TGF-β/VEGF-A Genetic Variants Interplay in Genetic Susceptibility to Non-Melanocytic Skin Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Control Populations
2.2. Molecular Typing
2.3. Statistical Analysis
3. Results
3.1. Allele and Genotype Frequencies of TGF-β and VEGF-A SNP in Non Melanocitic Skin Cancer Patient (NMSC) and Control Subjects
3.2. SNP Frequencies of NMSC Patient and Control Groups Stratified According to 64 Years Age Cut Off and Gender
3.3. SNP Frequencies in NMSC Patients Stratified according to Skin Cancer Hystotype
3.4. TGF-β and VEGF-A SNP Pseudo-Haplotype Associations with Non-Melanocytic Skin Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fougère, B.; Boulanger, E.; Nourhashémi, F.; Guyonnet, S.; Cesari, M. Chronic Inflammation: Accelerator of Biological Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 72, glw240. [Google Scholar] [CrossRef] [Green Version]
- John, S.M.; Trakatelli, M.; Gehring, R.; Finlay, K.; Fionda, C.; Wittlich, M.; Augustin, M.; Hilpert, G.; Barroso Dias, J.M.; Ulrich, C.; et al. Consensus report: Recognizing non-melanoma skin cancer, including actinic keratosis, as an occupational disease—A Call to Action. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, S. The Immunogenetics of Non-melanoma Skin Cancer. Adv. Exp. Med. Biol. 2022, 1367, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Van der Poort, E.K.J.; Gunn, D.A.; Beekman, M.; Griffiths, C.E.M.; Slagboom, P.E.; van Heemst, D.; Noordam, R. Basal cell carcinoma genetic susceptibility increases the rate of skin ageing: A Mendelian randomization study. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, K.; Trus, P.; Frenzel, A.; Werner, C.; Fischer-Friedrich, E. Skin epithelial cells change their mechanics and proliferation upon snail-mediated EMT signalling. Soft Matter 2022, 18, 2585–2596. [Google Scholar] [CrossRef]
- Neagu, M.; Constantin, C.; Caruntu, C.; Dumitru, C.; Surcel, M.; Zurac, S. Inflammation: A key process in skin tumorigenesis. Oncol. Lett. 2019, 17, 4068–4084. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Luo, J.; Weigel, K.J.; Hall, S.C.; Du, D.; Wu, F.; Rudolph, M.C.; Zhou, H.; Young, C.D.; Wang, X.J. Cancer-Associated Fibroblasts Facilitate Squamous Cell Carcinoma Lung Metastasis in Mice by Providing TGFβ-Mediated Cancer Stem Cell Niche. Front. Cell Dev. Biol. 2021, 9, 668164. [Google Scholar] [CrossRef]
- Szabo, H.; Fiorino, G.; Spinelli, A.; Rovida, S.; Repici, A.; Malesci, A.; Danese, S. Review article: Anti-fibrotic agents for the treatment of Crohn’s disease–lessons learnt from other diseases. Aliment. Pharmacol. Ther. 2010, 31, 189–201. [Google Scholar] [CrossRef]
- Quan, T.; He, T.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Am. J. Pathol. 2004, 165, 741–751. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, X.J. TGFβ Signaling in Photoaging and UV-Induced Skin Cancer. J. Investig. Dermatol. 2021, 141, 1104–1110. [Google Scholar] [CrossRef]
- Massagué, J. TGF-β signaling in development and disease. FEBS Lett. 2012, 586, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Ameri, A.H.; Dempsey, K.E.; Conrad, D.N.; Kem, M.; Mino-Kenudson, M.; Demehri, S. Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO J. 2021, 40, e106151. [Google Scholar] [CrossRef]
