Genetic Background of Polycythemia Vera
Abstract
:1. Introduction
2. Mutational Landscape: Hallmarks of PV Genetic Background
2.1. Driver Mutations: JAK2
2.1.1. Canonical JAK2 Mutation: JAK2 V617F/Exon 14 Mutations
2.1.2. Non-Canonical JAK2 Mutations: JAK2 Exon 12, 13 & 15 Mutations
JAK2 Exon 12
JAK2 Exon 13
JAK2 Exon 15
2.2. MNAMs
2.2.1. Mutations Involved in Alternative Splicing (SRSF2, SF3B1, U2AF1, ZRSR2)
2.2.2. Mutations Involving Epigenetic
DNA Methylation (TET2, DNMT3A, IDH1, IDH2)
- TET2
- DNMT3A
- IDH1/IDH2
Histone Modifications (ASXL1, EZH2)
- ASXL1
- EZH2
miRNA Deregulation
2.2.3. Mutations Involved in Intracellular Signaling (LNK/SH2B3, NF1, NRAS/KRAS, CBL, FLT3, ERBB)
- LNK/SH2B3
- NF1
- NRAS/KRAS
- CBL
- FLT3
- ErbB
2.2.4. Mutations Affecting Transcription Factors (NF-E2, PPM1D, TP53, RUNX1, CUX1, ETV6)
- NF-E2
- PPM1D
- TP53
- RUNX1
- CUX1
- ETV6
2.2.5. Other: CALR, MPLW515
- CALR
- MPL
2.3. Genetic Associations: Pattern and Consequences
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vaquez, L.H. Sur une forme spéciale de cyanose s’accompagnant d’hyperglobulie excessive et persistante. Compt. Rend. Soc. Biol. 1892, 44, 384–388. [Google Scholar]
- Berk, P.D.; Goldberg, J.D.; Donovan, P.B.; Fruchtman, S.M.; Berlin, N.I.; Wasserman, L.R. Therapeutic Recommendations in Polycythemia Vera Based on Polycythemia Vera Study Group Protocols. Semin. Hematol. 1986, 23, 132–143. [Google Scholar] [PubMed]
- Tefferi, A.; Barbui, T. Polycythemia Vera and Essential Thrombocythemia: 2021 Update on Diagnosis, Risk-stratification and Management. Am. J. Hematol. 2020, 95, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, E.A.M.; Pitkänen, E.; Hemminki, K.; Aaltonen, L.A.; Kilpivaara, O. Whole-Exome Sequencing Identifies Novel Candidate Predisposition Genes for Familial Polycythemia Vera. Hum. Genom. 2017, 11, 6. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Guglielmelli, P.; Finke, C.M.; Rotunno, G.; Elala, Y.; Pacilli, A.; Hanson, C.A.; Pancrazzi, A.; Ketterling, R.P.; et al. Targeted Deep Sequencing in Polycythemia Vera and Essential Thrombocythemia. Blood Adv. 2016, 1, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-S.; Ma, W.; Zhang, X.; Kantarjian, H.; Albitar, M. Structural Effects of Clinically Observed Mutations in JAK2 Exons 13-15: Comparison with V617F and Exon 12 Mutations. BMC Struct. Biol. 2009, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Skoda, R.C.; Duek, A.; Grisouard, J. Pathogenesis of Myeloproliferative Neoplasms. Exp. Hematol. 2015, 43, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Jutzi, J.S.; Bogeska, R.; Nikoloski, G.; Schmid, C.A.; Seeger, T.S.; Stegelmann, F.; Schwemmers, S.; Gründer, A.; Peeken, J.C.; Gothwal, M.; et al. MPN Patients Harbor Recurrent Truncating Mutations in Transcription Factor NF-E2. J. Exp. Med. 2013, 210, 1003–1019. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, F.; Hu, Y.; Liu, Q.; Bu, D.; Tan, M.; Wu, L.; Zhu, P. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms. PLoS ONE 2016, 11, e0154183. [Google Scholar] [CrossRef]
- Jovanovic, J.V.; Ivey, A.; Vannucchi, A.M.; Lippert, E.; Oppliger Leibundgut, E.; Cassinat, B.; Pallisgaard, N.; Maroc, N.; Hermouet, S.; Nickless, G.; et al. Establishing Optimal Quantitative-Polymerase Chain Reaction Assays for Routine Diagnosis and Tracking of Minimal Residual Disease in JAK2-V617F-Associated Myeloproliferative Neoplasms: A Joint European LeukemiaNet/MPN&MPNr-EuroNet (COST Action BM0902) Study. Leukemia 2013, 27, 2032–2039. [Google Scholar] [CrossRef] [Green Version]
- Lippert, E.; Girodon, F.; Hammond, E.; Jelinek, J.; Reading, N.S.; Fehse, B.; Hanlon, K.; Hermans, M.; Richard, C.; Swierczek, S.; et al. Concordance of Assays Designed for the Quantification of JAK2V617F: A Multicenter Study. Haematologica 2009, 94, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langabeer, S.E.; Andrikovics, H.; Asp, J.; Bellosillo, B.; Carillo, S.; Haslam, K.; Kjaer, L.; Lippert, E.; Mansier, O.; Oppliger Leibundgut, E.; et al. Molecular Diagnostics of Myeloproliferative Neoplasms. Eur. J. Haematol. 2015, 95, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.S.; Pallisgaard, N.; Møller, M.B.; Hasselbalch, H.C. Quantitative Assessment of the JAK2 V617F Allele Burden: Equivalent Levels in Peripheral Blood and Bone Marrow. Leukemia 2008, 22, 194–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippert, E.; Boissinot, M.; Kralovics, R.; Girodon, F.; Dobo, I.; Praloran, V.; Boiret-Dupré, N.; Skoda, R.C.; Hermouet, S. The JAK2-V617F Mutation Is Frequently Present at Diagnosis in Patients with Essential Thrombocythemia and Polycythemia Vera. Blood 2006, 108, 1865–1867. [Google Scholar] [CrossRef]
- Link-Lenczowska, D.; Pallisgaard, N.; Cordua, S.; Zawada, M.; Czekalska, S.; Krochmalczyk, D.; Kanduła, Z.; Sacha, T. A Comparison of qPCR and DdPCR Used for Quantification of the JAK2 V617F Allele Burden in Ph Negative MPNs. Ann. Hematol. 2018, 97, 2299–2308. [Google Scholar] [CrossRef] [Green Version]
- Mansier, O.; Luque Paz, D.; Ianotto, J.-C.; Le Bris, Y.; Chauveau, A.; Boyer, F.; Conejero, C.; Fitoussi, O.; Riou, J.; Adiko, D.; et al. Clinical and Biological Characterization of MPN Patients Harboring Two Driver Mutations, a French Intergroup of Myeloproliferative Neoplasms (FIM) Study. Am. J. Hematol. 2018, 93, E84–E86. [Google Scholar] [CrossRef]
- Grinfeld, J.; Nangalia, J.; Baxter, E.J.; Wedge, D.C.; Angelopoulos, N.; Cantrill, R.; Godfrey, A.L.; Papaemmanuil, E.; Gundem, G.; MacLean, C.; et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N. Engl. J. Med. 2018, 379, 1416–1430. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Finke, C.M.; Elala, Y.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Pardanani, A. Targeted Deep Sequencing in Primary Myelofibrosis. Blood Adv. 2016, 1, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Lasho, T.L.; Mudireddy, M.; Finke, C.M.; Hanson, C.A.; Ketterling, R.P.; Szuber, N.; Begna, K.H.; Patnaik, M.M.; Gangat, N.; Pardanani, A.; et al. Targeted Next-Generation Sequencing in Blast Phase Myeloproliferative Neoplasms. Blood Adv. 2018, 2, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Guglielmelli, P.; Lasho, T.L.; Rotunno, G.; Mudireddy, M.; Mannarelli, C.; Nicolosi, M.; Pacilli, A.; Pardanani, A.; Rumi, E.; Rosti, V.; et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients with Primary Myelofibrosis. J. Clin. Oncol. 2018, 36, 310–318. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Lasho, T.L.; Guglielmelli, P.; Biamonte, F.; Pardanani, A.; Pereira, A.; Finke, C.; Score, J.; Gangat, N.; Mannarelli, C.; et al. Mutations and Prognosis in Primary Myelofibrosis. Leukemia 2013, 27, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Lasho, T.L.; Coltro, G.; Finke, C.M.; Loscocco, G.G.; Sordi, B.; Szuber, N.; Rotunno, G.; Pacilli, A.; et al. Mutation-Enhanced International Prognostic Systems for Essential Thrombocythaemia and Polycythaemia Vera. Br. J. Haematol. 2020, 189, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, O.; O’Sullivan, J.; Barkas, N.; Wang, G.; Buck, G.; Hamblin, A.; Tefferi, A.; Al-Ali, H.K.; Barosi, G.; Devos, T.; et al. Spliceosome Mutations Are Common in Persons with Myeloproliferative Neoplasm-Associated Myelofibrosis with RBC-Transfusion-Dependence and Correlate with Response to Pomalidomide. Leukemia 2021, 35, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired Mutation of the Tyrosine Kinase JAK2 in Human Myeloproliferative Disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef]
- Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.-S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N. Engl. J. Med. 2005, 352, 1779–1790. [Google Scholar] [CrossRef] [Green Version]
- James, C.; Ugo, V.; Le Couédic, J.-P.; Staerk, J.; Delhommeau, F.; Lacout, C.; Garçon, L.; Raslova, H.; Berger, R.; Bennaceur-Griscelli, A.; et al. A Unique Clonal JAK2 Mutation Leading to Constitutive Signalling Causes Polycythaemia Vera. Nature 2005, 434, 1144–1148. [Google Scholar] [CrossRef]
- Kleppe, M.; Kwak, M.; Koppikar, P.; Riester, M.; Keller, M.; Bastian, L.; Hricik, T.; Bhagwat, N.; McKenney, A.S.; Papalexi, E.; et al. JAK-STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response. Cancer Discov. 2015, 5, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Wadleigh, M.; Cools, J.; Ebert, B.L.; Wernig, G.; Huntly, B.J.P.; Boggon, T.J.; Wlodarska, I.; Clark, J.J.; Moore, S.; et al. Activating Mutation in the Tyrosine Kinase JAK2 in Polycythemia Vera, Essential Thrombocythemia, and Myeloid Metaplasia with Myelofibrosis. Cancer Cell 2005, 7, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, F.; Rumi, E.; Pietra, D.; Della Porta, M.G.; Boveri, E.; Pascutto, C.; Vanelli, L.; Arcaini, L.; Burcheri, S.; Malcovati, L.; et al. Relation between JAK2 (V617F) Mutation Status, Granulocyte Activation, and Constitutive Mobilization of CD34+ Cells into Peripheral Blood in Myeloproliferative Disorders. Blood 2006, 107, 3676–3682. [Google Scholar] [CrossRef] [Green Version]
- Vannucchi, A.M.; Antonioli, E.; Guglielmelli, P.; Pardanani, A.; Tefferi, A. Clinical Correlates of JAK2V617F Presence or Allele Burden in Myeloproliferative Neoplasms: A Critical Reappraisal. Leukemia 2008, 22, 1299–1307. [Google Scholar] [CrossRef]
- Ma, W.; Kantarjian, H.; Zhang, X.; Yeh, C.-H.; Zhang, Z.J.; Verstovsek, S.; Albitar, M. Mutation Profile of JAK2 Transcripts in Patients with Chronic Myeloproliferative Neoplasias. J. Mol. Diagn. 2009, 11, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleyrat, C.; Jelinek, J.; Girodon, F.; Boissinot, M.; Ponge, T.; Harousseau, J.-L.; Issa, J.-P.; Hermouet, S. JAK2 Mutation and Disease Phenotype: A Double L611V/V617F in Cis Mutation of JAK2 Is Associated with Isolated Erythrocytosis and Increased Activation of AKT and ERK1/2 Rather than STAT5. Leukemia 2010, 24, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Lebecque, B.; Grèze, V.; Tassin, T.; Mareynat, G.; Dannus, L.-T.; Boiret-Dupré, N.; Veyrat-Masson, R.; Tribalat, N.; Berger, M.G.; Bourgne, C. Double L611S/V617F JAK2 Mutation in a Child with Erythrocytosis. Pediatr. Blood Cancer 2021, 68, e28816. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.A.; Luty, S.B.; Lai, H.Y.; Morse, S.J.; Nguyen, T.K.; Royer, L.R.; Agarwal, A.; Druker, B.J.; Fleischman, A.G. JAK2(V617I) Results in Cytokine Hypersensitivity without Causing an Overt Myeloproliferative Disorder in a Mouse Transduction-Transplantation Model. Exp. Hematol. 2016, 44, 24–29.e1. [Google Scholar] [CrossRef] [Green Version]
- Warshawsky, I.; Mularo, F.; Hren, C.; Jakubowski, M. Failure of the Ipsogen MutaScreen Kit to Detect the JAK2 617V>F Mutation in Samples with Additional Rare Exon 14 Mutations: Implications for Clinical Testing and Report of a Novel 618C>F Mutation in Addition to 617V>F. Blood 2010, 115, 3175–3176. [Google Scholar] [CrossRef] [Green Version]
- Pietra, D.; Li, S.; Brisci, A.; Passamonti, F.; Rumi, E.; Theocharides, A.; Ferrari, M.; Gisslinger, H.; Kralovics, R.; Cremonesi, L.; et al. Somatic Mutations of JAK2 Exon 12 in Patients with JAK2 (V617F)-Negative Myeloproliferative Disorders. Blood 2008, 111, 1686–1689. [Google Scholar] [CrossRef] [Green Version]
- Schnittger, S.; Bacher, U.; Haferlach, C.; Geer, T.; Müller, P.; Mittermüller, J.; Petrides, P.; Schlag, R.; Sandner, R.; Selbach, J.; et al. Detection of JAK2 Exon 12 Mutations in 15 Patients with JAK2V617F Negative Polycythemia Vera. Haematologica 2009, 94, 414–418. [Google Scholar] [CrossRef]
- Carillo, S.; Henry, L.; Lippert, E.; Girodon, F.; Guiraud, I.; Richard, C.; Dubois Galopin, F.; Cleyrat, C.; Jourdan, E.; Kralovics, R.; et al. Nested High-Resolution Melting Curve Analysis a Highly Sensitive, Reliable, and Simple Method for Detection of JAK2 Exon 12 Mutations--Clinical Relevance in the Monitoring of Polycythemia. J. Mol. Diagn. 2011, 13, 263–270. [Google Scholar] [CrossRef]
- Scott, L.M.; Tong, W.; Levine, R.L.; Scott, M.A.; Beer, P.A.; Stratton, M.R.; Futreal, P.A.; Erber, W.N.; McMullin, M.F.; Harrison, C.N.; et al. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N. Engl. J. Med. 2007, 356, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Pardanani, A.; Lasho, T.L.; Finke, C.; Hanson, C.A.; Tefferi, A. Prevalence and Clinicopathologic Correlates of JAK2 Exon 12 Mutations in JAK2V617F-Negative Polycythemia Vera. Leukemia 2007, 21, 1960–1963. [Google Scholar] [CrossRef]
- Martínez-Avilés, L.; Besses, C.; Alvarez-Larrán, A.; Cervantes, F.; Hernández-Boluda, J.C.; Bellosillo, B. JAK2 Exon 12 Mutations in Polycythemia Vera or Idiopathic Erythrocytosis. Haematologica 2007, 92, 1717–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.M.; Kim, A.H.; Rogers, O.; Spivak, J.L.; Moliterno, A.R. Phenotypic Variations and New Mutations in JAK2 V617F-Negative Polycythemia Vera, Erythrocytosis, and Idiopathic Myelofibrosis. Exp. Hematol. 2007, 35, 1641–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butcher, C.M.; Hahn, U.; To, L.B.; Gecz, J.; Wilkins, E.J.; Scott, H.S.; Bardy, P.G.; D’Andrea, R.J. Two Novel JAK2 Exon 12 Mutations in JAK2V617F-Negative Polycythaemia Vera Patients. Leukemia 2008, 22, 870–873. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Ruggeri, M.; Albiero, E.; Madeo, D.; Rodeghiero, F. Isolated Erythrocytosis in V617F Negative Patients with JAK2 Exon 12 Mutations: Report of a New Mutation. Am. J. Hematol. 2009, 84, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Colaizzo, D.; Amitrano, L.; Tiscia, G.L.; Grandone, E.; Guardascione, M.A.; Margaglione, M. A New JAK2 Gene Mutation in Patients with Polycythemia Vera and Splanchnic Vein Thrombosis. Blood 2007, 110, 2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouroupi, E.; Zoi, K.; Parquet, N.; Zoi, C.; Kiladjian, J.-J.; Grigoraki, V.; Vainchenker, W.; Lellouche, F.; Marzac, C.; Schlageter, M.-H.; et al. Mutations in Exon 12 of JAK2 Are Mainly Found in JAK2 V617F-Negative Polycythaemia Vera Patients. Br. J. Haematol. 2008, 142, 676–679. [Google Scholar] [CrossRef]
- Olcaydu, D.; Skoda, R.C.; Looser, R.; Li, S.; Cazzola, M.; Pietra, D.; Passamonti, F.; Lippert, E.; Carillo, S.; Girodon, F.; et al. The “GGCC” Haplotype of JAK2 Confers Susceptibility to JAK2 Exon 12 Mutation-Positive Polycythemia Vera. Leukemia 2009, 23, 1924–1926. [Google Scholar] [CrossRef]
- Percy, M.J.; Scott, L.M.; Erber, W.N.; Harrison, C.N.; Reilly, J.T.; Jones, F.G.C.; Green, A.R.; McMullin, M.F. The Frequency of JAK2 Exon 12 Mutations in Idiopathic Erythrocytosis Patients with Low Serum Erythropoietin Levels. Haematologica 2007, 92, 1607–1614. [Google Scholar] [CrossRef]
