Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Material
2.3. Methods
2.4. Genotyping Analyses
2.5. Statistical Analysis
3. Results
3.1. The Concentration of Markers of Inflammation and SOD Isoenzymes and Total SOD Activity in the Group of AP Patients in Terms of Tobacco Smoke Exposure
3.2. The Influence of the rs1800795 Polymorphism on the Concentration of Inflammatory Markers, in the Group of Non-Smoking and Smoking Healthy Subjects and AP Patients
3.3. The Concentration and Activity of SOD Isoenzymes in the Plasma of Non-Smoking and Smoking Healthy Subjects and AP Patients in Terms of rs1800795 in IL6 Gene
3.4. The Concentration and Activity of SOD Isoenzymes in the Erythrocytes of Non-Smoking and Smoking Healthy Subjects and AP Patients in Terms of rs1800795 in IL6 Gene
3.5. Results for the Analysis of Odds Ratio and Correlation
4. Discussion
5. Closing Remarks
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kylänpää, L.; Rakonczay, Z.; O’Reilly, D.A. The Clinical Course of Acute Pancreatitis and the Inflammatory Mediators That Drive It. Int. J. Inflamm. 2012, 2012, e360685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerem, E. Treatment of Severe Acute Pancreatitis and Its Complications. World J. Gastroenterol. 2014, 20, 13879–13892. [Google Scholar] [CrossRef] [PubMed]
- Rosołowski, M.; Lipiński, M.; Dobosz, M.; Durlik, M.; Głuszek, S.; Kuśnierz, K.; Lampe, P.; Małecka-Panas, E.; Nowakowska-Duława, E.; Nowak-Niezgoda, M.; et al. Management of Acute Pancreatitis (AP)–Polish Pancreatic Club Recommendations. Przegla̜d Gastroenterol. 2016, 11, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matull, W.R.; Pereira, S.P.; O’Donohue, J.W. Biochemical Markers of Acute Pancreatitis. J. Clin. Pathol. 2006, 59, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Jablonowska, M.; Milnerowicz, H.; Rabczynski, J.; Milnerowicz, S.; Nabzdyk, S.; Patrzalek, D.; Milnerowicz, A. Immunohistochemical Localization of Interleukin-6 in Human Pancreatitis. Appl. Immunohistochem. Mol. Morphol. 2008, 16, 40–43. [Google Scholar] [CrossRef]
- Rao, S.A.; Kunte, A.R. Interleukin-6: An Early Predictive Marker for Severity of Acute Pancreatitis. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2017, 21, 424–428. [Google Scholar] [CrossRef]
- Fisic, E.; Poropat, G.; Bilic-Zulle, L.; Licul, V.; Milic, S.; Stimac, D. The Role of IL-6, 8, and 10, STNFr, CRP, and Pancreatic Elastase in the Prediction of Systemic Complications in Patients with Acute Pancreatitis. Gastroenterol. Res. Pract. 2013, 2013, e282645. [Google Scholar] [CrossRef]
- Manohar, M.; Verma, A.K.; Venkateshaiah, S.U.; Sanders, N.L.; Mishra, A. Pathogenic Mechanisms of Pancreatitis. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 10–25. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [Green Version]
