Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Population
2.2. Plant Materials
2.3. Whole Genome Re-Sequencing
2.4. Assessment of Neck Blast Disease, Avirulence, and Data Analysis
2.5. Association Analysis of Avirulence Genes in M. oryzae
2.6. Haplotype Analysis and Candidate Genes
3. Results
3.1. Neck Blast Disease Evaluation
3.2. Linkage Disequilibrium Decay
3.3. Population Structure
3.4. GWAS Analysis and Identification of Candidate Genes
3.5. Haplotype Block and SNP Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nalley, L.; Tsiboe, F.; Durand-Morat, A.; Shew, A.; Thoma, G. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States. PLoS ONE 2016, 11, e0167295. [Google Scholar] [CrossRef]
- Teng, P.S.; Klein-Gebbinck, H.W.; Pinnschmidt, H. An Analysis of the Blast Pathosystem to Guide Modeling and forecasting. In Proceedings of the Rice blast modeling and forecasting, International Rice Research Conference, Seoul, Korea, 27–31 August 1990. [Google Scholar]
- Khan, M.A.; Bhuiyan, M.R.; Hossain, M.S.; Sen, P.P.; Ara, A.; Siddique, M.A.; Ali, M.A. Neck blast disease influences grain yield and quality traits of aromatic rice. Comptes Rendus Biol. 2014, 337, 635–641. [Google Scholar] [CrossRef]
- Bonman, J.M.; Estrada, B.A.; Bandong, J.M. Leaf and neck blast resistance in tropical lowland rice cultivars. Plant Dis. 1989, 73, 388–390. [Google Scholar] [CrossRef]
- Scheuermann, K.K.; Raimondi, J.V.; Marschalek, R.; Andrade, A.; Wickert, E. Magnaporthe oryzae Genetic Diversity and Its Outcomes on the Search for Durable Resistance. In The Molecular Basis of Plant Genetic Diversity; Caliskan, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 331–356. [Google Scholar]
- Van Der Biezen, E.A.; Jones, J.D.G. Plant disease-resistance proteins and the gene-for gene concept. Trends Biochem. Sci. 1998, 23, 454–456. [Google Scholar] [CrossRef]
- Bourras, S.; McNally, K.E.; Müller, M.C.; Wicker, T.; Keller, B. Avirulence genes in cereal powdery mildews: The gene-for-gene hypothesis 2.0. Front. Plant Sci. 2016, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Damchuay, K.; Longya, A.; Sriwongchai, T.; Songkumarn, P.; Parinthawong, N.; Darwell, K.; Talumphai, S.; Tasanasuwan, P.; Jantasuriyarat, C. High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population. J. Genet. 2020, 99, 45. [Google Scholar] [CrossRef]
- Gyawali, A.; Shrestha, V.; Guill, K.E.; Flint-Garcia, S.; Beissinger, T.M. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. BMC Plant Biol. 2019, 19, 412. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Peng, S.; Chen, Y.; Su, P.; Chen, J.; Zheng, L.; Tan, X.; Liu, J.; Xiao, Y.; et al. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. Rice 2019, 12, 47. [Google Scholar] [CrossRef]
- Kim, S.M.; Reinke, R.F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE 2019, 14, e0211775. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Feng, Z.; Kang, H.; Zhao, J.; Chen, T.; Li, Q.; Gong, H.; Zhang, Y.; Chen, X.; Pan, X.; et al. Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Sci. 2019, 26, 21–31. [Google Scholar] [CrossRef]
- Korinsak, S.; Tangphatsornruang, S.; Pootakham, W.; Wanchana, S.; Plabpla, A.; Jantasuriyarat, C.; Patarapuwadol, S.; Vanavichit, A.; Toojinda, T. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 2019, 111, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.Y.; Ma, W.B.; Wu, J.L.; Chai, R.Y.; Lu, J.; Fan, Y.Y.; Jin, M.Z.; Leung, H.; Zheng, K.L. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica 2002, 128, 363–370. [Google Scholar] [CrossRef]
- Hayashi, N.; Inoue, H.; Kato, T.; Funao, T.; Shirota, M.; Shimizu, T.; Kanamor, H.; Yamane, H.; Hayano-Saito, Y.; Matsumoto, T.; et al. Durable panicle blast-resistance gene Pbi encodes an atypical CC-NBS-LRR protein and was generated by acquiring a propter through local genome duplication. Plant J. 2010, 64, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, Y.; Araki, E.; Yanoria, M.J.T.; Imbe, T.; Tsunematsu, H.; Kato, H.; Ebron, L.A.; Mercado-Escueta, D.; Khush, G.S. Development of differential varieties for blast resistance in IRRI-Japan collaborative research project. In Rice Blast: Interaction with Rice and Control; Kawasaki, S., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 229–233. [Google Scholar]
- IRRI. Standard Evaluation System (SES) for Rice, 5th ed.; International Rice Research Institute: Manila, Philippines, 2013; p. 19. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 25 March 2021).