- Albiero, E.; Madeo, D.; Ruggeri, M.; Bernardi, M.; Giorgetti, A.; Rodeghiero, F. Loss of the JAK2 Intramolecular Auto-Inhibition Mechanism Is Predicted by Structural Modelling of a Novel Exon 12 Insertion Mutation in a Case of Idiopathic Erythrocytosis. Br. J. Haematol. 2008, 142, 986–990. [Google Scholar] [CrossRef]
- Li, S.; Kralovics, R.; De Libero, G.; Theocharides, A.; Gisslinger, H.; Skoda, R.C. Clonal Heterogeneity in Polycythemia Vera Patients with JAK2 Exon12 and JAK2-V617F Mutations. Blood 2008, 111, 3863–3866. [Google Scholar] [CrossRef] [Green Version]
- Bahar, B.; Barton, K.; Kini, A.R. The Role of the Exon 13 G571S JAK2 Mutation in Myeloproliferative Neoplasms. Leuk. Res. Rep. 2016, 6, 27–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argetsinger, L.S.; Kouadio, J.-L.K.; Steen, H.; Stensballe, A.; Jensen, O.N.; Carter-Su, C. Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity. Mol. Cell. Biol. 2004, 24, 4955–4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panovska-Stavridis, I.; Eftimov, A.; Ivanovski, M.; Pivkova-Veljanovska, A.; Cevreska, L.; Hermouet, S.; Dimovski, A.J. Essential Thrombocythemia Associated with Germline JAK2 G571S Variant and Somatic CALR Type 1 Mutation. Clin. Lymphoma Myeloma Leuk. 2016, 16, e55–e57. [Google Scholar] [CrossRef]
- Silver, R.T.; Vandris, K.; Wang, Y.L.; Adriano, F.; Jones, A.V.; Christos, P.J.; Cross, N.C.P. JAK2V617F Allele Burden in Polycythemia Vera Correlates with Grade of Myelofibrosis, but Is Not Substantially Affected by Therapy. Leukemia Res. 2011, 35, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratz, C.P.; Böll, S.; Kontny, U.; Schrappe, M.; Niemeyer, C.M.; Stanulla, M. Mutational Screen Reveals a Novel JAK2 Mutation, L611S, in a Child with Acute Lymphoblastic Leukemia. Leukemia 2006, 20, 381–383. [Google Scholar] [CrossRef]
- Aral, B.; Courtois, M.; Ragot, S.; Bourgeois, V.; Bottolier-Lemallaz, E.; Briandet, C.; Girodon, F. Germline JAK2 L611S Mutation in a Child with Thrombocytosis. Haematologica 2018, 103, e372–e373. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, F.; Elena, C.; Schnittger, S.; Skoda, R.C.; Green, A.R.; Girodon, F.; Kiladjian, J.-J.; McMullin, M.F.; Ruggeri, M.; Besses, C.; et al. Molecular and Clinical Features of the Myeloproliferative Neoplasm Associated with JAK2 Exon 12 Mutations. Blood 2011, 117, 2813–2816. [Google Scholar] [CrossRef] [Green Version]
- Tondeur, S.; Paul, F.; Riou, J.; Mansier, O.; Ranta, D.; Le Clech, L.; Lippert, E.; Tavitian, S.; Chaoui, D.; Mercier, M.; et al. Long-Term Follow-up of JAK2 Exon 12 Polycythemia Vera: A French Intergroup of Myeloproliferative Neoplasms (FIM) Study. Leukemia 2021, 35, 871–875. [Google Scholar] [CrossRef]
- Zou, H.; Yan, D.; Mohi, G. Differential Biological Activity of Disease-Associated JAK2 Mutants. FEBS Lett. 2011, 585, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Loscocco, G.G.; Guglielmelli, P.; Vannucchi, A.M. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data. Onco Targets Ther. 2020, 13, 12367–12382. [Google Scholar] [CrossRef]
- Boiocchi, L.; Hasserjian, R.P.; Pozdnyakova, O.; Wong, W.J.; Lennerz, J.K.; Le, L.P.; Dias-Santagata, D.; Iafrate, A.J.; Hobbs, G.S.; Nardi, V. Clinicopathological and Molecular Features of SF3B1-Mutated Myeloproliferative Neoplasms. Hum. Pathol. 2019, 86, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Graubert, T.A.; Shen, D.; Ding, L.; Okeyo-Owuor, T.; Lunn, C.L.; Shao, J.; Krysiak, K.; Harris, C.C.; Koboldt, D.C.; Larson, D.E.; et al. Recurrent Mutations in the U2AF1 Splicing Factor in Myelodysplastic Syndromes. Nat. Genet. 2011, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, X.; Cassady, K.; Zou, Z.; Zhang, X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front. Oncol. 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cai, X.; Cai, C.-L.; Wang, J.; Zhang, W.; Petersen, B.E.; Yang, F.-C.; Xu, M. Deletion of Tet2 in Mice Leads to Dysregulated Hematopoietic Stem Cells and Subsequent Development of Myeloid Malignancies. Blood 2011, 118, 4509–4518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.-P.; Robert, F.; Alberdi, A.; et al. Mutation in TET2 in Myeloid Cancers. N. Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Lasho, T.L.; Schwager, S.M.; Strand, J.S.; Elliott, M.; Mesa, R.; Li, C.-Y.; Wadleigh, M.; Lee, S.J.; Gilliland, D.G. The Clinical Phenotype of Wild-Type, Heterozygous, and Homozygous JAK2V617F in Polycythemia Vera. Cancer 2006, 106, 631–635. [Google Scholar] [CrossRef]
- Rao, N.; Butcher, C.M.; Lewis, I.D.; Ross, D.M.; Melo, J.V.; Scott, H.S.; Bardy, P.G.; D’Andrea, R.J. Clonal and Lineage Analysis of Somatic DNMT3A and JAK2 Mutations in a Chronic Phase Polycythemia Vera Patient. Br. J. Haematol. 2012, 156, 268–270. [Google Scholar] [CrossRef]
- Wang, M.; He, N.; Tian, T.; Liu, L.; Yu, S.; Ma, D. Mutation Analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese Patients with Myeloproliferative Neoplasms. BioMed Res. Int. 2014, 2014, 485645. [Google Scholar] [CrossRef]
- Pardanani, A.; Lasho, T.L.; Finke, C.M.; Mai, M.; McClure, R.F.; Tefferi, A. IDH1 and IDH2 Mutation Analysis in Chronic- and Blast-Phase Myeloproliferative Neoplasms. Leukemia 2010, 24, 1146–1151. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Abdel-Wahab, O.; Guglielmelli, P.; Patel, J.; Caramazza, D.; Pieri, L.; Finke, C.M.; Kilpivaara, O.; Wadleigh, M.; et al. IDH1 and IDH2 Mutation Studies in 1473 Patients with Chronic-, Fibrotic- or Blast-Phase Essential Thrombocythemia, Polycythemia Vera or Myelofibrosis. Leukemia 2010, 24, 1302–1309. [Google Scholar] [CrossRef]
- Stein, B.L.; Williams, D.M.; O’Keefe, C.; Rogers, O.; Ingersoll, R.G.; Spivak, J.L.; Verma, A.; Maciejewski, J.P.; McDevitt, M.A.; Moliterno, A.R. Disruption of the ASXL1 Gene Is Frequent in Primary, Post-Essential Thrombocytosis and Post-Polycythemia Vera Myelofibrosis, but Not Essential Thrombocytosis or Polycythemia Vera: Analysis of Molecular Genetics and Clinical Phenotypes. Haematologica 2011, 96, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.X.; Xu, N.; Huang, J.X.; Wu, W.E.; Liu, L.; Zhou, L.L.; Liu, X.L.; Yin, C.X.; Xu, D.; Zhou, X. Analysis of gene mutations and clinic features in 108 patients with myeloproliferative neoplasm. Zhonghua Xueyexue Zazhi 2020, 41, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Brecqueville, M.; Rey, J.; Bertucci, F.; Coppin, E.; Finetti, P.; Carbuccia, N.; Cervera, N.; Gelsi-Boyer, V.; Arnoulet, C.; Gisserot, O.; et al. Mutation Analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in Myeloproliferative Neoplasms. Genes Chromosomes Cancer 2012, 51, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Vainchenker, W.; Delhommeau, F.; Constantinescu, S.N.; Bernard, O.A. New Mutations and Pathogenesis of Myeloproliferative Neoplasms. Blood 2011, 118, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Ernst, T.; Chase, A.J.; Score, J.; Hidalgo-Curtis, C.E.; Bryant, C.; Jones, A.V.; Waghorn, K.; Zoi, K.; Ross, F.M.; Reiter, A.; et al. Inactivating Mutations of the Histone Methyltransferase Gene EZH2 in Myeloid Disorders. Nat. Genet. 2010, 42, 722–726. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Biamonte, F.; Score, J.; Hidalgo-Curtis, C.; Cervantes, F.; Maffioli, M.; Fanelli, T.; Ernst, T.; Winkelman, N.; Jones, A.V.; et al. EZH2 Mutational Status Predicts Poor Survival in Myelofibrosis. Blood 2011, 118, 5227–5234. [Google Scholar] [CrossRef]