- Ravindran, A.; Mohammed, J.; Gunderson, A.J.; Cui, X.; Glick, A.B. Tumor-promoting role of TGFβ1 signaling in ultraviolet B-induced skin carcinogenesis is associated with cutaneous inflammation and lymph node migration of dermal dendritic cells. Carcinogen 2014, 35, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Korkut, A.; Zaidi, S.; Kanchi, R.S.; Rao, S.; Gough, N.R.; Schultz, A.; Li, X.; Lorenzi, P.L.; Berger, A.C.; Robertson, G.; et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst. 2018, 7, 422–437.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scola, L.; Di Maggio, F.M.; Vaccarino, L.; Bova, M.; Forte, G.I.; Pisano, C.; Candore, G.; Colonna-Romano, G.; Lio, D.; Ruvolo, G.; et al. Role of TGF-β pathway polymorphisms in sporadic thoracic aortic aneurysm: rs900 TGF-β2 is a marker of differential gender susceptibility. Mediators Inflamm. 2014, 2014, 165758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, J.; Yandell, D.; Weaver, D.; Casey, T.; Plaut, K. Higher stromal expression of transforming growth factor—β type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Res. Treat. 2003, 79, 149–159. [Google Scholar] [CrossRef]
- Scollen, S.; Luccarini, C.; Baynes, C.; Driver, K.; Humphreys, M.K.; Garcia-Closas, M.; Figueroa, J.; Lissowska, J.; Pharoah, P.D.; Easton, D.F.; et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1112–1119. [Google Scholar] [CrossRef] [Green Version]
- Richarz, N.A.; Boada, A.; Carrascosa, J.M. Angiogenesis in Dermatology—Insights of Molecular Mechanisms and Latest Developments. Acta Dermosifiliogr. 2017, 108, 515–523. [Google Scholar] [CrossRef]
- Johnson, K.E.; Wilgus, T.A. Multiple roles for VEGF in non-melanoma skin cancer: Angiogenesis and beyond. J. Skin Cancer 2012, 2012, 483439. [Google Scholar] [CrossRef]
- Annese, T.; Tamma, R.; Ribatti, D. RNAscope for VEGF-A Detection in Human Tumor Bioptic Specimens. Meth. Mol. Biol. 2022, 2475, 143–155. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Hong, Y. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy. Technol. Cancer Res. Treat. 2020, 19, 1533033820980116. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.F.; Vijayvargiya, P.; Vermorken, J.B.; Rodrigo, J.P.; Willems, S.M.; Zidar, N.; de Bree, R.; Mäkitie, A.; Wolf, G.T.; Argiris, A.; et al. Targeting Angiogenesis in Squamous Cell Carcinoma of the Head and Neck: Opportunities in the Immunotherapy Era. Cancers 2022, 14, 1202. [Google Scholar] [CrossRef]
- Zygoń, J.; Szajewski, M.; Kruszewski, W.J.; Rzepko, R. VEGF, Flt-1, and microvessel density in primary tumors as predictive factors of colorectal cancer prognosis. Mol. Clin. Oncol. 2017, 6, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Dasgupta, D.; Ghosh, A.; Roychoudhury, S.; Kumar, D.; Gorain, M.; Butti, R.; Datta, S.; Agarwal, S.; Gupta, S.; et al. miRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017, 8, e2706. [Google Scholar] [CrossRef]
