Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data
Abstract
:1. Introduction
2. Gene Expression Data Analysis
3. Materials and Methods
3.1. Data Description
3.2. Data Clustering Methodology
- Randomly select k cluster centers;
- Calculate the distance between each data point and all cluster centers;
- Assign the data point to the cluster whose distance from the center is minimum of all cluster centers;
- Recalculate the new cluster centers using
- 5.
- Recalculate the distance between each data point and new obtained cluster centers;
- 6.
- If no data point was reassigned, stop; otherwise, repeat from step 3.
3.3. Correlation Analysis
3.4. Fly Stocks and Maintenance
3.5. Eye Imaging
3.6. Statistics for Biological Validation
4. Results
4.1. Experimental Setup
4.2. Clustering Results
4.3. Correlation Results
4.4. Candidate Validation
5. Discussion
5.1. Suspected Candidate Modifiers
5.2. Gene Annotation
6. Conclusions and Future Works
Reference
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Retinitis Pigmentosa. Available online: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinitis-pigmentosa#:~:text=Retinitis%20pigmentosa%20(RP)%20is%20a,of%20side%20(peripheral)%20vision (accessed on 13 April 2021).
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Tsang, S.; Sharma, T. Atlas on Inherited Retinal Diseases; Springer: New York, NY, USA, 2019. [Google Scholar]
- Malanson, K.M.; Lem, J. Chapter 1 Rhodopsin-Mediated Retinitis Pigmentosa. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2009; Volume 88, pp. 1–31. [Google Scholar] [CrossRef]
- Chow, C.Y.; Kelsey, K.J.P.; Wolfner, M.F.; Clark, A.G. Candidate Genetic Modifiers of Retinitis Pigmentosa Identified by Exploiting Natural Variation in Drosophila. Hum. Mol. Genet. 2016, 25, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Mackay, T.F.C.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.; Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The Drosophila Melanogaster Genetic Reference Panel. Nature 2012, 482, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryoo, H.D.; Domingos, P.M.; Kang, M.-J.; Steller, H. Unfolded Protein Response in a Drosophila Model for Retinal Degeneration. EMBO J. 2007, 26, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palu, R.A.S.; Dalton, H.M.; Chow, C.Y. Decoupling of Apoptosis from Activation of the ER Stress Response by the Drosophila Metallopeptidase Superdeath. Genetics 2020, 214, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Palu, R.A.S.; Chow, C.Y. Baldspot/ELOVL6 Is a Conserved Modifier of Disease and the ER Stress Response. PLoS Genet. 2018, 14, e1007557. [Google Scholar] [CrossRef]
- Huang, W.; Carbone, M.A.; Magwire, M.M.; Peiffer, J.A.; Lyman, R.F.; Stone, E.A.; Anholt, R.R.H.; Mackay, T.F.C. Genetic Basis of Transcriptome Diversity in Drosophila Melanogaster. Proc. Natl. Acad. Sci. USA 2015, 112, E6010. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wong, G. Transcriptome Informatics. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 324–340. [Google Scholar] [CrossRef]
- Soneson, C.; Delorenzi, M. A Comparison of Methods for Differential Expression Analysis of RNA-Seq Data. BMC Bioinform. 2013, 14, 91. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, B.; Nelson, C.E.; Nabavi, S. Comparative Analysis of Differential Gene Expression Analysis Tools for Single-Cell RNA Sequencing Data. BMC Bioinform. 2019, 20, 40. [Google Scholar] [CrossRef] [Green Version]
- Vavoulis, D.V.; Francescatto, M.; Heutink, P.; Gough, J. DGEclust: Differential Expression Analysis of Clustered Count Data. Genome Biol. 2015, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Tang, C.; Zhang, A. Cluster Analysis for Gene Expression Data: A Survey. IEEE Trans. Knowl. Data Eng. 2004, 16, 1370–1386. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Parsian, M. Data Algorithms, 1st ed.; O’Reilly Media, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- k-Means Clustering Algorithm. Available online: https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm (accessed on 12 April 2021).
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.S.; McCabe, G.P. Introduction to the Practice of Statistics, 4th ed.; W.H. Freeman and Co.: New York, NY, USA, 2003. [Google Scholar]
- Boslaugh, S.; Watters, P.A. Statistics in a Nutshell; O’Reilly: Farnham, UK, 2008. [Google Scholar]
- Kader, G.D.; Franklin, C.A. The Evolution of Pearson’s Correlation Coefficient. Math. Teach. 2008, 102, 292–299. [Google Scholar] [CrossRef]
- Puth, M.-T.; Neuhäuser, M.; Ruxton, G.D. Effective Use of Spearman’s and Kendall’s Correlation Coefficients for Association between Two Measured Traits. Anim. Behav. 2015, 102, 77–84. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: The R Project for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; CRAN. 2020. Available online: https://scirp.org/reference/referencespapers.aspx?referenceid=3067217 (accessed on 15 February 2022).
- Perrimon, N.; Ni, J.-Q.; Perkins, L. In Vivo RNAi: Today and Tomorrow. Cold Spring Harb. Perspect. Biol. 2010, 2, a003640. [Google Scholar] [CrossRef]
- FlyBase Curators. Assigning Gene Ontology (GO) Terms by Sequence Similarity in FlyBase. Available online: https://flybase.org/reports/FBrf0202953.html (accessed on 5 October 2020).