- Bruchova, H.; Merkerova, M.; Prchal, J.T. Aberrant Expression of MicroRNA in Polycythemia Vera. Haematologica 2008, 93, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Girardot, M.; Pecquet, C.; Boukour, S.; Knoops, L.; Ferrant, A.; Vainchenker, W.; Giraudier, S.; Constantinescu, S.N. MiR-28 Is a Thrombopoietin Receptor Targeting MicroRNA Detected in a Fraction of Myeloproliferative Neoplasm Patient Platelets. Blood 2010, 116, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Ferdowsi, S.; Atarodi, K.; Amirizadeh, N.; Toogeh, G.; Azarkeivan, A.; Shirkoohi, R.; Faranoush, M.; Vaezi, M.; Alimoghaddam, K.; Ghavamzadeh, A.; et al. Expression Analysis of MicroRNA-125 in Patients with Polycythemia Vera and Essential Thrombocythemia and Correlation with JAK2 Allele Burden and Laboratory Findings. Int. J. Lab. Hematol. 2015, 37, 661–667. [Google Scholar] [CrossRef]
- Benati, M.; Montagnana, M.; Danese, E.; De Matteis, G.; Veneri, D.; Paviati, E.; Guidi, G.C. Role of JAK2 V617F Mutation and Aberrant Expression of MicroRNA-143 in Myeloproliferative Neoplasms. Clin. Chem. Lab. Med. 2015, 53, 1005–1011. [Google Scholar] [CrossRef]
- Gebauer, N.; Bernard, V.; Gebauer, W.; Feller, A.C.; Merz, H. MicroRNA Expression and JAK2 Allele Burden in Bone Marrow Trephine Biopsies of Polycythemia Vera, Essential Thrombocythemia and Early Primary Myelofibrosis. Acta Haematol. 2013, 129, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Tozzi, L.; Pancrazzi, A.; Bogani, C.; Antonioli, E.; Ponziani, V.; Poli, G.; Zini, R.; Ferrari, S.; Manfredini, R.; et al. MicroRNA Expression Profile in Granulocytes from Primary Myelofibrosis Patients. Exp. Hematol. 2007, 35, 1708–1718. [Google Scholar] [CrossRef]
- Bruchova-Votavova, H.; Yoon, D.; Prchal, J.T. MiR-451 Enhances Erythroid Differentiation in K562 Cells. Leuk. Lymphoma 2010, 51, 686–693. [Google Scholar] [CrossRef] [PubMed]
- McMullin, M.F.; Cario, H. LNK Mutations and Myeloproliferative Disorders. Am. J. Hematol. 2016, 91, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Rumi, E.; Harutyunyan, A.S.; Pietra, D.; Feenstra, J.D.M.; Cavalloni, C.; Roncoroni, E.; Casetti, I.; Bellini, M.; Milanesi, C.; Renna, M.C.; et al. LNK Mutations in Familial Myeloproliferative Neoplasms. Blood 2016, 128, 144–145. [Google Scholar] [CrossRef] [Green Version]
- Maslah, N.; Cassinat, B.; Verger, E.; Kiladjian, J.-J.; Velazquez, L. The Role of LNK/SH2B3 Genetic Alterations in Myeloproliferative Neoplasms and Other Hematological Disorders. Leukemia 2017, 31, 1661–1670. [Google Scholar] [CrossRef]
- Gery, S.; Cao, Q.; Gueller, S.; Xing, H.; Tefferi, A.; Koeffler, H.P. Lnk Inhibits Myeloproliferative Disorder-Associated JAK2 Mutant, JAK2V617F. J. Leukoc. Biol. 2009, 85, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Bersenev, A.; Wu, C.; Balcerek, J.; Jing, J.; Kundu, M.; Blobel, G.A.; Chikwava, K.R.; Tong, W. Lnk Constrains Myeloproliferative Diseases in Mice. J. Clin. Investig. 2010, 120, 2058–2069. [Google Scholar] [CrossRef] [Green Version]
- Stegelmann, F.; Bullinger, L.; Griesshammer, M.; Holzmann, K.; Habdank, M.; Kuhn, S.; Maile, C.; Schauer, S.; Döhner, H.; Döhner, K. High-Resolution Single-Nucleotide Polymorphism Array-Profiling in Myeloproliferative Neoplasms Identifies Novel Genomic Aberrations. Haematologica 2010, 95, 666–669. [Google Scholar] [CrossRef]
- Bollag, G.; Clapp, D.W.; Shih, S.; Adler, F.; Zhang, Y.Y.; Thompson, P.; Lange, B.J.; Freedman, M.H.; McCormick, F.; Jacks, T.; et al. Loss of NF1 Results in Activation of the Ras Signaling Pathway and Leads to Aberrant Growth in Haematopoietic Cells. Nat. Genet. 1996, 12, 144–148. [Google Scholar] [CrossRef]
- Jäger, R.; Kralovics, R. Molecular Basis and Clonal Evolution of Myeloproliferative Neoplasms. Haematologica 2010, 95, 526–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, P.; Karow, A.; Nienhold, R.; Looser, R.; Hao-Shen, H.; Nissen, I.; Girsberger, S.; Lehmann, T.; Passweg, J.; Stern, M.; et al. Clonal Evolution and Clinical Correlates of Somatic Mutations in Myeloproliferative Neoplasms. Blood 2014, 123, 2220–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranaz, P.; Hurtado, C.; Erquiaga, I.; Miguéliz, I.; Ormazábal, C.; Cristobal, I.; García-Delgado, M.; Novo, F.J.; Vizmanos, J.L. CBL Mutations in Myeloproliferative Neoplasms Are Also Found in the Gene’s Proline-Rich Domain and in Patients with the V617FJAK2. Haematologica 2012, 97, 1234–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.; Jones, D.; Medeiros, L.J.; Chen, W.; Vega-Vazquez, F.; Luthra, R. Activating FLT3 Mutations Are Detectable in Chronic and Blast Phase of Chronic Myeloproliferative Disorders Other than Chronic Myeloid Leukemia. Am. J. Clin. Pathol. 2006, 126, 530–533. [Google Scholar] [CrossRef]
- Casolari, D.A.; Nguyen, T.; Butcher, C.M.; Iarossi, D.G.; Hahn, C.N.; Bray, S.C.; Neufing, P.; Parker, W.T.; Feng, J.; Maung, K.Z.Y.; et al. A Novel, Somatic, Transforming Mutation in the Extracellular Domain of Epidermal Growth Factor Receptor Identified in Myeloproliferative Neoplasm. Sci. Rep. 2017, 7, 2467. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Pacilli, A.; Coltro, G.; Mannelli, F.; Mannelli, L.; Contini, E.; Rotunno, G.; Bartalucci, N.; Fiaccabrino, S.; Sordi, B.; et al. Characteristics and Clinical Correlates of NFE2 Mutations in Chronic Myeloproliferative Neoplasms. Am. J. Hematol. 2020, 95, E23–E26. [Google Scholar] [CrossRef] [Green Version]
- Goerttler, P.S.; Kreutz, C.; Donauer, J.; Faller, D.; Maiwald, T.; März, E.; Rumberger, B.; Sparna, T.; Schmitt-Gräff, A.; Wilpert, J.; et al. Gene Expression Profiling in Polycythaemia Vera: Overexpression of Transcription Factor NF-E2. Br. J. Haematol. 2005, 129, 138–150. [Google Scholar] [CrossRef]
- Kleiblova, P.; Shaltiel, I.A.; Benada, J.; Ševčík, J.; Pecháčková, S.; Pohlreich, P.; Voest, E.E.; Dundr, P.; Bartek, J.; Kleibl, Z.; et al. Gain-of-Function Mutations of PPM1D/Wip1 Impair the P53-Dependent G1 Checkpoint. J. Cell. Biol. 2013, 201, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Andrieux, J.; Demory, J.L.; Caulier, M.T.; Agape, P.; Wetterwald, M.; Bauters, F.; Laï, J.L. Karyotypic Abnormalities in Myelofibrosis Following Polycythemia Vera. Cancer Genet. Cytogenet 2003, 140, 118–123. [Google Scholar] [CrossRef]
- Luque Paz, D.; Jouanneau-Courville, R.; Riou, J.; Ianotto, J.-C.; Boyer, F.; Chauveau, A.; Renard, M.; Chomel, J.-C.; Cayssials, E.; Gallego-Hernanz, M.-P.; et al. Leukemic Evolution of Polycythemia Vera and Essential Thrombocythemia: Genomic Profiles Predict Time to Transformation. Blood Adv. 2020, 4, 4887–4897. [Google Scholar] [CrossRef]
