UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Conformity
2.2. Case and Control
2.3. DNA Extraction and Quantification
2.4. Genotyping
2.5. Hardy–Weinberg Equilibrium Analysis (HWE)
2.6. Genetic Ancestrality Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- Saltos, A.; Shafique, M.; Chiappori, A. Update on the Biology, Management, and Treatment of Small Cell Lung Cancer (SCLC). Front. Oncol. 2020, 10, 1074. [Google Scholar] [CrossRef]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ricciuti, B.; Nguyen, T.; Li, X.; Rabin, M.S.; Awad, M.M.; Lin, X.; Johnson, B.E.; Christiani, D.C. Association between Smoking History and Tumor Mutation Burden in Advanced Non-Small Cell Lung Cancer. Cancer Res. 2021, 81, 2566–2573. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, J.; Meng, P.; Li, M. Association between NEAT1 polymorphism and the risk of lung cancer: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e25478. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, J.; McKay, J.; Tsavachidis, S.; Xiao, X.; Spitz, M.R.; Cheng, C.; Byun, J.; Hong, W.; Li, Y.; et al. Rare deleterious germline variants and risk of lung cancer. NPJ Precis. Oncol. 2021, 5, 12. [Google Scholar] [CrossRef]
- Liu, D.; Gao, Y.; Li, L.; Chen, H.; Bai, L.; Qu, Y.; Zhou, B.; Yan, Y.; Zhao, Y. Single nucleotide polymorphisms in breast cancer susceptibility gene 1 are associated with susceptibility to lung cancer. Oncol. Lett. 2021, 21, 424. [Google Scholar] [CrossRef]
- Dang, X.; Zhao, W.; Li, C.; Yang, H.; Li, D.; Zhang, S.; Jin, T. Impact of COL6A4P2 gene polymorphisms on the risk of lung cancer: A case-control study. PLoS ONE 2021, 16, e0252082. [Google Scholar] [CrossRef]
- Lebrett, M.B.; Crosbie, E.J.; Smith, M.J.; Woodward, E.R.; Evans, D.G.; Crosbie, P.A.J. Targeting lung cancer screening to individuals at greatest risk: The role of genetic factors. J. Med. Genet. 2021, 58, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Steventon, G. Uridine diphosphate glucuronosyltransferase 1A1. Xenobiotica 2020, 50, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Sissung, T.M.; Barbier, R.H.; Price, D.K.; Plona, T.M.; Pike, K.M.; Mellott, S.D.; Baugher, R.N.; Whiteley, G.R.; Soppet, D.R.; Venzon, D.; et al. Comparison of Eight Technologies to Determine Genotype at the UGT1A1 (TA). Int. J. Mol. Sci. 2020, 21, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajro, M.H.; Josifovski, T.; Panovski, M.; Jankulovski, N.; Nestorovska, A.K.; Matevska, N.; Petrusevska, N.; Dimovski, A.J. Promoter length polymorphism in UGT1A1 and the risk of sporadic colorectal cancer. Cancer Genet. 2012, 205, 163–167. [Google Scholar] [CrossRef]
- Clendenen, T.; Zeleniuch-Jacquotte, A.; Wirgin, I.; Koenig, K.L.; Afanasyeva, Y.; Lundin, E.; Arslan, A.A.; Axelsson, T.; Försti, A.; Hallmans, G.; et al. Genetic variants in hormone-related genes and risk of breast cancer. PLoS ONE 2013, 8, e69367. [Google Scholar] [CrossRef]
- Pinto, P.; Salgado, C.; Santos, N.P.; Santos, S.; Ribeiro-dos-Santos, Â. Influence of Genetic Ancestry on INDEL Markers of NFKβ1, CASP8, PAR1, IL4 and CYP19A1 Genes in Leprosy Patients. PLoS Negl. Trop. Dis. 2015, 9, e0004050. [Google Scholar] [CrossRef] [Green Version]
- Olatunya, O.S.; Albuquerque, D.M.; Akanbi, G.O.; Aduayi, O.S.; Taiwo, A.B.; Faboya, O.A.; Kayode, T.S.; Leonardo, D.P.; Adekile, A.; Costa, F.F. Uridine diphosphate glucuronosyl transferase 1A (UGT1A1) promoter polymorphism in young patients with sickle cell anaemia: Report of the first cohort study from Nigeria. BMC Med. Genet. 2019, 20, 160. [Google Scholar] [CrossRef] [Green Version]