- Maeda, A.; Crabb, J.W.; Palczewski, K. Microsomal Glutathione S -Transferase 1 in the Retinal Pigment Epithelium: Protection against Oxidative Stress and a Potential Role in Aging. Biochemistry 2005, 44, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.J.; Tan, Y.R.; Li, M.L.; Liu, C.; Xiang, Y.; Qin, X.Q. Cloning of a Novel Protein Interacting with BRS-3 and Its Effects in Wound Repair of Bronchial Epithelial Cells. PLoS ONE 2011, 6, e23072. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, S.M.; Becker, A.; Hardy, R.W.; Truman, J.W. Soluble Guanylate Cyclase Is Required during Development for Visual System Function in Drosophila. J. Neurosci. 2001, 21, 7705–7714. [Google Scholar] [CrossRef] [Green Version]
- Rabut, G.; Peter, M. Function and Regulation of Protein Neddylation. EMBO Rep. 2008, 9, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Sano, R.; Reed, J.C. ER Stress-Induced Cell Death Mechanisms. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.-J.; Ryoo, H.D. Suppression of Retinal Degeneration in Drosophila by Stimulation of ER-Associated Degradation. Proc. Natl. Acad. Sci. USA 2009, 106, 17043–17048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, Y.; Maeda, S.; Watanabe, A.; Sano, Y.; Aiuchi, T.; Nakajo, S.; Itabe, H.; Nakaya, K. A Novel 21-KDa Cytochrome c-Releasing Factor Is Generated upon Treatment of Human Leukemia U937 Cells with Geranylgeraniol. Biochem. Biophys. Res. Commun. 2006, 346, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-Based Propagation of Functional Annotations within the Gene Ontology Consortium. Brief. Bioinform. 2011, 12, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.-Y.; Lin, Y.-F.; Chen, Y.-J.; Chien, C.-T. Distinct Protein Degradation Mechanisms Mediated by Cul1 and Cul3 Controlling Ci Stability in Drosophila Eye Development. Genes Dev. 2002, 16, 2403–2414. [Google Scholar] [CrossRef] [Green Version]
- Kapil, S.; Chawla, M.; Ansari, M.D. On K-Means Data Clustering Algorithm with Genetic Algorithm. In Proceedings of the 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 22–24 December 2016; pp. 202–206. [Google Scholar] [CrossRef]
Strain | Mean_Eye_Size |
---|---|
RAL021 | 19,976.8 |
RAL026 | 21,473.22222 |
RAL038 | 19,981.5 |
RAL040 | 16,992.9 |
RAL042 | 21,481.4 |
RAL045 | 18,578.88889 |
RAL049 | 16,939 |
RAL057 | 17,144.4 |
RAL059 | 20,975.36364 |
RAL069 | 21,309.9 |
RAL073 | 21,332.4 |
RAL075 | 18,672.2 |
RAL083 | 21,022.9 |
RAL085 | 20,442.5 |
Gene | line_21:1 | line_21:2 | line_26:1 | line_26:2 |
---|---|---|---|---|
FBgn0000014 | 4.244723137096 | 4.216353087773 | 4.028685457103 | 3.965513773625 |
FBgn0000015 | 3.234859699465 | 3.199773952148 | 3.266073854988 | 3.514853683793 |
FBgn0000017 | 8.066864661954 | 7.962031504804 | 8.016965852717 | 8.081375653861 |
FBgn0000018 | 5.317033087996 | 5.268665082586 | 5.583749673928 | 4.949218486350 |
FBgn0000022 | 3.000683083262 | 3.000127343072 | 4.033542617316 | 3.364429304288 |
FBgn0000024 | 6.120670812586 | 6.023183171389 | 6.363472660596 | 6.839307459595 |
FBgn0000028 | 4.101309577739 | 4.050933403680 | 4.581349625692 | 4.276622648091 |
FBgn0000032 | 7.460913282329 | 7.686897989778 | 7.782455553083 | 7.635495635919 |
FBgn0000036 | 3.988090417266 | 3.789139102527 | 3.979189512126 | 3.953967140263 |
FBGN_ID | Gene Symbol | Gene Name | Human Ortho. | Link to RP |
---|---|---|---|---|
FBgn0013972 | CG1912 | Gycalpha99B | GUCY1A1; GUCY1A2 | Involved in phototaxis mediated by rhodopsin |
FBgn0029914 | CG4558 | CG4558 | C6orf89 | Interacts with GPCR |
FBgn0031176 | FBgn0031176 | CG1678 | WHE | |
FBgn0031267 | CG13688 | lpk2 | IPMK | |
FBgn0031885 | CG13778 | Mnn1 | MEN1 | Tumor suppressor involved in the stress response |
FBgn0032040 | CG13386 | CG13386 | ||
FBgn0032725 | CG10679 | Nedd8 | NEDD8 | Involved in protein ubiquitination and degradation |
FBgn0036787 | CG4306 | CG4306 | GGCT | Regulates apoptosis through the release of cytochrome c from the mitochondria |
FBgn0053177 | CG33177 | CG33177 | MGST1 | Protects from oxidative stress at the ER membrane |
FBgn0065057 | CR33726 | scaRNA:MeU2-C28 | snoRNA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amstutz, J.; Khalifa, A.; Palu, R.; Jahan, K. Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes 2022, 13, 386. https://doi.org/10.3390/genes13020386
Amstutz J, Khalifa A, Palu R, Jahan K. Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes. 2022; 13(2):386. https://doi.org/10.3390/genes13020386
Chicago/Turabian StyleAmstutz, James, Amal Khalifa, Rebecca Palu, and Kaushara Jahan. 2022. "Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data" Genes 13, no. 2: 386. https://doi.org/10.3390/genes13020386
APA StyleAmstutz, J., Khalifa, A., Palu, R., & Jahan, K. (2022). Cluster-Based Analysis of Retinitis Pigmentosa Modifiers Using Drosophila Eye Size and Gene Expression Data. Genes, 13(2), 386. https://doi.org/10.3390/genes13020386