Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions
Abstract
:1. Introduction
1.1. Climate Change: Overall Projected Effects
1.2. Projected Effects on Durum Wheat Production
1.3. Crop Modelling
2. Materials and Methods
2.1. Experimental Setting
2.2. Experimental Data
2.3. Cultivar Description
2.4. Molecular Responses to Drought Stress
2.5. Model Simulations
2.6. Meteorological Trends and Climate Scenarios
2.7. Calibration, Validation and Evaluation of CERES-Wheat Model Performances
3. Results
3.1. Meteorological Trends
3.2. Calibration, Validation and Evaluation of CERES-Wheat Model Performances
3.3. Climate Change Scenarios: General Responses
3.4. Climate Change Scenarios: Cultivar Responses
3.5. Molecular Responses to Drought Stress
4. Discussion
4.1. Meteorological Trends
4.2. Calibration, Validation and Evaluation of CERES-Wheat Model Performances
4.3. Climate Change Scenarios: Cultivar and Molecular Responses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; 2021; in press. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Eds.; 2019; in press. [Google Scholar]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analysis of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Tubiello, F.N.; Amthor, J.S.; Boote, K.J.; Donatelli, M.; Easterling, W.; Fischer, G.; Gifford, R.M.; Howden, M.; Reilly, J.; Rosenzweig, C. Crop response to elevated CO2 and world food supply: A comment on “Food for Thought…” by Long et al.; Science 312:1918–1921, 2006. Eur. J. Agron. 2007, 26, 215–223. [Google Scholar] [CrossRef]
- Toreti, A.; Deryng, D.; Tubiello, F.N.; Müller, C.; Kimball, B.A.; Moser, G.; Boote, K.; Asseng, S.; Pugh, T.A.M.; Vanuytrecht, E.; et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 2020, 1, 775–782. [Google Scholar] [CrossRef]
- Baker, J.T. Yield responses of southern U.S. rice cultivars to CO2 and temperature. Agric. For. Meteorol. 2004, 122, 129–137. [Google Scholar] [CrossRef]
- Caldwell, C.R.; Britz, S.J.; Mirecki, R.M. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 2005, 53, 1125–1129. [Google Scholar] [CrossRef]
- Thomas, J.M.G.; Boote, K.J.; Allen, L.H., Jr.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [Google Scholar] [CrossRef]
- Beach, R.H.; Sulser, T.B.; Crimmins, A.; Cenacchi, N.; Cole, J.; Fukagawa, N.K.; Mason-D’Croz, D.; Myers, S.; Sarofim, M.C.; Smith, M.; et al. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: A modelling study. Lancet Planet. Health 2019, 3, e307–e317. [Google Scholar] [CrossRef] [Green Version]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.; Fitzgerald, G.; Khan, A.; Seneweera, S. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem. 2015, 170, 448–454. [Google Scholar] [CrossRef]
- Zhou, B.; Zhai, P.; Chen, Y.; Yu, R. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world. Environ. Res. Lett. 2018, 13, 035004. [Google Scholar] [CrossRef]
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntifering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, J.G.; O’Leary, G.J.; Khimashia, N.; Asseng, S.; Fitzgerald, G.; Norton, R. ‘Haying-off’ in wheat is predicted to increase under a future climate in south-eastern Australia. Crop Pasture Sci. 2012, 63, 593–605. [Google Scholar] [CrossRef]
- Easterling, W.E.; Aggarwal, P.K.; Batima, P.; Brander, K.M.; Erda, L.; Howden, S.M.; Kirilenko, A.; Morton, J.; Soussana, J.-F.; Schmidhuber, J.; et al. Food, fibre and forest products. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 273–313. [Google Scholar]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Howden, S.M.; Asseng, S. Sensitivity of productivity and deep drainage of wheat cropping system in a Mediterranean environment to changes in CO2, temperature and precipitation. Agric. Ecosyst. Environ. 2003, 97, 255–273. [Google Scholar] [CrossRef]