- Ramos, B.R.; D’Elia, M.P.; Amador, M.A.; Santos, N.P.; Santos, S.E.; da Cruz Castelli, E.; Witkin, S.S.; Miot, H.A.; Miot, L.D.; da Silva, M.G. Neither self-reported ethnicity nor declared family origin are reliable indicators of genomic ancestry. Genetica 2016, 144, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.C.; Wanderley, A.V.; Amador, M.A.; Fernandes, M.R.; Cavalcante, G.C.; Pantoja, K.B.; Mello, F.A.; de Assumpção, P.P.; Khayat, A.S.; Ribeiro-Dos-Santos, Â.; et al. Amerindian genetic ancestry and INDEL polymorphisms associated with susceptibility of childhood B-cell Leukemia in an admixed population from the Brazilian Amazon. Leuk. Res. 2015, 39, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S. Epidemiology of lung cancer. Contemp. Oncol. 2021, 25, 45–52. [Google Scholar] [CrossRef]
- Rodak, O.; Peris-Díaz, M.D.; Olbromski, M.; Podhorska-Okołów, M.; Dzięgiel, P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers 2021, 13, 4705. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Ministério da Saúde. Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020: Incidência de Câncer no Brasil. Rio de Janeiro: INCA; 2019. Available online: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf (accessed on 1 November 2021).
- Araujo, L.H.; Baldotto, C.; Castro, G.; Katz, A.; Ferreira, C.G.; Mathias, C.; Mascarenhas, E.; Lopes, G.L.; Carvalho, H.; Tabacof, J.; et al. Lung cancer in Brazil. J. Bras. Pneumol. 2018, 44, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Delva, F.; Margery, J.; Laurent, F.; Petitprez, K.; Pairon, J.C.; Group, R.W. Medical follow-up of workers exposed to lung carcinogens: French evidence-based and pragmatic recommendations. BMC Public Health 2017, 17, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapelfeld, C.; Dammann, C.; Maser, E. Sex-specificity in lung cancer risk. Int. J. Cancer 2020, 146, 2376–2382. [Google Scholar] [CrossRef]
- Ragavan, M.; Patel, M.I. The evolving landscape of sex-based differences in lung cancer: A distinct disease in women. Eur. Respir. Rev. 2022, 31, 210100. [Google Scholar] [CrossRef]
- Meiners, S.; Eickelberg, O.; Königshoff, M. Hallmarks of the ageing lung. Eur. Respir. J. 2015, 45, 807–827. [Google Scholar] [CrossRef]
- Schneider, J.L.; Rowe, J.H.; Garcia-de-Alba, C.; Kim, C.F.; Sharpe, A.H.; Haigis, M.C. The aging lung: Physiology, disease, and immunity. Cell 2021, 184, 1990–2019. [Google Scholar] [CrossRef]
- Costa, G.; Thuler, L.C.; Ferreira, C.G. Epidemiological changes in the histological subtypes of 35,018 non-small-cell lung cancer cases in Brazil. Lung Cancer 2016, 97, 66–72. [Google Scholar] [CrossRef]
- Tsukazan, M.T.R.; Vigo, Á.; Silva, V.D.D.; Barrios, C.H.; Rios, J.O.; Pinto, J.A.F. Lung cancer: Changes in histology, gender, and age over the last 30 years in Brazil. J. Bras. Pneumol. 2017, 43, 363–367. [Google Scholar] [CrossRef]
- Sengupta, D.; Banerjee, S.; Mukhopadhyay, P.; Mitra, R.; Chaudhuri, T.; Sarkar, A.; Bhattacharjee, G.; Nath, S.; Roychoudhury, S.; Bhattacharjee, S.; et al. A comprehensive meta-analysis and a case-control study give insights into genetic susceptibility of lung cancer and subgroups. Sci. Rep. 2021, 11, 14572. [Google Scholar] [CrossRef]