- Marcellino, B.K.; Hoffman, R.; Tripodi, J.; Lu, M.; Kosiorek, H.; Mascarenhas, J.; Rampal, R.K.; Dueck, A.; Najfeld, V. Advanced Forms of MPNs Are Accompanied by Chromosomal Abnormalities That Lead to Dysregulation of TP53. Blood Adv. 2018, 2, 3581–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Harada, Y.; Imagawa, J.; Kimura, A.; Harada, H. AML1/RUNX1 Point Mutation Possibly Promotes Leukemic Transformation in Myeloproliferative Neoplasms. Blood 2009, 114, 5201–5205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, P.A.; Delhommeau, F.; LeCouédic, J.-P.; Dawson, M.A.; Chen, E.; Bareford, D.; Kusec, R.; McMullin, M.F.; Harrison, C.N.; Vannucchi, A.M.; et al. Two Routes to Leukemic Transformation after a JAK2 Mutation-Positive Myeloproliferative Neoplasm. Blood 2010, 115, 2891–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapralova, K.; Lanikova, L.; Lorenzo, F.; Song, J.; Horvathova, M.; Divoky, V.; Prchal, J.T. RUNX1 and NF-E2 Upregulation Is Not Specific for MPNs, but Is Seen in Polycythemic Disorders with Augmented HIF Signaling. Blood 2014, 123, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Vainchenker, W.; Kralovics, R. Genetic Basis and Molecular Pathophysiology of Classical Myeloproliferative Neoplasms. Blood 2017, 129, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Grinfeld, J.; Nangalia, J.; Green, A.R. Molecular Determinants of Pathogenesis and Clinical Phenotype in Myeloproliferative Neoplasms. Haematologica 2017, 102, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Klampfl, T.; Gisslinger, H.; Harutyunyan, A.S.; Nivarthi, H.; Rumi, E.; Milosevic, J.D.; Them, N.C.C.; Berg, T.; Gisslinger, B.; Pietra, D.; et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. 2013, 369, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Broséus, J.; Park, J.-H.; Carillo, S.; Hermouet, S.; Girodon, F. Presence of Calreticulin Mutations in JAK2-Negative Polycythemia Vera. Blood 2014, 124, 3964–3966. [Google Scholar] [CrossRef] [Green Version]
- Chauveau, A.; Nibourel, O.; Tondeur, S.; Paz, D.L.; Mansier, O.; Paul, F.; Wemeau, M.; Preudhomme, C.; Lippert, E.; Ugo, V. Absence of CALR Mutations in JAK2-Negative Polycythemia. Haematologica 2017, 102, e15–e16. [Google Scholar] [CrossRef]
- Pardanani, A.D.; Levine, R.L.; Lasho, T.; Pikman, Y.; Mesa, R.A.; Wadleigh, M.; Steensma, D.P.; Elliott, M.A.; Wolanskyj, A.P.; Hogan, W.J.; et al. MPL515 Mutations in Myeloproliferative and Other Myeloid Disorders: A Study of 1182 Patients. Blood 2006, 108, 3472–3476. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Cooper, T.A. Pre-MRNA Splicing in Disease and Therapeutics. Trends Mol. Med. 2012, 18, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Makishima, H.; Visconte, V.; Sakaguchi, H.; Jankowska, A.M.; Abu Kar, S.; Jerez, A.; Przychodzen, B.; Bupathi, M.; Guinta, K.; Afable, M.G.; et al. Mutations in the Spliceosome Machinery, a Novel and Ubiquitous Pathway in Leukemogenesis. Blood 2012, 119, 3203–3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saez, B.; Walter, M.J.; Graubert, T.A. Splicing Factor Gene Mutations in Hematologic Malignancies. Blood 2017, 129, 1260–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, J.M.; Song, S.; Koh, Y.; Yoon, S.-S.; Kim, D. The Temporal Sequence and the Differences in Somatic Mutation Acquisition Determines Clinical Behaviors of JAK2-Positive Myeloproliferative Neoplasms. Anticancer Res. 2019, 39, 6273–6282. [Google Scholar] [CrossRef]
- Roller, A.; Grossmann, V.; Bacher, U.; Poetzinger, F.; Weissmann, S.; Nadarajah, N.; Boeck, L.; Kern, W.; Haferlach, C.; Schnittger, S.; et al. Landmark Analysis of DNMT3A Mutations in Hematological Malignancies. Leukemia 2013, 27, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S.; Patel, J.; Wise, D.R.; Abdel-Wahab, O.; Bennett, B.D.; Coller, H.A.; Cross, J.R.; Fantin, V.R.; Hedvat, C.V.; Perl, A.E.; et al. The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting Alpha-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell 2010, 17, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Senín, A.; Fernández-Rodríguez, C.; Bellosillo, B.; Camacho, L.; Longarón, R.; Angona, A.; Besses, C.; Álvarez-Larrán, A. Non-Driver Mutations in Patients with JAK2V617F-Mutated Polycythemia Vera or Essential Thrombocythemia with Long-Term Molecular Follow-Up. Ann. Hematol. 2018, 97, 443–451. [Google Scholar] [CrossRef]
- Ortmann, C.A.; Kent, D.G.; Nangalia, J.; Silber, Y.; Wedge, D.C.; Grinfeld, J.; Baxter, E.J.; Massie, C.E.; Papaemmanuil, E.; Menon, S.; et al. Effect of Mutation Order on Myeloproliferative Neoplasms. N. Engl. J. Med. 2015, 372, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wahab, O.; Adli, M.; LaFave, L.M.; Gao, J.; Hricik, T.; Shih, A.H.; Pandey, S.; Patel, J.P.; Chung, Y.R.; Koche, R.; et al. ASXL1 Mutations Promote Myeloid Transformation through Loss of PRC2-Mediated Gene Repression. Cancer Cell 2012, 22, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.L.; Pineault, N.; Brookes, C.; Helgason, C.D.; Ohta, H.; Bodner, C.; Hess, J.L.; Humphries, R.K.; Brock, H.W. Loss-of-Function Additional Sex Combs like 1 Mutations Disrupt Hematopoiesis but Do Not Cause Severe Myelodysplasia or Leukemia. Blood 2010, 115, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Dinan, A.M.; Atkins, J.F.; Firth, A.E. ASXL Gain-of-Function Truncation Mutants: Defective and Dysregulated Forms of a Natural Ribosomal Frameshifting Product? Biol. Direct 2017, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.-M.; et al. The Polycomb Group Protein EZH2 Directly Controls DNA Methylation. Nature 2006, 439, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Lange, C.A. Roles of the EZH2 Histone Methyltransferase in Cancer Epigenetics. Mutat. Res. 2008, 647, 21–29. [Google Scholar] [CrossRef]
- Du, T.; Zamore, P.D. MicroPrimer: The Biogenesis and Function of MicroRNA. Development 2005, 132, 4645–4652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, H.; Cardozo, C.; Yu, W.; Wang, A.; Moliterno, A.R.; Dang, C.V.; Spivak, J.L. MicroRNA Deregulation in Polycythemia Vera and Essential Thrombocythemia Patients. Blood Cells Mol. Dis. 2013, 50, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Bruchova, H.; Yoon, D.; Agarwal, A.M.; Mendell, J.; Prchal, J.T. The Regulated Expression of MiRNAs in Normal and Polycythemia Vera Erythropoiesis. Exp. Hematol. 2007, 35, 1657–1667. [Google Scholar] [CrossRef] [Green Version]
- Obeidi, N.; Pourfathollah, A.A.; Soleimani, M.; Nikougoftar Zarif, M.; Kouhkan, F. The Effect of Mir-451 Upregulation on Erythroid Lineage Differentiation of Murine Embryonic Stem Cells. Cell J. 2016, 18, 165–178. [Google Scholar]
- Zhan, M.; Miller, C.P.; Papayannopoulou, T.; Stamatoyannopoulos, G.; Song, C.-Z. MicroRNA Expression Dynamics during Murine and Human Erythroid Differentiation. Exp. Hematol. 2007, 35, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Sankaran, V.G.; Lodish, H.F. MicroRNAs in Erythroid and Megakaryocytic Differentiation and Megakaryocyte-Erythroid Progenitor Lineage Commitment. Leukemia 2012, 26, 2310–2316. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, L.; Cheng, A.M.; Fleming, H.E.; Furlonger, C.; Vesely, S.; Bernstein, A.; Paige, C.J.; Pawson, T. Cytokine Signaling and Hematopoietic Homeostasis Are Disrupted in Lnk-Deficient Mice. J. Exp. Med. 2002, 195, 1599–1611. [Google Scholar] [CrossRef]
- Takaki, S.; Morita, H.; Tezuka, Y.; Takatsu, K. Enhanced Hematopoiesis by Hematopoietic Progenitor Cells Lacking Intracellular Adaptor Protein, Lnk. J. Exp. Med. 2002, 195, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Bersenev, A.; Wu, C.; Balcerek, J.; Tong, W. Lnk Controls Mouse Hematopoietic Stem Cell Self-Renewal and Quiescence through Direct Interactions with JAK2. J. Clin. Investig. 2008, 118, 2832–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, W.; Zhang, J.; Lodish, H.F. Lnk Inhibits Erythropoiesis and Epo-Dependent JAK2 Activation and Downstream Signaling Pathways. Blood 2005, 105, 4604–4612. [Google Scholar] [CrossRef] [PubMed]