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zelikovsky, A. Multiple linear regression for index SNP selection on unphased genotypes. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August 2006. [Google Scholar]
- Li, P.; Guo, M.; Wang, C.; Liu, X.; Zou, Q. An overview of SNP interactions in genome-wide association studies. Brief. Funct. Genom. 2015, 14, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Norton, G.J.; Travis, A.J.; Douglas, A.; Fairley, S.; Alves, E.D.P.; Ruang-Areerate, P.; Naredo, M.E.B.; McNally, K.L.; Hossain, M.; Islam, R.; et al. Genome wide association mapping of grain and straw biomass traits in the rice Bengal and Assam Aus panel (BAAP) grown under alternate wetting and drying and permanently flooded irrigation. Front. Plant Sci. 2018, 9, 1223. [Google Scholar] [CrossRef]
- Sattayachiti, W.; Wanchana, S.; Arikit, S.; Nubankoh, P.; Patarapuwadol, S.; Vanavichit, A.; Darwel, C.T.; Toojinda, T. Genome-wide association analysis identifies resistance loci for bacterial leaf streak resistance in rice (Oryza Sativa L.). Plants 2020, 9, 1673. [Google Scholar] [CrossRef]
- Jia, Y.; McAdams, S.A.; Bryan, G.T.; Hershey, H.P.; Valent, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 2000, 19, 4004–4014. [Google Scholar] [CrossRef]
- Suh, J.P.; Roh, J.H.; Cho, Y.C.; Han, S.S.; Kim, Y.G.; Jena, K.K. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology 2009, 99, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.I.; Sen, P.P.; Bhuiyan, R.; Kabir, E.; Chowdhury, A.K.; Fukuta, Y.; Ali, A.; Latif, M.A. Phenotypic screening and molecular analysis of blast resistance in fragrant rice for marker assisted selection. Comptes Rendus. Biol. 2014, 337, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Truong, H.T.H.; Nguyen, L.T.; Nguyen, L.H.K. Identification of rice blast resistance genes in south central coast of Vietnam using monogenic lines under field condition and pathogenicity assays. J. Agric. Sci. Technol. AB Hue Univ. J. Sci. 2015, 5, 491–500. [Google Scholar]
- Xiao, G.; Borja, F.N.; Mauleon, R.; Padilla, J.; Telebanco-Yanoria, M.J.; Yang, J.; Lu, G.; Dionisio-Sese, M.; Zhou, B. Identification of resistant germplasm containing novel resistance genes at or tightly linked to the Pi2/9 locus conferring broad-spectrum resistance against rice blast. Rice 2017, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Parinthawong, N.; Tansian, P. Pathogenicity of Pyricularia oryzae on elite rice cultivars and geographical distribution of avirulence genes causing blast disease in Thailand. Int. J. Agric. Technol. 2020, 16, 897–906. [Google Scholar]
- Mekwatanakarn, P.; Kositratana, W.; Levy, M.; Zeigler, R.S. Pathotype and avirulence gene diversity of Pyricularia grisea in Thailand as determined by rice lines near-isogenic for major resistance genes. Plant Dis. 2000, 84, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Chaipanya, C.; Telebanco-Yanoria, M.J.; Quime, B.; Longya, A.; Korinsak, S.; Korinsak, S.; Toojinda, T.; Vanavichit, A.; Jantasuriyarat, C.; Zhou, B. Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. Rice 2017, 10, 18. [Google Scholar] [CrossRef]
