The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pig Genome Analysis
2.2. Classification of the Pig TRG Genes
2.3. Phylogenetic Analysis
2.4. 5′ Rapid Amplification of cDNA Ends (RACE) PCR
3. Results
3.1. Genomic Structure of the TRG Locus in Sus Scrofa
3.2. Gene Analysis
3.3. 5′ RACE Assay
3.4. Genomic Architecture and Identification of the Regulatory Elements in the Pig TRG Cassettes
3.5. Phylogenetic Relationships of the Cetoartiodactyla TRGC Genes
3.6. Phylogenetic Relationships of the Cetoartiodactyla TRGC Cassettes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, E.R.; Simpson, G.G. The Principles of Classification and a Classification of Mammals. J. Mammal. 1946, 27, 287–288. [Google Scholar] [CrossRef]
- Graur, D.; Higgins, D.G. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 1994, 11, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgelard, C.; Catzeflis, F.M.; Douzery, E. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 1997, 14, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Gatesy, J.; Milinkovitch, M.; Waddell, V.; Stanhope, M.; Waddell, P. Stability of Cladistic Relationships between Cetacea and Higher-Level Artiodactyl Taxa. Syst. Biol. 1999, 48, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IUCN. The IUCN Red List of Threatened Species, Version 2018–2; 2018. Available online: http://www.iucnredlist.org (accessed on 20 December 2021).
- Matthee, C.A.; Burzlaff, J.D.; Taylor, J.F.; Davis, S.K. Mining the mammalian genome for artiodactyl systematics. Syst. Biol. 2001, 50, 367–390. [Google Scholar] [CrossRef]
- Zhou, X.M.; Xu, S.X.; Zhang, P.; Yang, G. Developing a series of conservative anchor markers and their application in phylogenomics of Laurasiatherian mammals. Mol. Ecol. Res. 2011, 11, 134–140. [Google Scholar] [CrossRef]
- Meredith, R.W.; Janečka, J.E.; Gatesy, J.; Ryder, O.A.; Fisher, C.A.; Teeling, E.C.; Goodbla, A.; Eizirik, E.; Simão, T.L.L.; Stadler, T.; et al. Impacts of the cretaceous terrestrial revolution and KPg ex-tinction on mammal diversification. Science 2011, 334, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Hassanin, A.; Delsuc, F.; Ropiquet, A.; Hammer, C.; van Vuuren, B.J.; Matthee, C.; Ruiz-Garcia, M.; Catzeflis, F.; Areskoug, V.; Nguyen, T.T.; et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biol. 2012, 335, 32–50. [Google Scholar] [CrossRef]
- Vislobokova, I.A. On the origin of Cetartiodactyla: Comparison of data on evolutionary morphology and molecular biology. Paleontol. J. 2013, 47, 321–334. [Google Scholar] [CrossRef]
- Zurano, J.P.; Magalhães, F.M.; Asato, A.E.; Silva, G.; Bidau, C.J.; Mesquita, D.O.; Costa, G.C. Cetartiodactyla: Updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 2019, 133, 256–262. [Google Scholar] [CrossRef]
- Arnason, U.; Gullberg, A.; Gretarsdottir, S.; Ursing, B.; Janke, A. The Mitochondrial Genome of the Sperm Whale and a New Molecular Reference for Estimating Eutherian Divergence Dates. J. Mol. Evol. 2000, 50, 569–578. [Google Scholar] [CrossRef]
- Antonacci, R.; Massari, S.; Linguiti, G.; Jambrenghi, A.C.; Giannico, F.; Lefranc, M.-P.; Ciccarese, S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes 2020, 11, 624. [Google Scholar] [CrossRef]
- Hussen, J.; Schuberth, H.-J. Recent Advances in Camel Immunology. Front. Immunol. 2021, 11, 614150. [Google Scholar] [CrossRef]
- Antonacci, R.; Lanave, C.; Del Faro, L.; Vaccarelli, G.; Ciccarese, S.; Massari, S. Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 2005, 57, 254–266. [Google Scholar] [CrossRef]