- Ćeranić, D.B.; Zorman, M.; Skok, P. Interleukins and Inflammatory Markers Are Useful in Predicting the Severity of Acute Pancreatitis. Bosn. J. Basic Med. Sci. 2020, 20, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.; Rau, B.; Gansauge, F.; Beger, H.G. Inflammatory Mediators in Human Acute Pancreatitis: Clinical and Pathophysiological Implications. Gut 2000, 47, 546–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srirangan, S.; Choy, E.H. The Role of Interleukin 6 in the Pathophysiology of Rheumatoid Arthritis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowcock, A.M.; Kidd, J.R.; Lathrop, G.M.; Daneshvar, L.; May, L.T.; Ray, A.; Sehgal, P.B.; Kidd, K.K.; Cavalli-Sforza, L.L. The Human “Interferon-Beta 2/Hepatocyte Stimulating Factor/Interleukin-6” Gene: DNA Polymorphism Studies and Localization to Chromosome 7p21. Genomics 1988, 3, 8–16. [Google Scholar] [CrossRef]
- Giannitrapani, L.; Soresi, M.; Balasus, D.; Licata, A.; Montalto, G. Genetic Association of Interleukin-6 Polymorphism (-174 G/C) with Chronic Liver Diseases and Hepatocellular Carcinoma. World J. Gastroenterol. 2013, 19, 2449–2455. [Google Scholar] [CrossRef] [PubMed]
- Eze, I.C.; Imboden, M.; Kumar, A.; Adam, M.; von Eckardstein, A.; Stolz, D.; Gerbase, M.W.; Künzli, N.; Turk, A.; Schindler, C.; et al. A Common Functional Variant on the Pro-Inflammatory Interleukin-6 Gene May Modify the Association between Long-Term PM10 Exposure and Diabetes. Environ. Health Glob. Access Sci. Source 2016, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Popko, K.; Gorska, E.; Demkow, U. Influence of Interleukin-6 and G174C Polymorphism in IL-6 Gene on Obesity and Energy Balance. Eur. J. Med. Res. 2010, 15 (Suppl. 2), 123–127. [Google Scholar] [CrossRef] [Green Version]
- Jurečeková, J.; Drobková, H.; Šarlinová, M.; Babušíková, E.; Sivoňová, M.K.; Matáková, T.; Kliment, J.; Halašová, E. The Role of Interleukin-6 Polymorphism (Rs1800795) in Prostate Cancer Development and Progression. Anticancer. Res. 2018, 38, 3663–3667. [Google Scholar] [CrossRef]
- Rocha, S.; Valente, M.J.; Coimbra, S.; Catarino, C.; Rocha-Pereira, P.; Oliveira, J.G.; Madureira, J.; Fernandes, J.C.; do Sameiro-Faria, M.; Miranda, V.; et al. Interleukin 6 (Rs1800795) and Pentraxin 3 (Rs2305619) Polymorphisms-Association with Inflammation and All-Cause Mortality in End-Stage-Renal Disease Patients on Dialysis. Sci. Rep. 2021, 11, 14768. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic Potentials of Superoxide Dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Bowler, R.P.; Nicks, M.; Tran, K.; Tanner, G.; Chang, L.-Y.; Young, S.K.; Worthen, G.S. Extracellular Superoxide Dismutase Attenuates Lipopolysaccharide-Induced Neutrophilic Inflammation. Am. J. Respir. Cell Mol. Biol. 2004, 31, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Burlakova, E.; Zhizhina, G.; Gurevich, S.; Fatkullina, L.; Kozachenko, A.; Nagler, L.; Zavarykina, T.; Kashcheev, V. Biomarkers of Oxidative Stress and Smoking in Cancer Patients. J. Cancer Res. Ther. 2010, 6, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; St Clair, D.K. Regulation of Superoxide Dismutase Genes: Implications in Disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The Structural Biochemistry of the Superoxide Dismutases. Biochim. Biophys. Acta 2010, 1804, 245–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular Superoxide Dismutase and Its Role in Cancer. Free Radic. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Ściskalska, M.; Ołdakowska, M.; Marek, G.; Milnerowicz, H. Changes in the Activity and Concentration of Superoxide Dismutase Isoenzymes (Cu/Zn SOD, MnSOD) in the Blood of Healthy Subjects and Patients with Acute Pancreatitis. Antioxidants 2020, 9, 948. [Google Scholar] [CrossRef]