- Goertz, L.; Schneider, S.W.; Desch, A.; Mayer, F.T.; Koett, J.; Nowak, K.; Karampinis, I.; Bohlmann, M.K.; Umansky, V.; Bauer, A.T. Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget 2016, 7, 68527–68545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciortea, C.D.; Jung, I.; Gurzu, S.; Kövecsi, A.; Turdean, S.G.; Bara, T. Correlation of angiogenesis with other immunohistochemical markers in cutaneous basal and squamous cell carcinomas. Rom. J. Morphol. Embryol. 2015, 56, 665–670. [Google Scholar]
- Krippl, P.; Langsenlehner, U.; Renner, W.; Yazdani-Biuki, B.; Wolf, G.; Wascher, T.C.; Paulweber, B.; Haas, J.; Samonigg, H. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int. J. Cancer 2003, 106, 468–471. [Google Scholar] [CrossRef]
- Renner, S.; Kotschan, S.; Hoffmann, C.; Obermayer-Pietsch, B.; Pilger, E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. Vascular. Res. 2000, 37, 443–448. [Google Scholar] [CrossRef]
- Guarneri, M.; Scola, L.; Giarratana, R.M.; Bova, M.; Carollo, C.; Vaccarino, L.; Calandra, L.; Lio, D.; Balistreri, C.R.; Cottone, S. MIF rs755 622 and IL6 rs1800795 Are Implied in Genetic Susceptibility to End-Stage Renal Disease (ESRD). Genes 2022, 13, 226. [Google Scholar] [CrossRef]
- Morales-Guadarrama, G.; García-Becerra, R.; Méndez-Pérez, E.A.; García-Quiroz, J.; Avila, E.; Díaz, L. Vasculogenic Mimicry in Breast Cancer: Clinical Relevance and Drivers. Cells 2021, 10, 1758. [Google Scholar] [CrossRef]
- Crivello, A.; Giacalone, A.; Scola, L.; Forte, G.I.; Nuzzo, D.; Giacconi, R.; Cipriano, C.; Candore, G.; Mocchegiani, E.; Colonna-Romano, G.; et al. Frequency of polymorphisms of signal peptide of TGF-beta1 and -1082G/A SNP at the promoter region of Il-10 gene in patients with carotid stenosis. Ann. N. Y. Acad. Sci. 2006, 1067, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Nicoloso, M.S.; Sun, H.; Spizzo, R.; Kim, H.; Wickramasinghe, P.; Shimizu, M.; Wojcik, S.E.; Ferdin, J.; Kunej, T.; Xiao, L.; et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010, 70, 2789–2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veturi, Y.; Ritchie, M.D. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Pacific Symp. Biocomp. 2018, 23, 228–239. [Google Scholar]
- Bush, W.S.; Haines, J.L. Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium and Potential Epistasis in the Human Interactome. In Proceedings of the 17th European Conference, EvoApplications 2014: Applications of Evolutionary Computation, Granada, Spain, 23–25April 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Elston, R.C.; Zhu, X. The meaning of interaction. Hum. Hered. 2010, 70, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissinen, L.; Farshchian, M.; Riihilä, P.; Kähäri, V.M. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res. 2016, 365, 691–702. [Google Scholar] [CrossRef]
- Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 2015, 73, 144–153. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, L.; Li, Y.; Zhang, X.; Gu, J.; Yan, Y.; Xu, X.; Wang, M.; Qian, H.; Xu, W. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer lett. 2012, 315, 28–37. [Google Scholar] [CrossRef]