- Tlemsani, C.; Takahashi, N.; Pongor, L.; Rajapakse, V.N.; Tyagi, M.; Wen, X.; Fasaye, G.A.; Schmidt, K.T.; Desai, P.; Kim, C.; et al. Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. Sci. Transl. Med. 2021, 13, eabc7488. [Google Scholar] [CrossRef]
- Yang, I.A.; Holloway, J.W.; Fong, K.M. Genetic susceptibility to lung cancer and co-morbidities. J. Thorac. Dis. 2013, 5 (Suppl. 5), S454–S462. [Google Scholar] [CrossRef]
- Gabriel, A.A.G.; Atkins, J.R.; Penha, R.C.C.; Smith-Byrne, K.; Gaborieau, V.; Voegele, C.; Abedi-Ardekani, B.; Milojevic, M.; Olaso, R.; Meyer, V.; et al. Genetic analysis of lung cancer reveals novel susceptibility loci and germline impact on somatic mutation burden. medRxiv 2021. [Google Scholar] [CrossRef]
- Marques, S.C.; Ikediobi, O.N. The clinical application of UGT1A1 pharmacogenetic testing: Gene-environment interactions. Hum. Genom. 2010, 4, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Turatti, L.; Sprinz, E.; Lazzaretti, R.K.; Kuhmmer, R.; Agnes, G.; Silveira, J.M.; Basso, R.P.; Pinheiro, C.A.; Silveira, M.F.; de Almeida, S.; et al. Short communication: UGT1A1*28 variant allele is a predictor of severe hyperbilirubinemia in HIV-infected patients on HAART in southern Brazil. AIDS Res. Hum. Retrovir. 2012, 28, 1015–1018. [Google Scholar] [CrossRef]
- Cavalcante, G.C.; Amador, M.A.; Ribeiro Dos Santos, A.M.; Carvalho, D.C.; Andrade, R.B.; Pereira, E.E.; Fernandes, M.R.; Costa, D.F.; Santos, N.P.; Assumpção, P.P.; et al. Analysis of 12 variants in the development of gastric and colorectal cancers. World J. Gastroenterol. 2017, 23, 8533–8543. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Almeida, V.C.; Ribeiro, D.D.; Gomes, K.B.; Godard, A.L. Polymorphisms of CYP2C9, VKORC1, MDR1, APOE and UGT1A1 genes and the therapeutic warfarin dose in Brazilian patients with thrombosis: A prospective cohort study. Mol. Diagn. Ther. 2014, 18, 675–683. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Haidar, C.E.; Klein, T.E.; Altman, R.B. PharmGKB summary: Very important pharmacogene information for UGT1A1. Pharm. Genom. 2014, 24, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.L.; Lazarus, P. Correlation between the UDP-glucuronosyltransferase (UGT1A1) TATAA box polymorphism and carcinogen detoxification phenotype: Significantly decreased glucuronidating activity against benzo(a)pyrene-7,8-dihydrodiol(-) in liver microsomes from subjects with the UGT1A1*28 variant. Cancer Epidemiol. Biomark. Prev. 2004, 13, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Takano, M.; Sugiyama, T. UGT1A1 polymorphisms in cancer: Impact on irinotecan treatment. Pharmgenom. Pers. Med. 2017, 10, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Xue, Z.; King, K.S.; Parham, L.; Ford, S.; Lou, Y.; Bakshi, K.K.; Sutton, K.; Margolis, D.; Hughes, A.R.; et al. Evaluation of the effect of UGT1A1 polymorphisms on the pharmacokinetics of oral and long-acting injectable cabotegravir. J. Antimicrob. Chemother. 2020, 75, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Belkhir, L.; Seguin-Devaux, C.; Elens, L.; Pauly, C.; Gengler, N.; Schneider, S.; Ruelle, J.; Haufroid, V.; Vandercam, B. Impact of UGT1A1 polymorphisms on Raltegravir and its glucuronide plasma concentrations in a cohort of HIV-1 infected patients. Sci. Rep. 2018, 8, 7359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strassburg, C.P. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics 2008, 9, 703–715. [Google Scholar] [CrossRef]