- Moriondo, M.; Giannakopoulos, C.; Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Chang. 2011, 104, 679–701. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply and risk of hunger. Philos. Trans. R. Soc. Lond. Ser. B 2005, 360, 2125–2138. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Rötter, R.; van de Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Donatelli, M.; Rosenzweig, C.; Stockle, C.O. Effects of climate change and elevated CO2 on cropping systems: Model predictions at two Italian locations. Eur. J. Agron. 2000, 13, 179–189. [Google Scholar] [CrossRef]
- Hristov, J.; Toreti, A.; Pérez Domínguez, I.; Dentener, F.; Fellmann, T.; Elleby, C.; Ceglar, A.; Fumagalli, D.; Niemeyer, S.; Cerrani, I.; et al. Analysis of Climate Change Impacts on EU Agriculture by 2050; EUR 30078EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-10617-3. [Google Scholar] [CrossRef]
- Ewert, F.; Rounsevell, M.D.A.; Reginster, I.; Metzger, M.J.; Leemans, R. Future scenarios of European agricultural land use I. Estimating changes in crop productivity. Agric. Ecosyst. Environ. 2005, 107, 101–116. [Google Scholar] [CrossRef]
- Olesen, J.E.; Jensen, T.; Petersen, J. Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Clim. Res. 2000, 15, 221–238. [Google Scholar] [CrossRef]
- Bray, E.A. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 497–540. [Google Scholar]
- Maracchi, G.; Sirotenko, O.; Bindi, M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Eur. Clim. Chang. 2005, 70, 117–135. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 688. [Google Scholar]
- Miflin, B. Technologies for crop improvement in the 21st century. In Durum Wheat Improvement in the Mediterranean Region: New Challenges; Royo, C., Nachit, M.M., Di Fonzo, N., Araus, J.L., Eds.; CIHEAM: Zaragoza, Spain, 2000; pp. 19–25. [Google Scholar]
- Gueye, L.; Bzioul, M.; Johnson, O. Water and sustainable development in the countries of Northern Africa: Coping with challenges and scarcity. In Assessing Sustainable Development in Africa. Africa’s Sustainable Development Bulletin; Economic Commission for Africa: Addis Ababa, Ethiopia, 2005; pp. 24–28. [Google Scholar]
- IGC. International Grains Council. 2014. Available online: http://www.igc.int/en/default.aspx (accessed on 1 December 2021).
- Ferrise, R.; Moriondo, M.; Bindi, M. Probabilistic assessment of climate change impacts on durum wheat in the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 1293–1302. [Google Scholar] [CrossRef]
- Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Chang. 2012, 12, 407–419. [Google Scholar] [CrossRef]
- Mereu, V.; Gallo, A.; Trabucco, A.; Carboni, G.; Spano, D. Modeling high-resolution climate change impacts on wheat and maize in Italy. Clim. Risk Manag. 2021, 33, 100339. [Google Scholar] [CrossRef]
- Chowdhury, S.I.; Wardlaw, I.F. The effect of temperature on kernel development in cereals. Aust. J. Agric. Res. 1978, 29, 205–223. [Google Scholar] [CrossRef]
- Gibson, L.R.; Paulsen, G.M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 1999, 39, 1841–1846. [Google Scholar] [CrossRef]
- Passarella, V.S.; Savin, R.; Slafer, G.A. Breeding effects of barley grain weight and quality to events of high temperature during grain filling. Euphytica 2005, 141, 41–48. [Google Scholar] [CrossRef]