- Bergoug, M.; Doudeau, M.; Godin, F.; Mosrin, C.; Vallée, B.; Bénédetti, H. Neurofibromin Structure, Functions and Regulation. Cells 2020, 9, 2365. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.-S.; McPherson, J.R.; Ong, C.-K.; Rozen, S.G.; Teh, B.-T.; Lee, A.S.G.; Callen, D.F. The NF1 Gene Revisited-from Bench to Bedside. Oncotarget 2014, 5, 5873–5892. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, R.A.; O’Marcaigh, A.; Wardak, Z.; Zhang, Y.Y.; Dranoff, G.; Jacks, T.; Clapp, D.W.; Shannon, K.M. Nf1 and Gmcsf Interact in Myeloid Leukemogenesis. Mol. Cell 2000, 5, 189–195. [Google Scholar] [CrossRef]
- Campbell, S.L.; Khosravi-Far, R.; Rossman, K.L.; Clark, G.J.; Der, C.J. Increasing Complexity of Ras Signaling. Oncogene 1998, 17, 1395–1413. [Google Scholar] [CrossRef] [Green Version]
- Voice, J.K.; Klemke, R.L.; Le, A.; Jackson, J.H. Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce Transformation, and Stimulate Cell Motility. J. Biol. Chem. 1999, 274, 17164–17170. [Google Scholar] [CrossRef] [Green Version]
- Bos, J.L. Ras Oncogenes in Human Cancer: A Review. Cancer Res. 1989, 49, 4682–4689. [Google Scholar]
- Parikh, C.; Subrahmanyam, R.; Ren, R. Oncogenic NRAS, KRAS, and HRAS Exhibit Different Leukemogenic Potentials in Mice. Cancer Res. 2007, 67, 7139–7146. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.P.; Getta, B.; Masarova, L.; Famulare, C.; Schulman, J.; Datoguia, T.S.; Puga, R.D.; Paiva, R.D.M.A.; Arcila, M.E.; Hamerschlak, N.; et al. Prognostic Impact of RAS Pathway Mutations in Patients with Myelofibrosis. Leukemia 2020, 34, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Li, B.; Jia, Y.J.; Zhang, P.H.; Xu, Z.F.; Qin, T.J.; Qu, S.Q.; Pan, L.J.; Liu, J.Q.; Yan, X.; et al. Genetic characteristics and prognostic values of RAS mutations in patients with myelofibrosis. Zhonghua Xueyexue Zazhi 2020, 41, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Makishima, H.; Cazzolli, H.; Szpurka, H.; Dunbar, A.; Tiu, R.; Huh, J.; Muramatsu, H.; O’Keefe, C.; Hsi, E.; Paquette, R.L.; et al. Mutations of E3 Ubiquitin Ligase Cbl Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies. J. Clin. Oncol. 2009, 27, 6109–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanada, M.; Suzuki, T.; Shih, L.-Y.; Otsu, M.; Kato, M.; Yamazaki, S.; Tamura, A.; Honda, H.; Sakata-Yanagimoto, M.; Kumano, K.; et al. Gain-of-Function of Mutated C-CBL Tumour Suppressor in Myeloid Neoplasms. Nature 2009, 460, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Nakata, Y.; Ueda, T.; Nagamachi, A.; Yamasaki, N.; Ikeda, K.-I.; Sera, Y.; Takubo, K.; Kanai, A.; Oda, H.; Sanada, M.; et al. Acquired Expression of CblQ367P in Mice Induces Dysplastic Myelopoiesis Mimicking Chronic Myelomonocytic Leukemia. Blood 2017, 129, 2148–2160. [Google Scholar] [CrossRef] [Green Version]
- Schnittger, S.; Bacher, U.; Alpermann, T.; Reiter, A.; Ulke, M.; Dicker, F.; Eder, C.; Kohlmann, A.; Grossmann, V.; Kowarsch, A.; et al. Use of CBL Exon 8 and 9 Mutations in Diagnosis of Myeloproliferative Neoplasms and Myelodysplastic/Myeloproliferative Disorders: An Analysis of 636 Cases. Haematologica 2012, 97, 1890–1894. [Google Scholar] [CrossRef] [Green Version]
- Rosnet, O.; Schiff, C.; Pébusque, M.J.; Marchetto, S.; Tonnelle, C.; Toiron, Y.; Birg, F.; Birnbaum, D. Human FLT3/FLK2 Gene: CDNA Cloning and Expression in Hematopoietic Cells. Blood 1993, 82, 1110–1119. [Google Scholar] [CrossRef] [Green Version]
- Rosnet, O.; Bühring, H.J.; Marchetto, S.; Rappold, I.; Lavagna, C.; Sainty, D.; Arnoulet, C.; Chabannon, C.; Kanz, L.; Hannum, C.; et al. Human FLT3/FLK2 Receptor Tyrosine Kinase Is Expressed at the Surface of Normal and Malignant Hematopoietic Cells. Leukemia 1996, 10, 238–248. [Google Scholar]
- Kelly, L.M.; Liu, Q.; Kutok, J.L.; Williams, I.R.; Boulton, C.L.; Gilliland, D.G. FLT3 Internal Tandem Duplication Mutations Associated with Human Acute Myeloid Leukemias Induce Myeloproliferative Disease in a Murine Bone Marrow Transplant Model. Blood 2002, 99, 310–318. [Google Scholar] [CrossRef]
- Citri, A.; Yarden, Y. EGF-ERBB Signalling: Towards the Systems Level. Nat. Rev. Mol. Cell. Biol. 2006, 7, 505–516. [Google Scholar] [CrossRef]
- Yarden, Y.; Pines, G. The ERBB Network: At Last, Cancer Therapy Meets Systems Biology. Nat. Rev. Cancer 2012, 12, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.L.; Engelman, J.A. ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics. Cancer Cell 2014, 25, 282–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, N.C. The NF-E2 Transcription Factor. Int. J. Biochem. Cell Biol. 1998, 30, 429–432. [Google Scholar] [CrossRef]
- Kaufmann, K.B.; Gründer, A.; Hadlich, T.; Wehrle, J.; Gothwal, M.; Bogeska, R.; Seeger, T.S.; Kayser, S.; Pham, K.-B.; Jutzi, J.S.; et al. A Novel Murine Model of Myeloproliferative Disorders Generated by Overexpression of the Transcription Factor NF-E2. J. Exp. Med. 2012, 209, 35–50. [Google Scholar] [CrossRef]
- Kahn, J.D.; Miller, P.G.; Silver, A.J.; Sellar, R.S.; Bhatt, S.; Gibson, C.; McConkey, M.; Adams, D.; Mar, B.; Mertins, P.; et al. PPM1D-Truncating Mutations Confer Resistance to Chemotherapy and Sensitivity to PPM1D Inhibition in Hematopoietic Cells. Blood 2018, 132, 1095–1105. [Google Scholar] [CrossRef]
- Donehower, L.A.; Soussi, T.; Korkut, A.; Liu, Y.; Schultz, A.; Cardenas, M.; Li, X.; Babur, O.; Hsu, T.-K.; Lichtarge, O.; et al. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019, 28, 1370–1384.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farnoud, N.; Famulare, C.; Papaemmanuil, E.; McGovern, E.; Medina, J.; Arango Ossa, J.E.; Rampal, R.K.; Li, B.; Levine, R.L.; Mascarenhas, J.; et al. Landscape of TP53 Mutations in MPN. Blood 2019, 134, 1681. [Google Scholar] [CrossRef]
- Kubesova, B.; Pavlova, S.; Malcikova, J.; Kabathova, J.; Radova, L.; Tom, N.; Tichy, B.; Plevova, K.; Kantorova, B.; Fiedorova, K.; et al. Low-Burden TP53 Mutations in Chronic Phase of Myeloproliferative Neoplasms: Association with Age, Hydroxyurea Administration, Disease Type and JAK2 Mutational Status. Leukemia 2018, 32, 450–461. [Google Scholar] [CrossRef]
- Tsuruta-Kishino, T.; Koya, J.; Kataoka, K.; Narukawa, K.; Sumitomo, Y.; Kobayashi, H.; Sato, T.; Kurokawa, M. Loss of P53 Induces Leukemic Transformation in a Murine Model of Jak2 V617F-Driven Polycythemia Vera. Oncogene 2017, 36, 3300–3311. [Google Scholar] [CrossRef]
- Harada, H.; Harada, Y.; Niimi, H.; Kyo, T.; Kimura, A.; Inaba, T. High Incidence of Somatic Mutations in the AML1/RUNX1 Gene in Myelodysplastic Syndrome and Low Blast Percentage Myeloid Leukemia with Myelodysplasia. Blood 2004, 103, 2316–2324. [Google Scholar] [CrossRef]
