Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders
1. Outcomes in Studies with Biological Models
2. Joint Mechanisms across Models
3. Testing Compounds and Innovative Intervention Approaches
4. Translation to Clinical Trials
5. Choosing Relevant Outcomes for Clinical Trials in ASD
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Wasington, DC, USA, 2013. [Google Scholar]
- Lai, M.C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef]
- Mason, D.; Capp, S.J.; Stewart, G.R.; Kempton, M.J.; Glaser, K.; Howlin, P.; Happé, F. A Meta-analysis of Outcome Studies of Autistic Adults: Quantifying Effect Size, Quality, and Meta-regression. J. Autism Dev. Disord. 2021, 51, 3165–3179. [Google Scholar] [CrossRef] [PubMed]
- Tick, B.; Bolton, P.; Happe, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheroni, C.; Caporale, N.; Testa, G. Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism 2020, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Freitag, C.M.; Chiocchetti, A.G.; Haslinger, D.; Yousaf, A.; Waltes, R. Genetische Risikofaktoren und ihre Auswirkungen auf die neurale Entwicklung bei Autismus-Spektrum-Störungen. Z. Kinder Jugendpsychiatr. Psychother. 2021, 50, 187–202. [Google Scholar] [CrossRef]
- Dias, C.M.; Walsh, C.A. Recent Advances in Understanding the Genetic Architecture of Autism. Annu. Rev. Genom. Hum. Genet. 2020, 21, 289–304. [Google Scholar] [CrossRef]
- Lord, C.; Charman, T.; Havdahl, A.; Carbone, P.; Anagnostou, E.; Boyd, B.; Carr, T.; de Vries, P.J.; Dissanayake, C.; Divan, G.; et al. The Lancet Commission on the future of care and clinical research in autism. Lancet 2022, 399, 271–334. [Google Scholar] [CrossRef]
- Persico, A.M.; Ricciardello, A.; Lamberti, M.; Turriziani, L.; Cucinotta, F.; Brogna, C.; Vitiello, B.; Arango, C. The pediatric psychopharmacology of autism spectrum disorder: A systematic review—Part I: The past and the present. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 110, 110326. [Google Scholar] [CrossRef]
- McConachie, H.; Parr, J.R.; Glod, M.; Hanratty, J.; Livingstone, N.; Oono, I.P.; Robalino, S.; Baird, G.; Beresford, B.; Charman, T.; et al. Systematic review of tools to measure outcomes for young children with autism spectrum disorder. Health Technol. Assess. 2015, 19, 1–506. [Google Scholar] [CrossRef]
- Sandbank, M.; Bottema-Beutel, K.; Crowley, S.; Cassidy, M.; Dunham, K.; Feldman, J.I.; Crank, J.; Albarran, S.A.; Raj, S.; Mahbub, P.; et al. Project AIM: Autism intervention meta-analysis for studies of young children. Psychol. Bull. 2020, 146, 1–29. [Google Scholar] [CrossRef]
- Haslinger, D.; Waltes, R.; Yousaf, A.; Lindlar, S.; Schneider, I.; Lim, C.K.; Tsai, M.M.; Garvalov, B.K.; Acker-Palmer, A.; Krezdorn, N.; et al. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol. Autism 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Riemersma, I.W.; Havekes, R.; Kas, M.J.H. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes 2021, 13, 28. [Google Scholar] [CrossRef]
- Delling, J.P.; Boeckers, T.M. Comparison of SHANK3 deficiency in animal models: Phenotypes, treatment strategies, and translational implications. J. Neurodev. Disord. 2021, 13, 55. [Google Scholar] [CrossRef]
- DiCarlo, G.E.; Wallace, M.T. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci. Biobehav. Rev. 2022, 133, 104494. [Google Scholar] [CrossRef]
- Vasic, V.; Jones, M.S.O.; Haslinger, D.; Knaus, L.S.; Schmeisser, M.J.; Novarino, G.; Chiocchetti, A.G. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes 2021, 12, 1746. [Google Scholar] [CrossRef]
- Bieneck, V.; Bletsch, A.; Mann, C.; Schäfer, T.; Seelemeyer, H.; Herøy, N.; Zimmermann, J.; Pretzsch, C.M.; Hattingen, E.; Ecker, C. Longitudinal Changes in Cortical Thickness in Adolescents with Autism Spectrum Disorder and Their Association with Restricted and Repetitive Behaviors. Genes 2021, 12, 2024. [Google Scholar] [CrossRef]