- Wardlaw, I.F.; Wrigley, C.W. Heat tolerance in temperate cereals: An overview. Aust. J. Plant Physiol. 1994, 21, 695–703. [Google Scholar] [CrossRef]
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Donatelli, M.; van Ittersum, M.K.; Bindi, M.; Porter, R.J. Modelling cropping systems-highlights of the symposium and preface to the special issues. Eur. J. Agron. 2002, 18, 187–197. [Google Scholar] [CrossRef]
- Bindi, M.; Fibbi, L.; Gozzini, B.; Orlandini, S.; Miglietta, F. Modelling the impact of climate scenarios on yield and yield variability of grapevine. Clim. Res. 1996, 7, 213–224. [Google Scholar] [CrossRef]
- Dettori, M.; Cesaraccio, C.; Motroni, A.; Spano, D.; Duce, P. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crop. Res. 2011, 120, 179–188. [Google Scholar] [CrossRef]
- Guereña, A.; Ruiz-Ramos, M.; Díaz-Ambrona, C.H.; Conde, J.; Mínguez, M.I. Assessment of climate change and agriculture in Spain using climate models. Agron. J. 2001, 93, 237–249. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Kundzewicz, Z.W.; Szwed, M.; Chorynski, A.; Matczak, P.; Radziejewski, M.; McEvoy, D.; Wreford, A. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 657–679. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Chang. 2011, 3, 553–567. [Google Scholar] [CrossRef]
- Toscano, P.; Ranieri, M.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; et al. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. Eur. J. Agron. 2012, 43, 108–118. [Google Scholar] [CrossRef]
- Dettori, M.; Cesaraccio, C.; Duce, P. Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. Field Crop. Res. 2017, 206, 43–53. [Google Scholar] [CrossRef]
- Mereu, V.; Gallo, A.; Spano, D. Optimizing Genetic Parameters of CSM-CERES Wheat and CSM-CERES Maize for Durum Wheat, Common Wheat, and Maize in Italy. Agronomy 2019, 9, 665. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; van Laar, H.H. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; p. 168. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.; Boote, K.; Batchelor, W.; Hunt, L.A.; Singh, U.; Gijsman, A.; Ritchie, J. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Otter, S. Description and performance of CERES-wheat: Use-oriented wheat yield model. In ARS Wheat Yield Project. Agricultural Research Service; Willis, O.W., Ed.; Department of Agriculture: Washington, DC, USA, 1985; pp. 159–175. [Google Scholar]
- Ritchie, J.T.; Godwin, D.C.; Otter-Nacke, S. CERES-Wheat; University of Texas Press: Austin, TX, USA, 1988. [Google Scholar]
- Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal growth, development and yield. In Understanding Options for Agricultural Production; Tsuji, Y.G., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 79–98. [Google Scholar]
- Mathews, R.; Blackmore, B.S. Using crop simulation models to determine optimum management practices in precision agriculture. In Proceedings of the 1st European Conference on Precision Agriculture, Warwick, UK, 8–10 September 1997; pp. 413–420. [Google Scholar]
- Timsina, J.; Humphreys, E. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review. Agric. Syst. 2006, 90, 5–31. [Google Scholar] [CrossRef]
- Pecetti, L.; Hollington, P.A. Application of the CERES-Wheat simulation model to durum wheat in two diverse Mediterranean environments. Eur. J. Agron. 1997, 6, 125–139. [Google Scholar] [CrossRef]
- Rezzoug, W.; Gabrielle, B.; Suleiman, A.; Benabdeli, K. Application and evaluation of the DSSAT-wheat in the Tiaret region of Algeria. Afr. J. Agric. Res. 2008, 3, 284–296. [Google Scholar]