- Wang, W.; Schwemmers, S.; Hexner, E.O.; Pahl, H.L. AML1 Is Overexpressed in Patients with Myeloproliferative Neoplasms and Mediates JAK2V617F-Independent Overexpression of NF-E2. Blood 2010, 116, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Cerquozzi, S.; Tefferi, A. Blast Transformation and Fibrotic Progression in Polycythemia Vera and Essential Thrombocythemia: A Literature Review of Incidence and Risk Factors. Blood Cancer J. 2015, 5, e366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klampfl, T.; Harutyunyan, A.; Berg, T.; Gisslinger, B.; Schalling, M.; Bagienski, K.; Olcaydu, D.; Passamonti, F.; Rumi, E.; Pietra, D.; et al. Genome Integrity of Myeloproliferative Neoplasms in Chronic Phase and during Disease Progression. Blood 2011, 118, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Thoennissen, N.H.; Krug, U.O.; Lee, D.H.T.; Kawamata, N.; Iwanski, G.B.; Lasho, T.; Weiss, T.; Nowak, D.; Koren-Michowitz, M.; Kato, M.; et al. Prevalence and Prognostic Impact of Allelic Imbalances Associated with Leukemic Transformation of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Blood 2010, 115, 2882–2890. [Google Scholar] [CrossRef] [Green Version]
- Ramdzan, Z.M.; Nepveu, A. CUX1, a Haploinsufficient Tumour Suppressor Gene Overexpressed in Advanced Cancers. Nat. Rev. Cancer 2014, 14, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Aly, M.; Ramdzan, Z.M.; Nagata, Y.; Balasubramanian, S.K.; Hosono, N.; Makishima, H.; Visconte, V.; Kuzmanovic, T.; Adema, V.; Nazha, A.; et al. Distinct Clinical and Biological Implications of CUX1 in Myeloid Neoplasms. Blood Adv. 2019, 3, 2164–2178. [Google Scholar] [CrossRef]
- An, N.; Khan, S.; Imgruet, M.K.; Gurbuxani, S.K.; Konecki, S.N.; Burgess, M.R.; McNerney, M.E. Gene Dosage Effect of CUX1 in a Murine Model Disrupts HSC Homeostasis and Controls the Severity and Mortality of MDS. Blood 2018, 131, 2682–2697. [Google Scholar] [CrossRef]
- Hock, H.; Meade, E.; Medeiros, S.; Schindler, J.W.; Valk, P.J.M.; Fujiwara, Y.; Orkin, S.H. Tel/Etv6 Is an Essential and Selective Regulator of Adult Hematopoietic Stem Cell Survival. Genes Dev. 2004, 18, 2336–2341. [Google Scholar] [CrossRef]
- Gold, L.I.; Eggleton, P.; Sweetwyne, M.T.; Van Duyn, L.B.; Greives, M.R.; Naylor, S.-M.; Michalak, M.; Murphy-Ullrich, J.E. Calreticulin: Non-Endoplasmic Reticulum Functions in Physiology and Disease. FASEB J. 2010, 24, 665–683. [Google Scholar] [CrossRef] [Green Version]
- Tefferi, A.; Nicolosi, M.; Mudireddy, M.; Szuber, N.; Finke, C.M.; Lasho, T.L.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N.; et al. Driver Mutations and Prognosis in Primary Myelofibrosis: Mayo-Careggi MPN Alliance Study of 1,095 Patients. Am. J. Hematol. 2018, 93, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Belcic Mikic, T.; Pajic, T.; Sever, M. CALR Mutations in a Cohort of JAK2 V617F Negative Patients with Suspected Myeloproliferative Neoplasms. Sci. Rep. 2019, 9, 19838. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A.; Lasho, T.; Finke, C.; Oh, S.T.; Gotlib, J.; Tefferi, A. LNK Mutation Studies in Blast-Phase Myeloproliferative Neoplasms, and in Chronic-Phase Disease with TET2, IDH, JAK2 or MPL Mutations. Leukemia 2010, 24, 1713–1718. [Google Scholar] [CrossRef] [PubMed]
- Nangalia, J.; Green, A.R. Myeloproliferative Neoplasms: From Origins to Outcomes. Hematol. Am. Soc. Hematol. Educ. Program Book 2017, 2017, 470–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campario, H.; Mosca, M.; Aral, B.; Bourgeois, V.; Martin, P.; Brustel, A.; Filser, M.; Marzac, C.; Plo, I.; Girodon, F. Impact of Interferon on a Triple Positive Polycythemia Vera. Leukemia 2020, 34, 1210–1212. [Google Scholar] [CrossRef]
- Gill, H.; Leung, G.M.K.; Yim, R.; Lee, P.; Pang, H.H.; Ip, H.-W.; Leung, R.Y.Y.; Li, J.; Panagiotou, G.; Ma, E.S.K.; et al. Myeloproliferative Neoplasms Treated with Hydroxyurea, Pegylated Interferon Alpha-2A or Ruxolitinib: Clinicohematologic Responses, Quality-of-Life Changes and Safety in the Real-World Setting. Hematology 2020, 25, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Nussenzveig, R.H.; Pham, H.T.; Perkins, S.L.; Prchal, J.T.; Agarwal, A.M.; Salama, M.E. Increased Frequency of Co-Existing JAK2 Exon-12 or MPL Exon-10 Mutations in Patients with Low JAK2(V617F) Allelic Burden. Leuk. Lymphoma 2016, 57, 1429–1435. [Google Scholar] [CrossRef]
- Skov, V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers 2020, 12, 2194. [Google Scholar] [CrossRef]
Canonical/Non Canonical | Location | Mutation | Comments | References | |
---|---|---|---|---|---|
Canonical JAK2 and Exon 14 related mutations | Exon 14 | V617F | Homozygous (around 30%) → higher PV related disorders and fibrotic transformation risk than heterozygote counterparts. | [5,24,25,26,28,29,30] | |
Complete absence | Most likely due to exon skipping after alternative splicing. More frequent in V617F-neg. PV patients. | [31] | |||
H606Q | - | [31] | |||
H608Y | |||||
L611V | STAT signaling triggering | [32] | |||
L611S | Associated with V617F mutations. | [33] | |||
V617I | As V617F, induce cytokine independence & constitutive JAK2 downstream signaling. | [6,31,34] | |||
C618F | - | [35] | |||
C618R | [31] | ||||
Non canonical/atypical JAK2 mutations | Exon 12 | V536-I546 dup11 | Mut. freq.: 1.1% | First reported in JAK2V617F-neg. PV. Mimic the outcome of JAK2V617F-pos. PV patients. Often heterozygous. | [36] |
V536-F547 dup | Mut. freq.: 1.1% | [37] | |||
F537-I546dup10F547L | Mut. freq.: 1.1% | [36] | |||
F537IK539I | Mut. freq.: 1.1% | [38] | |||
F537-K539delinsL | Mut. freq.: 9.9% | [36,37,39,40] | |||
H538QK539L | Mut. freq.: 4.4% | [37,39] | |||
H538-K539delinsL | Mut. freq.: 3.3% | [36,41,42] | |||
H538-K539del | Mut. freq.: 1.1% | [37] | |||
H538DK539LI540S | Mut. freq.: 1.1% | ||||
H538G | Mut. freq.: 1.1% | [38] | |||
K539L | Mut. freq.: 7.7% | [37,38,39,41] | |||
K539E | Mut. freq.: 1.1% | [38] | |||
I540-E543delinsMK | Mut. freq.: 3.3% | [36,43] | |||
I540-E542delinsS | Mut. freq.: 1.1% | [44] | |||
R541-E543delinsK | Mut. freq.: 9.9% | [36,42,43,44,45] | |||
N542-E543del | Mut. freq.: 39.6% | [36,37,39,40,41,42,44,46,47,48,49,50] | |||
E543-D544del | Mut. freq.: 8.8% | [36,37,48] | |||
D544-L545del | Mut. freq.: 8.8% | [44] | |||
547insLI540-F547dup8 | Mut. freq.: 1.1% | ||||
Non canonical/atypical JAK2 mutations | Exon 13 | F557L | With frameshift and early termination. G571S: • Alter the most important autophosphorylation site → downregulation of JAK2 activity. • Probably not sufficient to trigger PV development. | [31] | |
R564Q | |||||
R564L | |||||
V567A | |||||
G571S | [31,51,52,53] | ||||
G571R | [31] | ||||
L579F | |||||
H587N | |||||
S591L | |||||
Exon 15 | L642P | - | |||
I645V |
Pathway | Affected Gene | Location | Comments | Frequency in PV | References | |||
---|---|---|---|---|---|---|---|---|
Gene Symbol | Full Name | Alias | ||||||
Alternative splicing | SRSF2 | Serine and arginine Rich Splicing Factor 2 | SC35, PR264, SC-35, SFRS2, SFRS2A, SRp30b | 17q25.1 | Additional mutations that seem to enhance survival prediction in PV and can contribute to identifying patients at risk for fibrotic progression. | <3% | [3,60] | |
SF3B1 | Splicing Factor 3b subunit 1 | MDS, PRP10, Hsh155, PRPF10, SAP155, SF3b155 | 2q33.1 | 5% | [3,60,61] | |||
U2AF1 | U2 small nuclear RNA Auxiliary Factor 1 | RN, FP793, U2AF35, U2AFBP, RNU2AF1 | 21q22.3 | 1–2% | [3,60,62] | |||
ZRSR2 | Zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2 | URP, ZC3H22, U2AF1L2, U2AF1RS2, U2AF1-RS2 | Xp22.2 | 1–2% | [3,19,60] | |||
Epigenetic | DNA methylation | TET2 | TET methylcytosine dioxygenase 2 | MDS, IMD75, KIAA1546 | 4q24 | Frame shift, generated stop codons, in-frame deletion, and amino acid substitutions of highly conserved residues. | >20% | [63,64,65,66] |
