Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rationale of the Method
3.2. Selection of a BrdU Antibody Not Cross-Reacting with EdU
3.3. Choice of Nucleoside Concentrations for Dual Pulse
3.4. Linear Regression of EdU+ BrdU+ Cells over Chase Time Determines SPD
3.5. Compatibility with Mammalian Cells from Different Origins and Drosophila Cells
3.6. Commonly-Used Cancer Cell Lines Have a Longer S Phase
3.7. S-Phase Extension by Replication Stressors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Prepare one Petri dish with 106 exponentially growing cells for Ctrl, 0 h, 2 h, 4 h, 6 h, 8 h, 10 h thymidine chase
- At T0 incubate all dishes (except the first) with EdU 10 µM for 30 min
- Prepare medium with 20 µM thymidine and 100 ng/mL nocodazole and medium with 100 µM BrdU and 100 ng/mL nocodazole (prewarm before use)
- For dishes 2 h to 10 h change the media for thymidine+nocodazole
- For dish 0 h change the medium to BrdU + nocodazole and incubate for 30 min (it will be T30 min)
- Trypsinize cells to a single-cell suspension, inactivate with medium + cold PBS (count cells)
- Spin 5 min @ 400 g (1200 rpm)
- Resuspend pellet in 1 mL cold PBS
- Add 5 mL of cold (−20 °C) 96% EtOH while vortexing at low speed
- Repeat steps 5 to 9 for the other time points (2 h–10 h). Don’t shake the dishes as mitotic cells may detach. If this is an issue, also collect the PBS rinse and recover cells by centrifugation.
- Cells can be kept O/N up to to several days at 4 °C
Appendix B
- Add 5 mL PBS and spin cells 5 min @ 400 g
- Wash cells with 5 mL cold PBS, spin 5 min @ 400 g
- While vortexing at low speed, add 1 mL 2N HCl-0.5% triton X-100
- Incubate 30 min at RT (swirl every 5 min if possible)
- Add 5 mL PBS, spin 5 min @ 400 g
- Resuspend pellet in 1 mL Borate buffer (pH 8.5, see below) and transfer to Eppendorf tube
- Spin 5 min @ 400 g
- Resuspend in PBS with 0.5% Tween 20 and 1% BSA and incubate 5 min RT
- Spin 5 min @ 400 g
- Prepare Click-iT reaction: (for 100 µL) 91.5 µL PBS + 4 µL CuSO4 0.2 M + 0.5 µL of 2 mM di-sulfo-cyanine5 azide (CyanDye) + 4 µL of 1 M ascorbic acid. Incubate at RT for 45 min
- Add 1 mL PBS with 0.5% Tween 20 and 1% BSA and spin. Repeat with PBS.
- Resuspend in 150 µL of anti-BrdU (MobU-1, ExBio) diluted 1:1000 in PBS with 0.5% Tween 20 and 1% BSA. Incubate 1–2 h @ RT to O/N @ 4 °C.
- Add 1 mL PBS, spin 5 min @ 400 g
- Resuspend in 200 µL of F(ab’)2 anti-mouse Alexa488 (ThermoFisher, 2 mg/mL) diluted 1:500 in PBS with 0.5% Tween 20 and 1% BSA. Incubate 1 h @ RT
- Add 1 mL PBS, spin 5 min @ 400 g. Repeat.
- Resuspend in 0.4 mL PBS containing 200 µg/mL (final) Rnase A (stock 10 mg/mL) and 1 µg/mL DAPI if a UV laser is available on your flow cytometer.