- Nelson, R.S.; Seligson, N.D.; Bottiglieri, S.; Carballido, E.; Cueto, A.D.; Imanirad, I.; Levine, R.; Parker, A.S.; Swain, S.M.; Tillman, E.M.; et al. UGT1A1 Guided Cancer Therapy: Review of the Evidence and Considerations for Clinical Implementation. Cancers 2021, 13, 1566. [Google Scholar] [CrossRef]
- Zinser-Sierra, J.W. Tobacco use and lung cancer. Salud. Publica Mex. 2019, 61, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.E.; Kimm, H.; Jee, S.H. Combined effects of smoking and bilirubin levels on the risk of lung cancer in Korea: The severance cohort study. PLoS ONE 2014, 9, e103972. [Google Scholar] [CrossRef]
- San Jose, C.; Cabanillas, A.; Benitez, J.; Carrillo, J.A.; Jimenez, M.; Gervasini, G. CYP1A1 gene polymorphisms increase lung cancer risk in a high-incidence region of Spain: A case control study. BMC Cancer 2010, 10, 463. [Google Scholar] [CrossRef] [Green Version]
- Espina, C.; Straif, K.; Friis, S.; Kogevinas, M.; Saracci, R.; Vainio, H.; Schüz, J. European Code against Cancer 4th Edition: Environment, occupation and cancer. Cancer Epidemiol. 2015, 39 (Suppl. 1), S84–S92. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Xu, H.; Zhang, C.; Kong, Y.; Hou, Y.; Xu, Y.; Xue, S. Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: A hospital-based case-control study in China. BMC Cancer 2010, 10, 422. [Google Scholar] [CrossRef] [Green Version]
- Pliarchopoulou, K.; Voutsinas, G.; Papaxoinis, G.; Florou, K.; Skondra, M.; Kostaki, K.; Roussou, P.; Syrigos, K.; Pectasides, D. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol. Lett. 2012, 3, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, Y.; Kanai, M.; Narahara, M.; Tamon, A.; Brown, J.B.; Taneishi, K.; Nakatsui, M.; Okamoto, K.; Uneno, Y.; Yamaguchi, D.; et al. Association between UGT1A1*28*28 genotype and lung cancer in the Japanese population. Int. J. Clin. Oncol. 2017, 22, 269–273. [Google Scholar] [CrossRef]
- Wassenaar, C.A.; Conti, D.V.; Das, S.; Chen, P.; Cook, E.H.; Ratain, M.J.; Benowitz, N.L.; Tyndale, R.F. UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers. Cancer Epidemiol. Biomark. Prev. 2015, 24, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, H.; Butler, L.M.; Villeneuve, L.; Millikan, R.C.; Sinha, R.; Sandler, R.S.; Guillemette, C. UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African-Americans. Mutat. Res. 2008, 644, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacko, M.; Roelofs, H.M.; Te Morsche, R.H.; Voogd, A.C.; Ophuis, M.B.; Peters, W.H.; Manni, J.J. Genetic polymorphism in the conjugating enzyme UGT1A1 and the risk of head and neck cancer. Int. J. Cancer 2010, 127, 2815–2821. [Google Scholar] [CrossRef]
- Davies, A.M.; Mack, P.C.; Lara, P.N.; Lau, D.H.; Danenberg, K.; Gumerlock, P.H.; Gandara, D.R. Predictive molecular markers: Has the time come for routine use in lung cancer? J. Natl. Compr. Cancer Netw. 2004, 2, 125–131. [Google Scholar] [CrossRef]
- Ikeda, S.; Takabe, K.; Inagaki, M.; Suzuki, K. Expression of phosphorylated Akt in patients with small cell carcinoma of the lung indicates good prognosis. Pathol. Int. 2010, 60, 714–719. [Google Scholar] [CrossRef]
- Huang, Y.; Su, J.; Huang, X.; Lu, D.; Xie, Z.; Yang, S.; Guo, W.; Lv, Z.; Wu, H.; Zhang, X. Detection of UGT1A1*28 Polymorphism Using Fragment Analysis. Zhongguo Fei Ai Za Zhi 2017, 20, 817–821. [Google Scholar] [CrossRef]
Characteristics | Case (n = 80) | Control (n = 196) | p-Value |
---|---|---|---|
Sex | |||
Male | 56 (70.0%) | 62 (31.6%) | <0.001 a,* |