- Pégorier, P.; Bertignac, M.; Nguefack Ngoune, V.; Folch, G.; Jabado-Michaloud, J.; Giudicelli, V.; Duroux, P.; Lefranc, M.P.; Kossida, S. IMGT® Biocuration and Comparative Analysis of Bos taurus and Ovis aries TRA/TRD Loci. Genes 2020, 12, 30. [Google Scholar] [CrossRef]
- Giannico, F.; Massari, S.; Jambrenghi, A.C.; Soriano, A.; Pala, A.; Linguiti, G.; Ciccarese, S.; Antonacci, R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genom. 2020, 21, 623. [Google Scholar] [CrossRef]
- Massari, S.; Linguiti, G.; Giannico, F.; D’Addabbo, P.; Ciccarese, S.; Antonacci, R. The Genomic Organisation of the TRA/TRD Locus Validates the Peculiar Characteristics of Dromedary δ-Chain Expression. Genes 2021, 12, 544. [Google Scholar] [CrossRef]
- Schwartz, S.; Zhang, Z.; Frazer, K.A.; Smit, A.; Riemer, C.; Bouck, J.; Gibbs, R.; Hardison, R.; Miller, W. PipMaker—A Web Server for Aligning Two Genomic DNA Sequences. Genome Res. 2000, 10, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [Green Version]
- Lefranc, M.-P.; Forster, A.; Baer, R.; Stinson, M.A.; Rabbitts, T.H. Diversity and rearrangement of the human T cell rearranging γ genes: Nine germ-line variable genes belonging to two subgroups. Cell 1986, 45, 237–246. [Google Scholar] [CrossRef]
- Giudicelli, V.; Chaume, D.; Lefranc, M.P. IMGT/GENE-DB: A comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acid Res. 2005, 93, D256–D261. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, R.; Linguiti, G.; Burger, P.; Castelli, V.; Pala, A.; Fitak, R.; Massari, S.; Ciccarese, S. Comprehensive genomic analysis of the dromedary T cell receptor γ (TRG) locus and identification of a functional TRGC5 cassette. Dev. Comp. Immunol. 2020, 106, 103614. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knynar, C.; Tamura, K. MEGAX: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Tamura, K.; Battistuzzi, F.U.; Billing-Ross, P.; Murillo, O.; Filipski, A.; Kumar, S. Estimating divergence times in large molecular phylogenies. Proc Natl. Acad. Sci. USA 2012, 109, 19333–19338. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Tao, Q.; Kumar, S. Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates. Mol. Biol. Evol. 2018, 35, 1770–1782. [Google Scholar] [CrossRef]
- Brochet, X.; Lefranc, M.P.; Giudicelli, V. IMGT/V-QUEST: The highly customized and integrated system for IG and TR stand-ardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008, 36, W503–W508. [Google Scholar] [CrossRef] [Green Version]
- Giudicelli, V.; Brochet, X.; Lefranc, M.-P. IMGT/V-QUEST: IMGT Standardized Analysis of the Immunoglobulin (IG) and T Cell Receptor (TR) Nucleotide Sequences. Cold Spring Harb. Protoc. 2011, 2011, 695–715. [Google Scholar] [CrossRef]
- Yousfi, M.M.; Giudicelli, V.; Chaume, D.; Lefranc, M. IMGT/JunctionAnalysis: The first tool for the analysis of the immuno-globulin and T cell receptor complex V-J and V-D-J JUNCTIONS. Bioinformatics 2004, 20, i379–i385. [Google Scholar]
- Giudicelli, V.; Lefranc, M.-P. IMGT/JunctionAnalysis: IMGT standardized analysis of the V-J and V-D-J junction of the rear-ranged immunoglobulins (IG) and T cell receptors(TR). Cold Spring Harb. Protoc. 2011, 6, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Lefranc, M.-P.; Pommié, C.; Ruiz, M.; Giudicelli, V.; Foulquier, E.; Truong, L.; Thouvenin-Contet, V.; Lefranc, G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 2003, 27, 55–77. [Google Scholar] [CrossRef]