- Wongsaprom, C.; Sirithunya, P.; Vanavichit, A.; Pantuwan, G.; Jongdee, B.; Sidhiwong, N.; Siangliw, J.L.; Toojinda, T. Two introgressed quatitative trait loci confer a broad-spectrum resistance to blast disease in the genetic background of the culivar RD6 a Thai glutinous jasmine rice. Field Crops Res. 2010, 119, 245–251. [Google Scholar] [CrossRef]
- Saleh, D.; Milazzo, J.; Adreit, H.; Fournier, E.; Tharreau, D. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. New Phytol. 2014, 201, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Onaga, G.; Wydra, K.; Koopmann, B.; Séré, Y.; Von Tiedemann, A. Population structure, pathogenicity, and mating type distribution of Magnaporthe oryzae isolates from East Africa. Phytopathology 2015, 105, 1137–1145. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Kim, K.S.; Rho, H.S.; Lee, Y.H. Differential roles of the pholpholipase C genes in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet. Biol. 2011, 48, 445–455. [Google Scholar] [CrossRef]
- Lu, J.; Cao, H.; Zhang, L.; Huang, P.; Lin, F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by hig-throughput gene knockout in the rice blast fungus. PLoS Pathog. 2014, 10, e1004432. [Google Scholar] [CrossRef] [PubMed]
- Min, M.H.; Maung, T.Z.; Cao, Y.; Phitaktansakul, R.; Lee, G.S.; Chu, S.H.; Kim, K.W.; Park, Y.J. Haplotype Analysis of BADH1 by Next-Generation Sequencing Reveals Association with Salt Tolerance in Rice during Domestication. Int. J. Mol. Sci. 2021, 22, 7578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, T.; Yang, J.; Hu, M.; Wang, H.; Sun, K.; Chen, Z.; Wang, H. QTL mapping and haplotype analysis revealed candidate genes for grain thickness in rice (Oryza sativa L.). Mol. Breed. 2020, 40, 50. [Google Scholar] [CrossRef]
- Oo, K.S.; Kongjaimun, A.; Khanthong, S.; Yi, M.; Myint, T.T.; Korinsak, S.; Siangliw, J.L.; Myint, K.M.; Vanavichit, A.; Malumpong, C.; et al. Characterization of Myanmar Paw San Hmwe accessions using functional genetic markers. Rice Sci. 2015, 22, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Tang, S.; Chen, M.; Wei, X.; He, J.; Luo, J.; Jiao, G.; Hu, Y.; Xie, L.; Hu, P. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 2013, 101, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, P.K.; Singh, R.; Pandit, A.; Mahato, A.K.; Gupta, D.K.; Tyagi, K.; Singh, A.K.; Singh, N.K.; Sharma, T.R. SNP haplotypes of the BADH1 gene and their association with aroma in rice (Oryza sativa L.). Mol. Breed. 2010, 26, 325–338. [Google Scholar] [CrossRef]
- Korinsak, S.; Darwell, C.T.; Wanchana, S.; Praphaisal, L.; Korinsak, S.; Thunnom, B.; Patarapuwadol, S.; Toojinda, T. Identification of Bacterial Blight Resistance Loci in Rice (Oryza sativa L.) against Diverse Xoo Thai Strains by Genome-Wide Association Study. Plants 2021, 10, 518. [Google Scholar] [CrossRef]
- Lin, H.A.; Chen, S.Y.; Chang, F.Y.; Tung, C.W.; Chen, Y.C.; Shen, W.C.; Chen, R.S.; Wu, C.W.; Chung, C.L. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. Bot. Stud. 2018, 59, 1–14. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, J.; Zhu, X.; Wu, J.; Zhou, B. Prevalence of ineffective haplotypes at the rice blast resistance (R) gene loci in Chinese elite hybrid rice varieties revealed by sequence-based molecular diagnosis. Rice 2020, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, X.; Jia, Y.; Minkenberg, B.; Wheatley, M.; Fan, J.; Jia, M.H.; Famoso, A.; Edwards, J.; Wamishe, Y.; et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun. 2018, 9, 2039. [Google Scholar] [CrossRef]