Female | 24 (30.0%) | 134 (68.4%) | |
Age (years) | |||
Median (p25–p75%) | 62.0 (55.0–69.0) | 69.0 (64.0–76.0) | <0.001 b,* |
Smoking | |||
Never smoked | 13 (16.33%) | 99 (50.5%) | <0.001 a,* |
Smoker | 67 (83.7%) | 97 (49.5%) | |
Ancestry | |||
European | 47.6 ± 18.0 | 45.2 ± 17.0 | 0.334 b |
Amerindian | 30.0 ± 14.1 | 30.6 ± 14.8 | 0.888 b |
African | 22.3 ± 12.4 | 24.2 ± 13.8 | 0.313 b |
Histology | |||
Squamous Cell Carcinoma | 41 (51.3%) | - | NA |
Large Cell Carcinoma | 14 (17.5%) | - | |
Adenocarcinoma | 12 (15.0%) | - | |
Others | 13 (16.2%) | - |
Groups | UGT1A1 (rs8175347) Allelotypes | |||
---|---|---|---|---|
(TA)7 | (TA)5 or (TA)6 | OR (95% IC) | p-Value a | |
Controls | 139 (35.5%) | 253 (64.5%) | - | - |
Lung Cancer | 60 (37.5%) | 100 (62.5%) | 1.24 (0.80–1.93) | 0.331 |
Squamous Cell Carcinoma | 35 (42.7%) | 47 (57.3%) | 1.56 (0.89–2.73) | 0.116 |
Large Cell Carcinoma | 5 (17.9%) | 23 (82.1%) | 0.43 (0.16–1.18) | 0.103 |
Adenocarcinoma | 13 (54.1%) | 11 (45.9%) | 2.57 (1.07–6.20) | 0.035 * |
Others | 7 (26.9%) | 19 (73.1%) | 0.76 (0.30–1.95) | 0.573 |
Groups | UGT1A1 (rs8175347) Genotypes | |||
---|---|---|---|---|
TA7/7 | TA6/6, TA6/7 or TA5/7 | OR (95% IC) | p-Value a | |
Controls | 23 (11.7%) | 173 (88.3%) | - | - |
Lung Cancer | 13 (16.3%) | 67 (83.7%) | 2.04 (0.85–4.92) | 0.110 |
Squamous Cell Carcinoma | 9 (22.0%) | 32 (78.0%) | 4.08 (1.32–12.61) | 0.015 * |
Large Cell Carcinoma | 1 (7.1%) | 13 (92.9%) | 0.77 (0.09–6.61) | 0.815 |
Adenocarcinoma | 2 (16.7%) | 10 (83.3%) | 3.19 (0.53–19.05) | 0.204 |
Others | 1 (7.7%) | 12 (92.3%) | 0.73 (0.08–6.40) | 0.780 |
Groups | UGT1A1 (rs8175347) Genotypes by Degree of Enzymatic Activity | |||
---|---|---|---|---|
Low or Reduced | Normal | OR (95%IC) | p-Value a | |
Controls | 116 (59.2%) | 80 (40.8%) | - | - |
Lung Cancer | 47 (58.8%) | 33 (41.2%) | 1.09 (0.59–1.99) | 0.788 |
Squamous Cell Carcinoma | 26 (63.4%) | 15 (36.6%) | 1.23 (0.56–2.70) | 0.604 |
Large Cell Carcinoma | 4 (28.6%) | 10 (71.4%) | 0.29 (0.08–0.99) | 0.058 |
Adenocarcinoma | 11 (91.7%) | 1 (8.3%) | 8.41 (1.02–69.55) | 0.048 * |
Others | 6 (46.2%) | 7 (53.8%) | 0.69 (0.21–2.27) | 0.543 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, E.E.B.; Leitão, L.P.C.; Andrade, R.B.; Modesto, A.A.C.; Fernandes, B.M.; Burbano, R.M.R.; Assumpção, P.P.; Fernandes, M.R.; Guerreiro, J.F.; Santos, S.E.B.d.; et al. UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon. Genes 2022, 13, 493. https://doi.org/10.3390/genes13030493
Pereira EEB, Leitão LPC, Andrade RB, Modesto AAC, Fernandes BM, Burbano RMR, Assumpção PP, Fernandes MR, Guerreiro JF, Santos SEBd, et al. UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon. Genes. 2022; 13(3):493. https://doi.org/10.3390/genes13030493
Chicago/Turabian StylePereira, Esdras E. B., Luciana P. C. Leitão, Roberta B. Andrade, Antônio A. C. Modesto, Bruno M. Fernandes, Rommel M. R. Burbano, Paulo P. Assumpção, Marianne R. Fernandes, João F. Guerreiro, Sidney E. B. dos Santos, and et al. 2022. "UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon" Genes 13, no. 3: 493. https://doi.org/10.3390/genes13030493
APA StylePereira, E. E. B., Leitão, L. P. C., Andrade, R. B., Modesto, A. A. C., Fernandes, B. M., Burbano, R. M. R., Assumpção, P. P., Fernandes, M. R., Guerreiro, J. F., Santos, S. E. B. d., & Santos, N. P. C. d. (2022). UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon. Genes, 13(3), 493. https://doi.org/10.3390/genes13030493