- Lichtenberger, B.M.; Tan, P.K.; Niederleithner, H.; Ferrara, N.; Petzelbauer, P.; Sibilia, M. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 2010, 140, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Kajiya, K.; Ishiwata, M.; Hong, Y.K.; Miyakawa, T.; Detmar, M. Ultraviolet B-induced skin angiogenesis isassociated with a switch in the balance of vascular endothelial growth factor and thrombospondin-1 expression. J. Investig. Dermatol. 2004, 122, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Linde, N.; Lederle, W.; Depner, S.; van Rooijen, N.; Gutschalk, C.M.; Mueller, M.M. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J. Pathol. 2012, 227, 17–28. [Google Scholar] [CrossRef]
- Nie, X.J.; Liu, W.M.; Zhang, L. Association of VEGF Gene Polymorphisms with the Risk and Prognosis of Cutaneous Squamous Cell Carcinoma. Med. Sci. Monitor Int. Med. J. Exp. Clin. Res. 2016, 22, 3658–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilgus, T.A.; Matthies, A.M.; Radek, K.A.; Dovi, J.V.; Burns, A.L.; Shankar, R.; Di Pietro, L.A. Novel function for vascular endothelial growth factor receptor-1 on epidermal keratinocytes. Am. J. Pathol. 2005, 167, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, D.; Dalmasso, C.; Nutile, T.; Sorice, R.; Dionisi, L.; Aversano, M.; Bröet, P.; Leutenegger, A.L.; Bourgain, C.; Ciullo, M. Genetics of VEGF serum variation in human isolated populations of Cilento importance of VEGF polymorphisms. PLoS ONE 2011, 6, e16982. [Google Scholar] [CrossRef] [PubMed]
- Steffensen, K.D.; Waldstrøm, M.; Brandslund, I.; Jakobsen, A. The relationship of VEGF polymorphisms with serum VEGF levels and progression-free survival in patients with epithelial ovarian cancer. Gynecol. Oncol. 2010, 117, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, S.; Govardhan, B.; Harithakrishna, R.; Venkat Rao, G.; Pradeep, R.; Kunal, B.; Ramakrishna, N.; Anuradha, S.; Reddy, D.N. Association of vascular endothelial growth factor (VEGF) gene polymorphism and increased serum VEGF concentration with pancreatic adenocarcinoma. Pancreatology 2013, 13, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Jung, S.A.; Jung, J.M.; Kim, S.E.; Jung, H.K.; Kim, T.H.; Shim, K.N.; Yi, S.Y.; Yoo, K.; Moon, I.H. Associations between single nucleotide polymorphisms of MMP2, VEGF, and HIF1A genes and the risk of developing colorectal cancer. Anticancer Res. 2011, 31, 575–584. [Google Scholar] [PubMed]
- Sáenz-López, P.; Vazquez, F.; Cozar, J.M.; Carretero, R.; Garrido, F.; Ruiz-Cabello, F. VEGF polymorphisms are not associated with an increased risk of developing renal cell carcinoma in Spanish population. Hum. Immunol. 2013, 74, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Ballester, S.; Pineda, B.; Rodrigues, P.; Tormo, E.; Terol, M.J.; Eroles, P. Clinical Relevance of +936 C>T VEGFA and c.233C>T bFGF Polymorphisms in Chronic Lymphocytic Leukemia. Genes 2020, 11, 686. [Google Scholar] [CrossRef]
- Mandal, R.K.; Yadav, S.S.; Panda, A.K.; Khattri, S. Vascular endothelial growth factor 936 c>T polymorphism increased oral cancer risk: Evidence from a meta-analysis. Genet. Test. Mol. Biomark. 2013, 17, 543–547. [Google Scholar] [CrossRef]