- Hua, L.; Wu, J.; Chen, C.; Wu, W.; He, X.; Lin, F.; Wang, L.; Ashikawa, I.; Matsumoto, T.; Wang, L.; et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 2012, 125, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
Trait | Chr | Marker | Position | SNP | LOD | p Value | R2 Marker |
---|---|---|---|---|---|---|---|
IRBLzt-T | 3 | MG3-322529 | 322529 | T/C | 3.120463 | 0.000758 | 0.14933 |
IRBlsh-S | 1 | MG1-7553101 | 7553101 | G/T | 3.917897116 | 0.000121 | 0.1842 |
1 | MG1-5731374 | 5731374 | G/A | 3.74562113 | 0.00018 | 0.17485 | |
1 | MG1-7876964 | 7876964 | T/C | 3.026987666 | 0.00094 | 0.1347 | |
2 | MG2-7171094 | 7171094 | G/A | 3.882529836 | 0.000131 | 0.18385 | |
2 | MG2-2428572 | 2428572 | G/A | 3.610975749 | 0.000245 | 0.23869 | |
2 | MG2-2406970 | 2406970 | G/A | 3.258139606 | 0.000552 | 0.17476 | |
3 | MG3-254639 | 254639 | T/C | 3.051924624 | 0.000887 | 0.13761 | |
4 | MG4-586828 | 586828 | T/C | 3.372071155 | 0.000425 | 0.15561 | |
5 | MG5-4455619 | 4455619 | C/T | 3.147904454 | 0.000711 | 0.14121 | |
7 | MG7-2400656 | 2400656 | G/A | 3.172818186 | 0.000672 | 0.14253 | |
IRBLk-KA | 1 | MG1-425230 | 425230 | C/T | 3.865313007 | 0.000136 | 0.18733 |
1 | MG1-6669832 | 6669832 | C/T | 3.738594373 | 0.000183 | 0.15984 | |
1 | MG1-5639396 | 5639396 | T/G | 3.107332284 | 0.000781 | 0.12795 | |
2 | MG2-8137518 | 8137518 | T/C | 3.075736225 | 0.00084 | 0.12698 | |
6 | MG6-1316128 | 1316128 | T/C | 3.050697837 | 0.00089 | 0.12485 | |
IRBLb-B | 6 | MG6-3022354 | 3022354 | A/G | 3.359916269 | 0.000437 | 0.20947 |
LTH | 6 | MG6-1068242 | 1068242 | G/C | 3.305053 | 0.000495 | 0.20179 |
IRBLz5-CA | 1 | MG1-1250754 | 1250754 | G/A | 3.150543731 | 0.000707 | 0.14578 |
2 | MG2-5441644 | 5441644 | C/T | 3.797975105 | 0.000159 | 0.18779 | |
3 | MG3-1645410 | 1645410 | T/C | 4.980800599 | 0.0000105 | 0.28816 | |
3 | MG3-6316407 | 6316407 | C/T | 4.266963317 | 0.0000541 | 0.21868 | |
3 | MG3-5461007 | 5461007 | A/G | 3.17157858 | 0.000674 | 0.14592 | |
5 | MG5-54924 | 54924 | C/T | 3.588363461 | 0.000258 | 0.16954 | |
6 | MG6-957987 | 957987 | T/C | 3.605916224 | 0.000248 | 0.17213 | |
6 | MG6-703373 | 703373 | A/G | 3.185559279 | 0.000652 | 0.14687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myint, N.N.A.; Korinsak, S.; Chutteang, C.; Laosatit, K.; Thunnom, B.; Toojinda, T.; Siangliw, J.L. Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data. Genes 2022, 13, 916. https://doi.org/10.3390/genes13050916
Myint NNA, Korinsak S, Chutteang C, Laosatit K, Thunnom B, Toojinda T, Siangliw JL. Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data. Genes. 2022; 13(5):916. https://doi.org/10.3390/genes13050916
Chicago/Turabian StyleMyint, Nyein Nyein Aye, Siripar Korinsak, Cattleya Chutteang, Kularb Laosatit, Burin Thunnom, Theerayut Toojinda, and Jonaliza L. Siangliw. 2022. "Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data" Genes 13, no. 5: 916. https://doi.org/10.3390/genes13050916
APA StyleMyint, N. N. A., Korinsak, S., Chutteang, C., Laosatit, K., Thunnom, B., Toojinda, T., & Siangliw, J. L. (2022). Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data. Genes, 13(5), 916. https://doi.org/10.3390/genes13050916