DNMT3A | DNA MethylTransferase 3α | TBRS, HESJAS, DNMT3A2, M.HsaIIIA | 2p23.3 | Terminal exon 3 somatic mutations | 2.7% 9% | [67,68] | ||
IDH1/IDH2 | Isocitrate DeHydrogenase (NADP(+)) 1/2 |
|
|
| 2% | [69,70] | ||
Histone modifications | ASXL1 | ASXL transcriptional regulator 1 | MDS, BOPS | 20q11.21 | 4 inactivating somatic mutations in JAK2V617F-pos. PV patients (exon 12):
| 4–7% | [68,71,72,73,74] | |
EZH2 | Enhancer of Zeste 2 polycomb repressive complex 2 subunit | WVS, ENX1, KMT6, WVS2, ENX-1, EZH2b, KMT6A | 7q36.1 | Resulted in premature chain termination or direct abrogation of histone methyltransferase activity. | 3% (PV) 1% (post-PV MF) | [75,76] | ||
Epigenetic | miRNA deregulation | let-7a | microRNA let-7a-1 | LET7A1, let-7a-1, MIRNLET7A1 | 9q22.32 | Down-regulation in granulocytes of PV patients. Correlations between aberrant expression of let-7a and JAK2V617F Mut. freq. | - | [77] |
miR-26b | microRNA 26b | MIRN26B, miR-26b, hsa-mir-26b | 2q35 | Up-regulation in platelets of PV patients. | - | |||
miR-27b | microRNA 27b | MIR-27b, MIRN27B, miRNA27B | 9q22.32 | Up-regulation in platelets of PV patients. | - | |||
miR-28 | microRNA 28 | MIRN28, miR-28, hsa-mir-28 | 3q28 | Correlation between high miR-28 and MPL down-modulation → act as an inhibitor of MPL translation. Overexpression of miR-28 platelets (a fraction of PV & ET patients, wild type for JAK2). | 50% (JAK2V617F-pos. PV) | [78] | ||
miR-30b miR-30c | microRNA 30b microRNA 30c |
|
| Down-regulation in reticulocytes of PV patients. Correlations between aberrant expression of miR-30c and JAK2V617F Mut. freq. (Inversely correlated with JAK2V617F allele burden). | - | [77] | ||
miR-125a-5p miR-125b-5p | microRNA 125a-5p microRNA 125b-5p |
|
| Significant correlation between miR-125a-5p and platelet counts in PV patients. | - | [79] | ||
Epigenetic | miRNA deregulation | miR-143 | microRNA 143 | MIRN143, mir-143 | 5q32 | Up-regulation in mononuclear cells of PV patients. Correlations between aberrant expression of miR-143 and JAK2V617F Mut. freq. (Reflect JAK2V617F allele burden). Up-regulation → KRAS decreased expression → exaggerated erythropoiesis. | - | [77,80] |
miR-145 | microRNA 145 | MIRN145, miR-145, miRNA145 | 5q32 | Up-regulation in mononuclear cells of PV patients. | - | [77] | ||
miR-150 | microRNA 150 | MIRN150, mir-150, miRNA150 | 19q13.33 | miR-150 progressive downregulation (erythropoiesis) → inversely correlated with JAK2V617F allele burden. | - | [77,81] | ||
miR-182 | microRNA 182 | MIRN182, mir-182, miRNA182 | 7q32.2 | miR-182 upregulation in PV granulocytes is associated with JAK2V617F allele burden. | - | [77,81,82] | ||
miR-223 | microRNA 223 | MIRN223, mir-223, miRNA223 | Xq12 | Up-regulation in mononuclear cells of PV patients. | - | [77] | ||
miR-342 | microRNA 342 | MIRN342, hsa-mir-342 | 14q32.2 | miR-342 progressive downregulation (erythropoiesis) → inversely correlated with JAK2V617F allele burden. | - | [77,81] | ||
miR-451 | microRNA 451 | MIR451, MIRN451, mir-451a, hsa-mir-451, hsa-mir-451a | 17q11.2 | Up-regulation in mononuclear cells of PV patients. | - | [77,83] | ||
Intracellular signaling | LNK/SH2B3 | SH2B adaptor protein 3 | IDDM20 | 12q24.12 | Missense mutations targeting all exons, resulting in a reduced level of activity. Coexist in patients with JAK2V617F (one case in JAK2V617F-neg. PV patient) | 7% | [5,9,84,85,86,87,88] | |
Intracellular signaling | NF1 | NeuroFibromin 1 | WSS, NFNS, VRNF | 17q11.2 | Loss of function of the mature protein → Ras constitutive activation 2 case reports: WT JAK2 protein/homozygous V617F mutation | 15% | [68,73,89,90,91] | |
CBL | Cbl proto-oncogene | CBL2, NSLL, C-CBL, RNF55, FRA11B | 11q23.3 | Recurrent change within the exon 12 (S675C) in JAK2 V617F-pos. PV patients. Similar frequency of CBL mutations in both JAK2V617F-pos. & JAK2V617F-neg. PV patients. | 1.5% | [92,93] | ||
FLT3 | Fms related receptor tyrosine kinase 3 | FLK2, STK1, CD135, FLK-2 | 13q12.2 | Internal tandem duplication (ITD) (most described). Only reported for a patient suffering from PV, but also in post-PV MF. | - | [68,94] | ||
ERBB | Epidermal Growth Factor Receptor | EGFR, ERBB1, ERRP, HER1, NISBD2, PIG61, mENA | 7p11.2 | ERBB1/EGFR somatic mutation (C329R) in JAK2V617F-pos. patient. | - | [95] | ||
Transcription factors | NF-E2 | Nuclear Factor, Erythroid 2 | NFE2, p45 | 12q13.13 | Somatic insertion or deletion mutations in 3 patients JAK2V617F-pos. Patients (after the JAK2 mutation) → proliferative advantages. 2 to 40-fold overexpression of NF-E2 in PV patients. Heterozygous | 2–9% | [8,17,60,96,97] | |
PPM1D | Protein Phosphatase, Mg2+/Mn2+ dependent 1D | IDDGIP, JDVS, PP2C-DELTA, WIP1 | 17q23.2 | Most described mutations in exon 6 → proliferative advantages. Mutated form of PPM1D was subclonal to JAK2V617F in PV patients (appear significantly later). | 2% | [17,60,98] | ||
Transcription factors | TP53 | Tumor Protein p53 | BCC7, BMFS5, LFS1, P53, TRP53 | 17p13.1 | TP53 mutations in 70% of patients with PV-related MF & 8% with PV. Very low allele burden/appear significantly later/loss of heterozygosity → disease progression. TP53-mutated subclones within JAK2 or CALR-mutated populations. | 8% (PV) 70% (post-PV MF) | [17,92,99,100,101] | |
RUNX1 | RUNX (Runt-related) family transcription factor 1 | AML1, AML1-EVI-1, AMLCR1, CBF2alpha, CBFA2, EVI-1, PEBP2aB, PEBP2alpha | 21q22.12 | Over-expressed in erythroid progenitors. Missense, frameshift, and nonsense in a blast from MNP. RUNX1 alterated gene transcripts ↗ in BFU-Es and granulocytes of PV patients + ↗ HIF. Rare in PV | 2% (PV) | [5,102,103,104] | ||
CUX1 | Cut like homeobox 1 | CASP, CDP, CDP/Cut, CDP1, COY1, CUTL1, CUX, Clox, Cux/CDP, GDDI, GOLIM6, Nbla10317, p100, p110, p200, p75 | 7q22.1 | In a case of JAK2V617F-pos. PV patients. Sign of disease evolution and cell transformation (post-PV MF). | - | [92,100] | ||
ETV6 | ETS Variant transcription factor 6 | TEL, TEL/ABL, THC5 | 12p13.2 | Versatile element. In MPN → disease progression to AML (in <3% cases). | - | [105] | ||
Other | CALR | Calreticulin | CRT, HEL-S-99n, RO, SSA, cC1qR | 19p13.13 | 2 mutations:
More commonly early in disease. | Rare or absent | [5,106,107,108,109] | |
Other | MPL (W515L) | MPL proto-oncogene, thrombopoietin receptor | C-MPL, CD110, MPLV, THCYT2, THPOR, TPOR | 1p34.2 | Most common acquired mutations:
More commonly early in disease. Few cases of JAK2V617F-pos. PV & post-PV MF patients. | Rare | [5,106,110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regimbeau, M.; Mary, R.; Hermetet, F.; Girodon, F. Genetic Background of Polycythemia Vera. Genes 2022, 13, 637. https://doi.org/10.3390/genes13040637
Regimbeau M, Mary R, Hermetet F, Girodon F. Genetic Background of Polycythemia Vera. Genes. 2022; 13(4):637. https://doi.org/10.3390/genes13040637
Chicago/Turabian StyleRegimbeau, Mathilde, Romain Mary, François Hermetet, and François Girodon. 2022. "Genetic Background of Polycythemia Vera" Genes 13, no. 4: 637. https://doi.org/10.3390/genes13040637
APA StyleRegimbeau, M., Mary, R., Hermetet, F., & Girodon, F. (2022). Genetic Background of Polycythemia Vera. Genes, 13(4), 637. https://doi.org/10.3390/genes13040637