- Ajaz, S.; Muneer, R.; Siddiqa, A.; Ali Memon, M.; Firasat, S.; Abid, A.; Khaliq, S. Association of specific single nucleotide variants (SNVs) in the promoter and 3′-Untranslated region of Vascular Endothelial growth factor (VEGF) gene with risk and higher tumour grade of head and neck cancers. Oral Oncol. 2021, 122, 105519. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, C.; Wang, Z.; Wang, D.; Liang, X.; Tian, J. Association between VEGF single nucleotide polymorphism and breast cancer in the Northern China Han population. Breast Cancer Res. Treat. 2021, 186, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ungerbäck, J.; Elander, N.; Dimberg, J.; Söderkvist, P. Analysis of VEGF polymorphisms, tumor expression of VEGF mRNA and colorectal cancer susceptibility in a Swedish population. Mol. Med. Rep. 2009, 2, 435–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.G.; Chae, Y.S.; Sohn, S.K.; Cho, Y.Y.; Moon, J.H.; Park, J.Y.; Jeon, S.W.; Lee, I.T.; Choi, G.S.; Jun, S.H. Vascular endothelial growth factor gene polymorphisms associated with prognosis for patients with colorectal cancer. Clin. Cancer Res. 2008, 14, 62–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kämmerer, P.W.; Al-Nawas, B.; Kalkan, S.; Liese, J.; Fruth, K.; Frerich, B.; Brieger, J. Angiogenesis-related prognosis in patients with oral squamous cell carcinoma-roleof the VEGF +936 C/T polymorphism. J. Oral Pathol. Med. 2015, 44, 429–436. [Google Scholar] [CrossRef]
- Della-Morte, D.; Riondino, S.; Ferroni, P.; Palmirotta, R.; Pastore, D.; Lauro, D.; Guadagni, F.; Roselli, M. Impact of VEGF gene polymorphisms in elderly cancer patients: Clinical outcome and toxicity. Pharmacogenom 2015, 16, 61–78. [Google Scholar] [CrossRef]
- Bowden, J.; Brennan, P.A.; Umar, T.; Cronin, A. Expression of vascular endothelial growth factor in basal cell carcinoma and cutaneous squamous cell carcinoma of the head and neck. J. Cut. Pathol. 2002, 29, 585–589. [Google Scholar] [CrossRef]
- Zarzynska, J.M. Two faces of TGF-β1 in breast cancer. Mediators Inflamm. 2014, 2014, 141747. [Google Scholar] [CrossRef]
- Oshimori, N.; Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. J. Stem Cell 2012, 10, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Ling, H.; Guo, Z.; Cao, Q.; Song, C. Roles of exosomal miRNA in vascular aging. Pharmacol. Res. 2021, 165, 105278. [Google Scholar] [CrossRef]
- Staneviciute, Z.; Sepetiene, R.; Grabauskyte, I.; Patamsyte, V.; Lesauskaite, V. Investigation of TGFβR2 SNP rs4522809, Osteopontin, TGF β1 and their association with dilatative pathology of ascending thoracic aorta. Cytokine 2018, 107, 70–73. [Google Scholar] [CrossRef]
- Valle, L. Debate about TGFBR1 and the susceptibility to colorectal cancer. World J. Gastroint. Oncol. 2012, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.; Boutros, M. Extracellular vesicles and oncogenic signaling. Mol. Oncol. 2021, 15, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Emon, B.; Bauer, J.; Jain, Y.; Jung, B.; Saif, T. Biophysics of Tumor Microenvironment and Cancer Metastasis—A Mini Review. Comp. Struct. Biotech. J. 2018, 16, 279–287. [Google Scholar] [CrossRef]
