 27.50 ± 1.50 | 17.50 ± 0.27 | 72.50 ± 2.55 | 23.50 ± 0.24 | |
overall average of phenotypic data | 134.90 ± 0.25 | 132.59 ± 0.31 | 144.97 ± 0.26 | 24.18 ± 0.14 | 152.01 ± 0.89 | 5.21 ± 0.02 | 24.11 ± 0.11 | 17.86 ± 0.02 | 72.89 ± 0.18 | 23.07 ± 0.02 |
Type of Thoracolumbar | Number | BH/cm | BL/cm | CC/cm | HW/kg | CW/kg | Proportion |
---|---|---|---|---|---|---|---|
T17L5 | 10 | 131.90 ± 1.72 | 129.30 ± 1.41 | 141.10 ± 1.56 | 23.45 ± 0.55 | 127.20 ± 14.56 a | 2.50% |
T17L6 | 50 | 134.64 ± 0.64 | 132.10 ± 0.72 | 144.48 ± 0.68 | 23.77 ± 0.38 | 150.09 ± 2.02 b | 12.50% |
T18L5 | 301 | 134.90 ± 0.30 | 132.56 ± 0.36 | 145.09 ± 0.30 | 24.22 ± 0.17 | 152.25 ± 1.07 b | 75.25% |
T18L6 | 34 | 135.38 ± 0.79 | 134.15 ± 0.98 | 144.81 ± 0.64 | 24.34 ± 0.47 | 152.71 ± 2.36 b | 8.50% |
T19L5 | 5 | 134.60 ± 3.12 | 132.20 ± 3.85 | 144.40 ± 2.50 | 23.68 ± 1.17 | 151.50 ± 6.27 b | 1.25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Li, Y.; Wang, T.; Ren, W.; Huang, B.; Wang, X.; Liu, Z.; Liang, H.; Kou, X.; Chen, Y.; et al. Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey. Genes 2022, 13, 2175. https://doi.org/10.3390/genes13112175
Shi X, Li Y, Wang T, Ren W, Huang B, Wang X, Liu Z, Liang H, Kou X, Chen Y, et al. Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey. Genes. 2022; 13(11):2175. https://doi.org/10.3390/genes13112175
Chicago/Turabian StyleShi, Xiaoyuan, Yan Li, Tianqi Wang, Wei Ren, Bingjian Huang, Xinrui Wang, Ziwen Liu, Huili Liang, Xiyan Kou, Yinghui Chen, and et al. 2022. "Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey" Genes 13, no. 11: 2175. https://doi.org/10.3390/genes13112175
APA StyleShi, X., Li, Y., Wang, T., Ren, W., Huang, B., Wang, X., Liu, Z., Liang, H., Kou, X., Chen, Y., Wang, Y., Akhtar, F., & Wang, C. (2022). Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey. Genes, 13(11), 2175. https://doi.org/10.3390/genes13112175