- Rinaldi, M. Water availability at sowing and nitrogen management of durum wheat: A seasonal analysis with the CERES-Wheat model. Field Crop. Res. 2004, 89, 27–37. [Google Scholar] [CrossRef]
- Dalla Marta, A.; Orlando, F.; Mancini, M.; Guasconi, F.; Motha, R.; Qu, J.; Orlandini, S. A simplified index for an early estimation of durum wheat yield in Tuscany (Central Italy). Field Crop. Res. 2015, 170, 1–6. [Google Scholar] [CrossRef]
- USDA. Soil Survey Staff. Natural Resources Conservation Service; Keys to Soil Taxonomy: Washington, DC, USA, 2002. [Google Scholar]
- Donatelli, M.; Bellocchi, G.; Fontana, F. RadEst3.00: Software to estimate daily radiation data from commonly available meteorological variables. Eur. J. Agron. 2003, 18, 369–372. [Google Scholar] [CrossRef]
- Liu, Q.; Kasuga, Y.; Sakuma, H.; Abe, S.; Miura, K.; Yamaguchi-Shinozaki, K. Two Transcription factors, DREB1 and DREB2 with EREBP/AP2 DNA binding domain separate two cellular transduction pathways in drought—And low-temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10, 1391–1406. [Google Scholar] [CrossRef] [Green Version]
- Galeffi, P.; Latini, A.; Kumar, S.; Sperandei, M.; Cavicchioni, G.; Palmieri, E.; Cantale, C.; Iannetta, M. Functional genomic analyses of DROUGHT stress in various Italian durum wheat varieties. In Proceedings of the ICABR 8th International Conference on Agricultural Biotechnology: International Trade and Domestic Production, Ravello, Italy, 8–11 July 2004. [Google Scholar]
- Godwin, D.; Ritchie, J.; Singh, U.; Hunt, L. A User’s Guide to CERES-Wheat v2.1, 2nd ed.; International Fertilizer Development Center: Muscle Shoals, AL, USA, 1990; pp. 1–131. [Google Scholar]
- Boote, K.J.; Jones, J.W.; Hoogenboom, G.; Pickering, N.B. The CROPGRO model for grain legumes. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1998; pp. 99–128. [Google Scholar]
- Loague, K.; Green, R.W. Statistical and graphical methods for evaluating solute transport models: Overiview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Xevi, E.; Gilley, J.; Feyen, J. Comparative study of two crop yield simulation models. Agric. Water Manag. 1996, 30, 155–173. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Gualdi, S.; Somot, S.; Li, L.; Artale, V.; Adani, M.; Bellucci, A.; Braun, A.; Calmanti, S.; Carillo, A.; Dell’Aquila, A.; et al. The CIRCE Simulations Regional Climate Change Projections with Realistic Representation of the Mediterranean Sea. Bull. Am. Meteorol. Soc. 2013, 94, 65–81. [Google Scholar] [CrossRef]
- Galeffi, P.; Latini, A.; Rasi, C.; Sperandei, M.; Cavicchioni, G.; Palmieri, E.; Sharma, S.; Cantale, C.; Iannetta, M.; Dettori, M.; et al. Molecular Responses to Drought Stress: Expression of TdDRF1 Gene in Several Durum Wheat Varieties in Controlled Greenhouse and in Field Conditions; Interdrought II: Rome, Italy, 2005. [Google Scholar]
- Latini, A.; Rasi, C.; Sperandei, M.; Cantale, C.; Iannetta, M.; Dettori, M.; Ammar, K.; Galeffi, P. Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Ann. Appl. Biol. 2007, 150, 187–195. [Google Scholar] [CrossRef]
- Alcamo, J.; Moreno, J.M.; Nováky, B.; Bindi, M.; Corobov, R.; Devoy, R.J.N.; Giannakopoulos, C.; Martin, E.; Olesen, J.E.; Shvidenko, A. Europe. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 541–580. [Google Scholar]
- Jones, P.D.; Moberg, A. Hemispheric and large-scale surface air temperature variations: An extensive revision and update to 2001. J. Clim. 2003, 16, 206–223. [Google Scholar] [CrossRef] [Green Version]
- Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean. Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Konnen, G.P.; Bohm, R.; Demaree, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- van Herwaarden, A.F.; Farquar, G.D.; Angus, J.F.; Richards, R.A.; Howe, G.N. ‘Haying-off’, the negative grain yield response of dryland wheat to N fertilizer. I. Biomass, grain yield, and water use. Aust. J. Agric. Res. 1998, 49, 1067–1081. [Google Scholar] [CrossRef]
- van Herwaarden, A.F.; Richards, R.A.; Farquar, G.D.; Angus, J.F. ‘Haying-off’, the negative grain yield response of dryland wheat to N fertilizer. III. The influence of water deficit and heat shock. Aust. J. Agric. Res. 1998, 49, 1095–1110. [Google Scholar] [CrossRef]
- Metzger, M.J.; Leemans, R.; Schröter, D.; Cramer, W. ATEAM consortium. In The ATEAM Vulnerability Mapping Tool. Quantitative Approaches in System Analysis No. 27; Wageningen, C.T., Ed.; de Witt Graduate School for Production Ecology and Resource Conservation: Wageningen, The Netherlands, 2004. [Google Scholar]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Langensiepen, M.; Hanus, H.; Schoop, P.; Gräsle, W. Validating CERES-wheat under North-German environmental conditions. Agric. Syst. 2008, 97, 34–37. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Vanderlip, R.L. Crop simulation models can be used as dryland cropping systems research tools. Agron. J. 2005, 97, 378–384. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Tubiello, F.N.; van Velthuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M.L.; Fischer, G.; Frohberg, K. Climate Change and World Food Supply; Research Report No. 3; Environmental Change Unit, University of Oxford: Oxford, UK, 1993; p. 28. [Google Scholar]
- Tubiello, F.N.; Fischer, G. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1030–1056. [Google Scholar] [CrossRef]
- Wardlaw, I.F.; Blumenthal, C.; Larroque, O.; Wrigley, C.W. Contrasting effect of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct. Plant Biol. 2002, 29, 25–34. [Google Scholar] [CrossRef]
- Khanna-Chopra, R.; Rao, P.S.S.; Maheswari, M.; Xiaobing, L.; Shivshankar, K.S. Effect of water deficit on accumulation of dry matter, carbon and nitrogen in the kernel of wheat genotypes differing in yield stability. Ann. Bot. 1994, 74, 503–511. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M. The impact of climate change on the phenology of typical Mediterranean crops. Ital. J. Agrometeorol. 2009, 3, 5–12. [Google Scholar]
- Annicchiarico, P.; Pecetti, L. Contribution to some agronomic traits to durum wheat performance in a dry Mediterranean region of Northern Syria. Agronomie 1993, 13, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Annicchiarico, P. Coping with and exploiting genotype-by-environment interactions. In Plant Breeding and Farmer Participation; Ceccarelli, S., Guimarães, E.P., Weltzien, E., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; pp. 519–564. [Google Scholar]
- Cantale, C.; Di Bianco, D.; Thiyagarajan, K.; Ammar, K.; Galeffi, P. B-genome specific polymorphism in the TdDRF1 gene is in relationship with grain yield. Planta 2018, 247, 459–469. [Google Scholar] [CrossRef]
- Latini, A.; Sperandei, M.; Cantale, C.; Arcangeli, C.; Ammar, K.; Galeffi, P. Variability and expression profile of the DRF1 gene in four cultivars of durum wheat and one triticale under moderate water stress conditions. Planta 2013, 237, 967–978. [Google Scholar] [CrossRef]
Benatzu | Ussana | |
---|---|---|
Sand (%) | 26.2 | 56.4 |
Silt (%) | 34.4 | 21.5 |
Clay (%) | 39.4 | 22.1 |