- Ściskalska, M.; Ołdakowska, M.; Milnerowicz, H. Importance of Genetic Polymorphisms in MT1 and MT2 Genes in Metals Homeostasis and Their Relationship with the Risk of Acute Pancreatitis Occurrence in Smokers—Preliminary Findings. Int. J. Mol. Sci. 2021, 22, 5725. [Google Scholar] [CrossRef]
- Milnerowicz, H.; Ściskalska, M.; Dul, M. Pro-Inflammatory Effects of Metals in Persons and Animals Exposed to Tobacco Smoke. J. Trace Elem. Med. Biol. 2015, 29, 1–10. [Google Scholar] [CrossRef]
- Milnerowicz, H.; Ściskalska, M.; Dul, M. Molecular Mechanisms of the Impact of Smoke-Oxidants. Exp. Toxicol. Pathol. 2015, 67, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Shih, C.-M.; Huang, C.-J.; Lin, C.-M.; Chou, C.-M.; Tsai, M.-L.; Liu, T.P.; Chiu, J.-F.; Chen, C.-T. Effects of Cadmium on Structure and Enzymatic Activity of Cu,Zn-SOD and Oxidative Status in Neural Cells. J. Cell. Biochem. 2006, 98, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Iuchi, Y.; Okada, F.; Onuma, K.; Onoda, T.; Asao, H.; Kobayashi, M.; Fujii, J. Elevated Oxidative Stress in Erythrocytes Due to a SOD1 Deficiency Causes Anaemia and Triggers Autoantibody Production. Biochem. J. 2007, 402, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.G.; Nagababu, E.; Friedman, J.S.; Rifkind, J.M. SOD2 Deficiency in Hematopoietic Cells in Mice Results in Reduced Red Blood Cell Deformability and Increased Heme Degradation. Exp. Hematol. 2013, 41, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.S.; Lopez, M.F.; Fleming, M.D.; Rivera, A.; Martin, F.M.; Welsh, M.L.; Boyd, A.; Doctrow, S.R.; Burakoff, S.J. SOD2-Deficiency Anemia: Protein Oxidation and Altered Protein Expression Reveal Targets of Damage, Stress Response, and Antioxidant Responsiveness. Blood 2004, 104, 2565–2573. [Google Scholar] [CrossRef]
- Kwon, M.-J.; Kim, B.; Lee, Y.S.; Kim, T.-Y. Role of Superoxide Dismutase 3 in Skin Inflammation. J. Dermatol. Sci. 2012, 67, 81–87. [Google Scholar] [CrossRef]
- Ishihara, Y.; Takemoto, T.; Itoh, K.; Ishida, A.; Yamazaki, T. Dual Role of Superoxide Dismutase 2 Induced in Activated Microglia. J. Biol. Chem. 2015, 290, 22805–22817. [Google Scholar] [CrossRef] [Green Version]
- Pola, R.; Flex, A.; Gaetani, E.; Pola, P.; Bernabei, R. The −174 G/C Polymorphism of the Interleukin-6 Gene Promoter and Essential Hypertension in an Elderly Italian Population. J. Hum. Hypertens. 2002, 16, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Mitrokhin, V.; Nikitin, A.; Brovkina, O.; Khodyrev, D.; Zotov, A.; Vachrushev, N.; Dragunov, D.; Shim, A.; Mladenov, M.; Kamkin, A. Association between Interleukin-6/6R Gene Polymorphisms and Coronary Artery Disease in Russian Population: Influence of Interleukin-6/6R Gene Polymorphisms on Inflammatory Markers. J. Inflamm. Res. 2017, 10, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Campos, L.P.; Graciolo, V.; Sousa, M.M.; Martins, B.R.; Souza, S.W.; Alberton, D.; Picheth, G.; Rego, F.G.M. Research Article Polymorphisms Rs1800795 of Interleukin-6 and Rs2228145 of Interleukin-6 Receptor Genes in Euro-Brazilians with Adult-Onset Type 1 Diabetes Mellitus. Genet. Mol. Res. 2019, 18. [Google Scholar] [CrossRef]