- Incubate 2–3 h @RT to O/N @4 °C
- Transfer to polypropylene FACS tube through a 70 µm mesh to filter out aggregates
References
- Siddiqui, K.; On, K.F.; Diffley, J.F.X. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 2013, 5, a012930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.P.; Labib, K. Chromosome Duplication in Saccharomyces cerevisiae. Genetics 2016, 203, 1027–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambus, A.; Jones, R.C.; Sanchez-Diaz, A.; Kanemaki, M.; van Deursen, F.; Edmondson, R.D.; Labib, K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 2006, 8, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Yeeles, J.T.P.; Janska, A.; Early, A.; Diffley, J.F.X. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Mol. Cell 2017, 65, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.E.; Ali, F.A.; Costa, A.; Diffley, J.F.X. The mechanism of eukaryotic CMG helicase activation. Nature 2018, 555, 265–268. [Google Scholar] [CrossRef]
- Srivastava, M.; Chen, Z.; Zhang, H.; Tang, M.; Wang, C.; Jung, S.Y.; Chen, J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep. 2018, 25, 3869–3883.e4. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, H.; García-Muse, T.; Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 2015, 15, 276–289. [Google Scholar] [CrossRef]
- Lengronne, A.; Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1. Mol. Cell 2002, 9, 1067–1078. [Google Scholar] [CrossRef]
- Tanaka, S.; Diffley, J.F. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev. 2002, 16, 2639–2649. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Sola, D.; Ying, C.Y.; Grandori, C.; Ruggiero, L.; Chen, B.; Li, M.; Galloway, D.A.; Gu, W.; Gautier, J.; Dalla-Favera, R. Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448, 445–451. [Google Scholar] [CrossRef]
- Teixeira, L.K.; Wang, X.; Li, Y.; Ekholm-Reed, S.; Wu, X.; Wang, P.; Reed, S.I. Cyclin E deregulation promotes loss of specific genomic regions. Curr. Biol. 2015, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, T.J.; Martin, G.S.; Forsburg, S.L.; Stephen, R.J.; Russo, A.; Nurse, P. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 1993, 74, 371–382. [Google Scholar] [CrossRef]
- Piatti, S.; Lengauer, C.; Nasmyth, K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 1995, 14, 3788–3799. [Google Scholar] [CrossRef]
- Minocherhomji, S.; Ying, S.; Bjerregaard, V.A.; Bursomanno, S.; Aleliunaite, A.; Wu, W.; Mankouri, H.W.; Shen, H.; Liu, Y.; Hickson, I.D. Replication stress activates DNA repair synthesis in mitosis. Nature 2015, 528, 286–290. [Google Scholar] [CrossRef]
- Torres-Rosell, J.; De Piccoli, G.; Cordon-Preciado, V.; Farmer, S.; Jarmuz, A.; Machin, F.; Pasero, P.; Lisby, M.; Haber, J.E.; Aragón, L. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 2007, 315, 1411–1415. [Google Scholar] [CrossRef]
- Dulev, S.; de Renty, C.; Mehta, R.; Minkov, I.; Schwob, E.; Strunnikov, A. Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc. Natl. Acad. Sci. USA 2009, 106, 14466–14471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letessier, A.; Millot, G.A.; Koundrioukoff, S.; Lachagès, A.-M.; Vogt, N.; Hansen, R.S.; Malfoy, B.; Brison, O.; Debatisse, M. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011, 470, 120–123. [Google Scholar] [CrossRef]
- Weissbein, U.; Benvenisty, N.; Ben-David, U. Quality control: Genome maintenance in pluripotent stem cells. J. Cell Biol. 2014, 204, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, S.; Lopez-Contreras, A.J.; Gabut, M.; Marion, R.M.; Gutierrez-Martinez, P.; Bua, S.; Ramirez, O.; Olalde, I.; Rodrigo-Perez, S.; Li, H.; et al. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nat. Commun. 2015, 6, 8036. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.L.; Sharrow, S.O.; Gart, J.J. Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc. Natl. Acad. Sci. USA 1977, 74, 3850–3854. [Google Scholar] [CrossRef] [Green Version]