- Joiret, M.; Mahachie John, J.M.; Gusareva, E.S.; Van Steen, K. Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioDat. Min. 2019, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Lyu, C.; Li, X.; Qureshi, A.A.; Han, J.; Li, M. Identifying Susceptibility Loci for Cutaneous Squamous Cell Carcinoma Using a Fast Sequence Kernel Association Test. Front. Genet. 2021, 12, 657499. [Google Scholar] [CrossRef]
- Lobl, M.B.; Hass, B.; Clarey, D.; Higgins, S.; Wysong, A. Next-generation sequencing identifies novel single nucleotide polymorphisms in high-risk cutaneous squamous cell carcinoma: A pilot study. Exp. Dermatol. 2020, 29, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Choquet, H.; Ashrafzadeh, S.; Kim, Y.; Asgari, M.M.; Jorgenson, E. Genetic and environmental factors underlying keratinocyte carcinoma risk. JCI Insight 2020, 5, e134783. [Google Scholar] [CrossRef]
- Liyanage, U.E.; Law, M.H.; Han, X.; An, J.; Ong, J.S.; Gharahkhani, P.; Gordon, S.; Neale, R.E.; Olsen, C.M.; 23 and Me Research Team; et al. Combined analysis of keratinocyte cancers identifies novel genome-wide loci. Hum. Mol. Genet. 2019, 28, 3148–3160. [Google Scholar] [CrossRef]
- Adolphe, C.; Xue, A.; Fard, A.T.; Genovesi, L.A.; Yang, J.; Wainwright, B.J. Genetic and functional interaction network analysis reveals global enrichment of regulatory T cell genes influencing basal cell carcinoma susceptibility. Genome Med. 2021, 13, 19. [Google Scholar] [CrossRef]
- Li, X.; Liang, L.; De Vivo, I.; Tang, J.Y.; Han, J. Pathway analysis of expression-related SNPs on genome-wide association study of basal cell carcinoma. Oncotarget 2016, 7, 36885–36895. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liang, L.; Xu, M.; Qureshi, A.A.; Han, J. Pathway analysis for genome-wide association study of basal cell carcinoma of the skin. PLoS ONE 2011, 6, e22760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omland, S.H.; Nielsen, P.S.; Gjerdrum, L.M.; Gniadecki, R. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells. Acta Derm. Venereol. 2016, 96, 917–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic Characteristics | Cancer | Controls | p | |||
---|---|---|---|---|---|---|
N. | % | N. | % | |||
Age, mean ± SD | 63.90 ± 14.38 | 50.37 ± 11.49 | <0.0001 | |||
Age median | 64.00 | 46.00 | ||||
≥64 years old | 36 | 51.42 | 48 | 29.81 | - | |
Women | 24 | 34.33 | 76 | 47.81 | 0.0719 | |
Basal cell carcinoma (BCC) | 50 | 71.42 | - | - | - | |
Squamous cell carcinoma (SCC) | 20 | 28.58 | - | - | - | |
Non-melanocytic skin cancer patient clinical characteristics | ||||||
BCC Subtypes: | N. | % | Metastases | Therapy | ||
Nodular | 33 | 66.00 | No | Surgical excision | ||
Superficial | 12 | 24.00 | No | Surgical excision | ||
Adenoid BCC | 2 | 4.00 | No | Surgical excision | ||
Nodulocystic BCC | 1 | 2.00 | No | Surgical excision | ||
Micronodular BCC | 1 | 2.00 | No | Mohs surgery | ||
Pinkus Fibroepithelioma | 1 | 2.00 | No | Surgical excision | ||
SCC Subtypes: | ||||||
SCC arising in actinic keratosis | 14 | 70.00 | No | Surgical excision | ||
Keratoacanthoma | 2 | 10.00 | No | Immune stimulatory therapy and cryosurgery | ||
Adenosquamous carcinoma | 1 | 5.00 | No | Surgical excision and adjuvant immunotherapy | ||