- Albani, D.; Batelli, S.; Polito, L.; Prato, F.; Pesaresi, M.; Gajo, G.B.; De Angeli, S.; Zanardo, A.; Galimberti, D.; Scarpini, E.; et al. Interleukin-6 Plasma Level Increases with Age in an Italian Elderly Population (“The Treviso Longeva”–Trelong–Study) with a Sex-Specific Contribution of Rs1800795 Polymorphism. Age 2009, 31, 155–162. [Google Scholar] [CrossRef]
- Rodrigues, K.F.; Pietrani, N.T.; Bosco, A.A.; Campos, F.M.F.; Sandrim, V.C.; Gomes, K.B. IL-6, TNF-α, and IL-10 Levels/Polymorphisms and Their Association with Type 2 Diabetes Mellitus and Obesity in Brazilian Individuals. Arch. Endocrinol. Metab. 2017, 61, 438–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, D.Z.; Chen, J.; Huang, D.P. Influence of Interleukin-1β and Interleukin-6 Gene Polymorphisms on the Development of Acute Pancreatitis. Genet. Mol. Res. 2015, 14, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K.; Baba, A. Therapeutic Potential of Superoxide Dismutase (SOD) for Resolution of Inflammation. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al 2006, 55, 359–363. [Google Scholar] [CrossRef] [PubMed]
Parameters | AP Patients (n = 40) | ||
---|---|---|---|
Non-Smokers (n = 17) | Smokers (n = 23) | p | |
Cotinine (ng/mL) | 1.2 ± 0.8 | 132.4 ± 51.3 | <0.0001 |
Lipase (U/L) | 791.4 ± 545.5 | 820.6 ± 540.9 | 0.5532 |
α-Amylase (U/L) | 548.0 ± 396.5 | 461.6 ± 343.7 | 0.7666 |
ALAT (U/L) | 107.5 ± 142.3 | 80.4 ± 125.4 | 0.5277 |
AspAT (U/L) | 53.5 ± 45.8 | 71.3 ± 72.4 | 0.3037 |
GGT (U/L) | 260.7 ± 297.3 | 225.8 ± 225.4 | 0.9794 |
Bilirubin (total) (mg/dL) | 2.2 ±1.8 | 1.8 ± 2.0 | 0.6105 |
Alkaline phosphatase (U/L) | 205.5 ± 231.5 | 149.6 ± 114.6 | 0.3825 |
Glucose (mg/dL) | 85.4 ± 17.5 | 89.3 ± 9.8 | 0.8983 |
Healthy Subjects | AP Patients | |||||
---|---|---|---|---|---|---|
Parameters | Non-Smokers (n = 26) | Smokers (n = 25) | p | Non-Smokers (n = 17) | Smokers (n = 23) | p |
IL-6 (pg/mL] (plasma) | 0.5 ± 0.3 (0.1; 0.4; 0.6) | 0.5 ± 0.2 (0.2; 0.3; 0.8) | 0.8012 | 55.3 ± 27.8 * (31.4; 53.2; 79.2) | 82.8 ± 25.7 ** ( 53.5; 92.7; 102.1) | 0.0025 |
hs-CRP (mg/dL] (serum) | 0.6 ± 0.3 (0.4; 0.5; 0.7) | 0.5 ± 0.2 (0.3; 0.4; 0.6) | 0.2585 | 126.2 ± 19.8 * (106.5; 131.6; 134.7) | 135.2 ± 40.8 ** (121.0; 131.7; 158.3) | 0.5828 |
SOD1 (ng/mL) (plasma) | 30.1 ± 4.8 (26.5; 29.2; 33.6) | 33.7 ± 5.4 (28.7; 34.0; 37.2) | 0.0847 | 81.7 ± 21.2 * (64.4; 86.9; 96.9) | 85.5 ± 26.7 ** (69.4; 79.0; 90.4) | 0.7276 |
SOD1 (ng/mg Hb) (erythrocyte lysate) | 5.8 ± 1.9 (4.5; 5.0; 6.8) | 5.8 ± 2.0 (4.6; 5.1; 5.8) | 0.2799 | 5.0 ± 2.0 (3.9; 4.9; 6.1) | 5.6 ± 2.1 (4.6; 5.3; 6.6) | 0.4850 |