- Nasmyth, K.; Nurse, P.; Fraser, R.S. The effect of cell mass on the cell cycle timing and duration of S-phase in fission yeast. J. Cell Sci. 1979, 39, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Dolbeare, F.; Gratzner, H.; Pallavicini, M.G.; Gray, J.W. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 1983, 80, 5573–5577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, A.C.; McNally, N.J.; Shrieve, D.C.; Kärcher, H. A method to measure the duration of DNA synthesis and the potential doubling time from a single sample. Cytometry 1985, 6, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Eidukevicius, R.; Characiejus, D.; Janavicius, R.; Kazlauskaite, N.; Pasukoniene, V.; Mauricas, M.; Den Otter, W. A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample. BMC Cancer. 2005, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Sansam, C.G.; Goins, D.; Siefert, J.C.; Clowdus, E.A.; Sansam, C.L. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation. Genes Dev. 2015, 2, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, H.; Rahn, H.P.; Weinzierl, P.; Sporbert, A.; Cremer, T.; Zink, D.; Cardoso, M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 2000, 149, 271–280. [Google Scholar] [CrossRef]
- Charrasse, S.; Gharbi-Ayachi, A.; Burgess, A.; Vera, J.; Hached, K.; Raynaud, P.; Schwob, E.; Lorca, T.; Castro, A. Ensa controls S-phase length by modulating Treslin levels. Nat. Commun. 2017, 8, 206. [Google Scholar] [CrossRef]
- Pennycook, B.R.; Vesela, E.; Peripolli, S.; Singh, T.; Barr, A.R.; Bertoli, C.; de Bruin, R.A.M. E2F-dependent transcription determines replication capacity and S phase length. Nat. Commun. 2020, 11, 3503. [Google Scholar] [CrossRef]
- Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi, H.; et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008, 132, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Herce, H.D.; Rajan, M.; Lättig-Tünnemann, G.; Fillies, M.; Cardoso, M.C. A novel cell permeable DNA replication and repair marker. Nucleus 2014, 5, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Casas, F.C.; Jefferies, A.R. Estimation of S phase duration in goat epidermis by an in vivo intradermal double labeling technique using bromodeoxyuridine and tritiated thymidine. Res. Vet. Sci. 1992, 52, 5–9. [Google Scholar] [CrossRef]
- Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 2415–2420. [Google Scholar] [CrossRef] [Green Version]
- Bradford, J.A.; Clarke, S.T. Dual-pulse labeling using 5-ethynyl-2′-deoxyuridine (EdU) and 5-bromo-2′-deoxyuridine (BrdU) in flow cytometry. Curr. Protoc. Cytom. 2011, 55, 7.38.1–7.38.15. [Google Scholar] [CrossRef] [PubMed]
- Liboska, R.; Ligasová, A.; Strunin, D.; Rosenberg, I.; Koberna, K. Most anti-BrdU antibodies react with 2′-deoxy-5-ethynyluridine -- the method for the effective suppression of this cross-reactivity. PLoS ONE 2012, 7, e51679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goshima, G.; Vale, R.D. Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol. Biol Cell 2005, 16, 3896–3907. [Google Scholar] [CrossRef] [Green Version]
- Lidsky, P.V.; Sprenger, F.; Lehner, C.F. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. J. Cell. Sci. 2013, 126, 4782–4793. [Google Scholar] [CrossRef] [Green Version]
- Zielke, N.; Korzelius, J.; van Straaten, M.; Bender, K.; Schuhknecht, G.F.P.; Dutta, D.; Xiang, J.; Edgar, B.A. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 2014, 7, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Boyer, A.-S.; Walter, D.; Sørensen, C.S. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Semin. Cancer Biol. 2016, 37–38, 16–25. [Google Scholar] [CrossRef]