Texture | Clay Loam | Sandy Clay Loam |
pH in H2O | 8.5 | 7.9 |
Organic carbon (%) | 1.62 | 0.83 |
Organic matter (%) | 2.80 | 1.20 |
Total nitrogen (%) | 0.15 | 0.07 |
C.E.C. (cmol kg−1) | 2.9 | 2.3 |
Genetic Coefficients | Creso | Duilio | Simeto |
---|---|---|---|
P1V | 30.0 | 25.0 | 25.0 |
P1D | 55.0 | 50.0 | 58.0 |
P5 | 450.0 | 480.0 | 450.0 |
G1 | 25.0 | 25.0 | 25.0 |
G2 | 55.0 | 55.0 | 55.0 |
G3 | 1.7 | 1.7 | 1.7 |
PHINT | 100.0 | 90.0 | 90.0 |
Decreasing Rainfall | ||||||||
---|---|---|---|---|---|---|---|---|
Increasing Temperature | 0 | −5% | −10% | −15% | −20% | −25% | −30% | |
0 | - | R5 | R10 | R15 | R20 | R25 | R30 | |
+1 °C | T1 | T1_R5 | T1_R10 | T1_R15 | T1_R20 | T1_R25 | T1_R30 | |
+2 °C | T2 | T2_R5 | T2_R10 | T2_R15 | T2_R20 | T2_R25 | T2_R30 | |
+3 °C | T3 | T3_R5 | T3_R10 | T3_R15 | T3_R20 | T3_R25 | T3_R30 | |
+4 °C | T4 | T4_R5 | T4_R10 | T4_R15 | T4_R20 | T4_R25 | T4_R30 | |
+5 °C | T5 | T5_R5 | T5_R10 | T5_R15 | T5_R20 | T5_R25 | T5_R30 | |
+6 °C | T6 | T6_R5 | T6_R10 | T6_R15 | T6_R20 | T6_R25 | T6_R30 |
Grain Yield | Anthesis | Kernel Weight | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OBS | SIM | OBS | SIM | OBS | SIM | |||||||||||
CV | Site | Scenario T1_R5 | Scenario T6_R30 | Scenario T1_R5 | Scenario T6_R30 | Scenario T1_R5 | Scenario T6_R30 | |||||||||
(kg ha−1) | (kg ha−1) | % Change | (kg ha−1) | % Change | (Dap) | (Dap) | Dap Change | (Dap) | Dap Change | (g) | (g) | % Change | (g) | % Change | ||
Cr | B | 4054 | 3955 | −2.4 | 2869 | −29.2 | 135 | 132 | −3 | 127 | −8 | 0.035 | 0.036 | +2.5 | 0.035 | 0.0 |
U | 3700 | 3543 | −4.2 | 2474 | −33.1 | 141 | 138 | −3 | 131 | −10 | 0.037 | 0.038 | +3.6 | 0.039 | +6.0 | |
M | 3877 | 3749 | −3.3 | 2672 | −31.2 | 138 | 135 | −3 | 129 | −9 | 0.036 | 0.037 | +3.0 | 0.037 | +3.0 | |
Du | B | 4573 | 4449 | −2.7 | 3406 | −25.5 | 129 | 127 | −2 | 118 | −11 | 0.036 | 0.036 | 0.0 | 0.038 | +3.7 |
U | 3756 | 3633 | −3.3 | 2662 | −29.1 | 135 | 132 | −3 | 122 | −13 | 0.038 | 0.039 | +2.6 | 0.040 | +3.4 | |
M | 4165 | 4041 | −3.0 | 3484 | −27.3 | 132 | 130 | −3 | 120 | −12 | 0.037 | 0.038 | +1.3 | 0.039 | +3.6 | |
Si | B | 4354 | 4280 | −1.7 | 3206 | −26.4 | 132 | 129 | −3 | 121 | −11 | 0.035 | 0.037 | +3.3 | 0.036 | +2.0 |
U | 3831 | 3575 | −6.7 | 2676 | −30.1 | 138 | 135 | −3 | 125 | −13 | 0.038 | 0.038 | 0.0 | 0.039 | +3.2 | |
M | 4093 | 3928 | −4.2 | 2941 | −28.3 | 135 | 132 | −3 | 123 | −12 | 0.037 | 0.038 | +1.7 | 0.038 | +2.6 | |
Mean | B | 4327 | 4228 | −2.3 | 3460 | −27.0 | 132 | 129 | −2.7 | 122 | −10 | 0.035 | 0.036 | +1.9 | 0.036 | +1.9 |
U | 3762 | 3584 | −4.7 | 2604 | −30.8 | 138 | 135 | −3.0 | 126 | −12 | 0.038 | 0.038 | +2.1 | 0.039 | +4.2 | |
M | 4045 | 3906 | −3.5 | 3032 | −28.9 | 135 | 132 | −2.9 | 124 | −11 | 0.037 | 0.037 | +2.0 | 0.038 | +3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dettori, M.; Cesaraccio, C.; Duce, P.; Mereu, V. Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions. Genes 2022, 13, 488. https://doi.org/10.3390/genes13030488
Dettori M, Cesaraccio C, Duce P, Mereu V. Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions. Genes. 2022; 13(3):488. https://doi.org/10.3390/genes13030488
Chicago/Turabian StyleDettori, Marco, Carla Cesaraccio, Pierpaolo Duce, and Valentina Mereu. 2022. "Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions" Genes 13, no. 3: 488. https://doi.org/10.3390/genes13030488
APA StyleDettori, M., Cesaraccio, C., Duce, P., & Mereu, V. (2022). Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions. Genes, 13(3), 488. https://doi.org/10.3390/genes13030488