SOD2 (ng/mL) (plasma) | 28.6 ± 9.2 (22.1; 24.5; 37.1) | 23.9 ± 7.4 (17.7; 22.0; 32.1) | 0.4306 | 11.8 ± 2.4 * (9.6; 11.5; 14.4) | 11.6 ± 3.4 ** (9.5; 10.3; 11.0) | 0.9220 |
SOD2 (ng/mg Hb) (erythrocyte lysate) | 2.2 ± 1.0 (1.5; 1.6; 2.5) | 2.0 ± 0.9 (1.5; 2.0; 2.7) | 0.3053 | 9.5 ± 3.9 * (5.3; 9.6; 14.3) | 9.4 ± 2.0 ** (6.1; 9.1; 7.0) | 0.6136 |
SOD3 (ng/mL) (plasma) | 25.8 ± 10.1 (15.7; 29.3; 30.6) | 25.7 ± 11.4 (17.8; 20.7; 38.8) | 0.9975 | 10.9 ± 3.3 * (7.6; 9.5; 12.2) | 10.9 ± 2.0 ** (7.0; 8.9; 9.6) | 0.1104 |
Total SODs (U/mL) (plasma) | 10.1 ± 1.3 (9.1; 10.3; 11.1) | 10.1 ± 1.5 (8.9; 10.1; 11.3) | 0.8814 | 8.9 ± 2.9 (6.5; 8.4; 10.8) | 9.1 ± 2.6 (7.2; 8.2; 10.8) | 0.4783 |
Total SODs (U/g Hb) (erythrocyte lysate) | 157.4 ± 60.0 (114.3; 142.2; 194.7) | 141.4 ± 48.8 (103.7; 140.0; 176.6) | 0.3504 | 416.1 ± 81.2 * (357.1; 401.1; 440.8) | 429.8 ± 77.9 ** (377.2; 403.9; 476.4) | 0.6613 |
Parameters | Non-Smokers | |||||
---|---|---|---|---|---|---|
Healthy Subjects (n = 26) | AP Patients (n = 23) | |||||
GC (n = 10) | CC (n = 3) | GG (n = 13) | GC (n = 6) | CC (n = 5) | GG (n = 12) | |
IL-6 (pg/mL) (plasma) | 0.6 ± 0.3 (0.4; 0.6; 0.7) | 0.2 ± 0.1 (0.1; 0.2; 0.2) | 0.2 ± 0.1 (0.1; 0.1; 0.3) | 49.6 ± 27.3 * (24.5; 49.6; 74.6) | 36.0 ± 11.4 ** (24.9; 35.4; 47.7) | 48.9 ± 30.2 *** (30.9; 31.9; 83.8) |
hs-CRP (mg/dL) (plasma) | 0.6 ± 0.2 (0.4; 0.5; 0.8) | 0.6 ± 0.2 (0.4; 0.5; 0.6) | 0.5 ± 0.1 (0.4; 0.4; 0.6) | 133.1 ± 2.2 * (131.6; 133.1; 134.7) | 140.9 ± 48.4 ** (101.7; 151.4; 180.0) | 123.6 ± 27.2 *** (101.8; 120.1; 145.4) |
Parameters | Smokers | |||||
Healthy Subjects (n = 25) | AP Patients (n = 17) | |||||
GC (n = 5) | CC (n = 10) | GG (n = 10) | GC (n = 7) | CC (n = 3) | GG (n = 7) | |
IL-6 (pg/mL) (plasma) | 0.3 ± 0.1 (0.2; 0.3; 0.3) | 0.3 ± 0.1 (0.1; 0.3; 0.4) | 0.5 ± 0.3 (0.3; 0.5; 0.8) | 97.4 ± 6.6 *,$,‡ (92.7; 97.4; 102.1) | 44.9 ± 12.6 ** (25.8; 35.4; 46.7) | 38.8 ± 20.9 *** (24.0; 38.8; 53.5) |
hs-CRP (mg/dL) (plasma) | 0.6 ± 0.2 (0.2; 0.6; 0.9) | 0.5 ± 0.2 (0.3; 0.5; 0.8) | 0.4 ± 0.1 (0.3; 0.4; 0.4) | 110.0 ± 39.7 * (105.4; 130.9; 132.6) | 169.8 ± 41.5 ** (124.6; 178.7; 206.2) | 144.4 ± 38.0 *** (111.4; 134.7; 184.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ołdakowska, M.; Ściskalska, M.; Kepinska, M.; Marek, G.; Milnerowicz, H. Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings. Genes 2022, 13, 290. https://doi.org/10.3390/genes13020290
Ołdakowska M, Ściskalska M, Kepinska M, Marek G, Milnerowicz H. Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings. Genes. 2022; 13(2):290. https://doi.org/10.3390/genes13020290
Chicago/Turabian StyleOłdakowska, Monika, Milena Ściskalska, Marta Kepinska, Grzegorz Marek, and Halina Milnerowicz. 2022. "Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings" Genes 13, no. 2: 290. https://doi.org/10.3390/genes13020290
APA StyleOłdakowska, M., Ściskalska, M., Kepinska, M., Marek, G., & Milnerowicz, H. (2022). Association of Genetic Variants in IL6 Gene (rs1800795) with the Concentration of Inflammatory Markers (IL-6, hs-CRP) and Superoxide Dismutase in the Blood of Patients with Acute Pancreatitis—Preliminary Findings. Genes, 13(2), 290. https://doi.org/10.3390/genes13020290