- Kinjyo, I.; Qin, J.; Tan, S.-Y.; Wellard, C.J.; Mrass, P.; Ritchie, W.; Doi, A.; Cavanagh, L.L.; Tomura, M.; Sakaue-Sawano, A.; et al. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 2015, 6, 6301. [Google Scholar] [CrossRef] [Green Version]
- Lissy, N.A.; Van Dyk, L.F.; Becker-Hapak, M.; Vocero-Akbani, A.; Mendler, J.H.; Dowdy, S.F. TCR antigen-induced cell death occurs from a late G1 phase cell cycle check point. Immunity 1998, 8, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Koundrioukoff, S.; Carignon, S.; Técher, H.; Letessier, A.; Brison, O.; Debatisse, M. Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet. 2013, 9, e1003643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heenen, M.; Achten, G.; Galand, P. Autoradiographic analysis of cell kinetics in human normal epidermis and basal cell carcinoma. Cancer Res. 1973, 33, 123–127. [Google Scholar] [PubMed]
- Hasegawa, K.; Matsuura, Y.; Tojo, S. Cellular kinetics and histological changes in experimental cancer of the uterine cervix. Cancer Res. 1976, 36, 359–364. [Google Scholar] [PubMed]
- Ekholm-Reed, S.; Méndez, J.; Tedesco, D.; Zetterberg, A.; Stillman, B.; Reed, S.I. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 2004, 165, 789–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, T.; Ragu, S.; Magdalou, I.; Machon, C.; Dardillac, E.; Técher, H.; Guitton, J.; Debatisse, M.; Lopez, B.S. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet. 2016, 12, e1006007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crevel, G.; Cotterill, S. Forced binding of the origin of replication complex to chromosomal sites in Drosophila S2 cells creates an origin of replication. J. Cell. Sci. 2012, 125, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Massey, A.J. Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE 2015, 10, e0134306. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.S.; Jaehnert, I.; Schichor, C.; Or-Guil, M.; Carneiro, J. Quantifying the length and variance of the eukaryotic cell cycle phases by a stochastic model and dual nucleoside pulse labelling. PLoS Comput. Biol. 2014, 10, e1003616. [Google Scholar] [CrossRef] [Green Version]
- Verdoodt, F.; Willems, M.; Dhondt, I.; Houthoofd, W.; Bert, W.; De Vos, W.H. Measurement of S-phase duration of adult stem cells in the flatworm Macrostomum lignano by double replication labelling and quantitative colocalization analysis. Cell Biol. Int. 2012, 36, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Schorl, C.; Sedivy, J.M. Loss of protooncogene c-Myc function impedes G1 phase progression both before and after the restriction point. Mol. Biol. Cell 2003, 14, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Wenger, C.R.; Clark, G.M. S-phase fraction and breast cancer--a decade of experience. Breast Cancer Res. Treat. 1998, 51, 255–265. [Google Scholar] [CrossRef] [PubMed]
MEF | BJ | Lympho | HCT116 | HeLa | U2OS | Jurkat | |
---|---|---|---|---|---|---|---|
Mean (h) | 8.94 | 8.59 | 12.40 | 11.70 | 13.60 | 12.95 | 12.66 |
n | 5 | 3 | 2 | 3 | 4 | 4 | 2 |
SEM | 0.22 | 0.22 | 0.36 | 0.85 | 1.35 | 1.06 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialic, M.; Al Ahmad Nachar, B.; Koźlak, M.; Coulon, V.; Schwob, E. Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes 2022, 13, 408. https://doi.org/10.3390/genes13030408
Bialic M, Al Ahmad Nachar B, Koźlak M, Coulon V, Schwob E. Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes. 2022; 13(3):408. https://doi.org/10.3390/genes13030408
Chicago/Turabian StyleBialic, Marta, Baraah Al Ahmad Nachar, Maria Koźlak, Vincent Coulon, and Etienne Schwob. 2022. "Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry" Genes 13, no. 3: 408. https://doi.org/10.3390/genes13030408
APA StyleBialic, M., Al Ahmad Nachar, B., Koźlak, M., Coulon, V., & Schwob, E. (2022). Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes, 13(3), 408. https://doi.org/10.3390/genes13030408