- Geertjens, L.; van Voorst, T.W.; Bouman, A.; van Boven, M.A.; Kleefstra, T.; Verhage, M.; Linkenkaer-Hansen, K.; Nadif Kasri, N.; Cornelisse, L.N.; Bruining, H. Following Excitation/Inhibition Ratio Homeostasis from Synapse to EEG in Monogenetic Neurodevelopmental Disorders. Genes 2022, 13, 390. [Google Scholar] [CrossRef]
- D’Gama, A.M. Somatic Mosaicism and Autism Spectrum Disorder. Genes 2021, 12, 1699. [Google Scholar] [CrossRef]
- Lee, J.H. Somatic mutations in disorders with disrupted brain connectivity. Exp. Mol. Med. 2016, 48, e239. [Google Scholar] [CrossRef] [Green Version]
- Baribeau, D.; Vorstman, J.; Anagnostou, E. Novel treatments in autism spectrum disorder. Curr. Opin. Psychiatry 2022, 35, 101–110. [Google Scholar] [CrossRef]
- Dyar, B.; Meaddough, E.; Sarasua, S.M.; Rogers, C.; Phelan, K.; Boccuto, L. Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes 2021, 12, 1192. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Moreno-De-Luca, D.; Persico, A.M. Actionable Genomics in Clinical Practice: Paradigmatic Case Reports of Clinical and Therapeutic Strategies Based upon Genetic Testing. Genes 2022, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Weuring, W.; Geerligs, J.; Koeleman, B.P.C. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes 2021, 12, 1667. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Leppa, V.; Won, H.; Parikshak, N.N.; Geschwind, D.H. The road to precision psychiatry: Translating genetics into disease mechanisms. Nat. Neurosci. 2016, 19, 1397–1407. [Google Scholar] [CrossRef] [Green Version]
- Mottron, L. A radical change in our autism research strategy is needed: Back to prototypes. Autism Res. 2021, 14, 2213–2220. [Google Scholar] [CrossRef]
- Charman, T.; Loth, E.; Tillmann, J.; Crawley, D.; Wooldridge, C.; Goyard, D.; Ahmad, J.; Auyeung, B.; Ambrosino, S.; Banaschewski, T.; et al. The EU-AIMS Longitudinal European Autism Project (LEAP): Clinical characterisation. Mol. Autism 2017, 8, 27. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Jacquemont, S.; Huguet, G.; Klein, M.; Chawner, S.J.R.A.; Donald, K.A.; van den Bree, M.B.M.; Sebat, J.; Ledbetter, D.H.; Constantino, J.N.; Earl, R.K.; et al. Genes to Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology. Am. J. Psychiatry 2022, 179, 189–203. [Google Scholar] [CrossRef]
- McDougall, F.; Willgoss, T.; Hwang, S.; Bolognani, F.; Murtagh, L.; Anagnostou, E.; Rofail, D. Development of a patient-centered conceptual model of the impact of living with autism spectrum disorder. Autism 2018, 22, 953–969. [Google Scholar] [CrossRef]
- Möhrle, D.; Fernández, M.; Peñagarikano, O.; Frick, A.; Allman, B.; Schmid, S. What we can learn from a genetic rodent model about autism. Neurosci. Biobehav. Rev. 2020, 109, 29–53. [Google Scholar] [CrossRef]
- Tammimies, K.; Li, D.; Rabkina, I.; Stamouli, S.; Becker, M.; Nicolaou, V.; Berggren, S.; Coco, C.; Falkmer, T.; Jonsson, U.; et al. Association between Copy Number Variation and Response to Social Skills Training in Autism Spectrum Disorder. Sci. Rep. 2019, 9, 9810. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitag, C.M.; Persico, A.M.; Vorstman, J.A.S. Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders. Genes 2022, 13, 1004. https://doi.org/10.3390/genes13061004
Freitag CM, Persico AM, Vorstman JAS. Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders. Genes. 2022; 13(6):1004. https://doi.org/10.3390/genes13061004
Chicago/Turabian StyleFreitag, Christine M., Antonio M. Persico, and Jacob A. S. Vorstman. 2022. "Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders" Genes 13, no. 6: 1004. https://doi.org/10.3390/genes13061004
APA StyleFreitag, C. M., Persico, A. M., & Vorstman, J. A. S. (2022). Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders. Genes, 13(6), 1004. https://doi.org/10.3390/genes13061004