- Linguiti, G.; Antonacci, R.; Tasco, G.; Grande, F.; Casadio, R.; Massari, S.; Castelli, V.; Consiglio, A.; Lefranc, M.P.; Ciccarese, S. Genomic and expression analyses of Tursiops truncatus T cell receptor γ(TRG) and α/δ (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human. BMC Genom. 2016, 17, 634. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Damani-Yokota, P.; Gillespie, A.; Pasman, Y.; Merico, D.; Connelley, T.K.; Kaushik, A.; Baldwin, C.L. Bovine T cell receptors and γ δ WC1 co-receptor transcriptome analysis during the first month of life. Dev. Comp. Immunol. 2018, 88, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Le Page, L.; Gillespie, A.; Schwartz, J.C.; Prawits, L.M.; Schlerka, A.; Farrell, C.P.; Hammond, J.A.; Baldwin, C.L.; Telfer, J.C.; Hammer, S.E. Subpopulations of swine γδ T cells defined by TCRγ and WC1 gene expression. Dev. Comp. Immunol. 2021, 125, 104214. [Google Scholar] [CrossRef]
- Vaccarelli, G.; Antonacci, R.; Tasco, G.; Yang, F.; Ashmaoui, H.M.E.; Hassanane, M.S.; Massari, S.; Casadio, R.; Ciccarese, S. Generation of diversity by somatic mutation in the Camelus dromedarius T-cell receptor γ (TRG) variable domains. Eur. J. Immunol. 2012, 42, 3416–3428. [Google Scholar] [CrossRef]
- Ciccarese, S.; Vaccarelli, G.; Lefranc, M.-P.; Tasco, G.; Consiglio, A.; Casadio, R.; Linguiti, G.; Antonacci, R. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor γ (TRG) and δ (TRD) variable domains. Dev. Comp. Immunol. 2014, 46, 300–313. [Google Scholar] [CrossRef]
- Lee, H.C.; Ye, S.K.; Honjo, T.; Ikuta, K. Induction of germline transcription in the human TCR γ locus by STAT5. J. Immunol. 2001, 167, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Wagatsuma, K.; Tani-ichi, S.; Liang, B.; Shitara, S.; Ishihara, K.; Abe, M.; Miyachi, H.; Kitano, S.; Hara, T.; Nanno, M.; et al. STAT5 Orchestrates Local Epigenetic Changes for Chromatin Accessibility and Rearrangements by Direct Binding to the TCRγ Locus. J. Immunol. 2015, 195, 1804–1814. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, S.; Yang, Y.; Zhou, K.; Yang, G. Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol. Phylogenet. Evol. 2011, 61, 255–264. [Google Scholar] [CrossRef]
- Gillespie, A.; Yirsaw, A.; Gunasekaran, K.P.; Smith, T.P.; Bickhart, D.M.; Turley, M.; Connelley, T.; Telfer, J.C.; Baldwin, C.L. Characterization of the domestic goat γδ T cell receptor gene loci and gene usage. Immunogenetics 2021, 73, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Lefranc, M.-P.; Pommié, C.; Kaas, Q.; Duprat, E.; Bosc, N.; Guiraudou, D.; Jean, C.; Ruiz, M.; Da Piédade, I.; Rouard, M.; et al. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev. Comp. Immunol. 2005, 29, 185–203. [Google Scholar] [CrossRef]
- Spencer, D.M.; Hsiang, Y.H.; Goldman, J.; Raulet, D. Identification of a T-cell-specific transcriptional enhancer located 3′ of C γ 1 in the murine T-cell receptor γ locus. Proc. Natl. Acad. Sci. USA 1991, 88, 800–804. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linguiti, G.; Giannico, F.; D’Addabbo, P.; Pala, A.; Caputi Jambrenghi, A.; Ciccarese, S.; Massari, S.; Antonacci, R. The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla. Genes 2022, 13, 177. https://doi.org/10.3390/genes13020177
Linguiti G, Giannico F, D’Addabbo P, Pala A, Caputi Jambrenghi A, Ciccarese S, Massari S, Antonacci R. The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla. Genes. 2022; 13(2):177. https://doi.org/10.3390/genes13020177
Chicago/Turabian StyleLinguiti, Giovanna, Francesco Giannico, Pietro D’Addabbo, Angela Pala, Anna Caputi Jambrenghi, Salvatrice Ciccarese, Serafina Massari, and Rachele Antonacci. 2022. "The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla" Genes 13, no. 2: 177. https://doi.org/10.3390/genes13020177
APA StyleLinguiti, G., Giannico, F., D’Addabbo, P., Pala, A., Caputi Jambrenghi, A., Ciccarese, S., Massari, S., & Antonacci, R. (2022). The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla. Genes, 13(2), 177. https://doi.org/10.3390/genes13020177