Verrucous SCC | 1 | 5.00 | No | Surgical excision | ||
Invasive Bowen’s disease | 1 | 5.00 | N.D. | Cryosurgery and adjuvant chemotherapy | ||
Carcinosarcoma | 1 | 5.00 | Yes | Surgical excision and adjuvant chemotherapy |
Genes | SNPs | Gene Region | Position | Major Allele | Minor Allele | MAF * | Biological Effect | Reference |
---|---|---|---|---|---|---|---|---|
TGF-β1 | rs1800471 | Exon 1 | 19:41352971 | G | C | 0.05 | Modification of TGF-β1 production | [31] |
TGF- β2 | rs900 | 3′UTR | 1:218441563 | A | T | 0.29 | Modification of TGF-β2 production | [15] |
TGF-βR1 | rs334348 | 3′UTR | 9:99150189 | A | G | 0.26 | [32] | |
rs334349 | 3′UTR | 9:99152105 | G | A | 0.27 | |||
TGF-βR2 | rs4522809 | Intron 2 | 3:30627192 | A | G | 0.47 | Probable association to TGF-β signaling modification | [17] |
VEGF-A | rs3025039 | 3′UTR | 6:43784799 | C | T | 0.14 | Reduced VEGF-A production | [27,28] |
GENE | SNP | Alleles/Genotypes | Controls | NMSC | OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|---|---|
Nr | Freq. | Nr | Freq. | |||||
TGF-β1 | rs1800471 | G | 292 | 0.91 | 123 | 0.88 | 0.774 | |
C | 30 | 0.09 | 17 | 0.12 | ||||
G/G | 135 | 0.84 | 56 | 0.8 | 1.27 (0.72–2.26) | |||
C/G | 22 | 0.14 | 11 | 0.16 | 0.757 | |||
C/C | 4 | 0.02 | 3 | 0.04 | ||||
TGF-β2 | rs900 | A | 222 | 0.69 | 94 | 0.67 | 0.822 | |
T | 100 | 0.31 | 46 | 0.33 | ||||
A/A | 75 | 0.47 | 34 | 0.49 | 1.08 (0.71–1.65) | |||
A/T | 72 | 0.45 | 26 | 0.37 | 0.673 | |||
T/T | 14 | 0.09 | 10 | 0.14 | ||||
TGF-βR1 | rs334348 | A | 244 | 0.76 | 106 | 0.76 | 1.000 | |
G | 78 | 0.24 | 34 | 0.24 | 0.97 (0.52–1.79) | |||
A/A | 96 | 0.6 | 42 | 0.6 | 0.990 | |||
A/G | 52 | 0.32 | 22 | 0.31 | ||||
G/G | 13 | 0.08 | 6 | 0.09 | ||||
rs334349 | G | 250 | 0.78 | 99 | 0.71 | 0.845 | ||
A | 72 | 0.22 | 41 | 0.29 | ||||
G/G | 101 | 0.63 | 37 | 0.53 | 1.42 (0.77–2.62) | |||
G/A | 48 | 0.3 | 25 | 0.36 | 0.343 | |||
A/A | 12 | 0.07 | 8 | 0.11 | ||||
* TGF-βR2 | rs4522809 | A | 188 | 0.58 | 110 | 0.79 | <0.0001 | |
G | 134 | 0.42 | 30 | 0.21 | ||||
A/A | 55 | 0.34 | 48 | 0.69 | 0.21 (0.10–0.41) | |||
A/G | 78 | 0.48 | 14 | 0.2 | <0.0001 | |||
G/G | 28 | 0.17 | 8 | 0.11 | ||||
** VEGF-A | rs3025039 | C | 272 | 0.84 | 104 | 0.74 | 0.0291 | |
T | 50 | 0.16 | 36 | 0.26 | ||||
C/C | 116 | 0.72 | 43 | 0.61 | 1.86 (1.14–2.34) | |||
C/T | 40 | 0.25 | 18 | 0.26 | 0.022 | |||
T/T | 5 | 0.03 | 9 | 0.13 |
Genes and SNP Alleles | Age < 64 | Age ≥ 64 | |||||||
---|---|---|---|---|---|---|---|---|---|
CTRL | NMSC | OR (95% CI) | p-Value | CTRL | NMSC | OR (95% CI) | p-Value | ||
N (Gen. Freq.) | N (Gen. Freq.) | ||||||||
TGF-βR2 rs4522809 | A/A | 42 (0.37) | 23 (0.68) | 3.54 (1.57–7.98) | 0.0028 | 13 (0.27) | 25 (0.69) | 6.12 (2.36–15.9) | 0.0002 |
A/G | 54 (0.48) | 7 (0.20) | 0.28 (011–0.71) | 0.0053 | 24 (0.50) | 7 (0.20) | 0.15 (0.05–0.45) | 0.0058 | |
G/G | 17 (0.15) | 4 (0.12) | 1.22 (0.75–2.41) | 0.784 | 11 (0.23) | 4 (0.11) | 0.42 (0.12–1.45) | 0.249 | |
G/* | 71 (0.63) | 11 (0.32) | 0.28 (0.12–0.64) | 0.0028 | 35 (0.73) | 11 (0.31) | 0.16 (0.06–0.42) | 0.0002 | |
VEGF-A rs3025039 | C/C | 77 (0.68) | 25 (0.74) | 1.29 (0.55–3.06) | 0.673 | 39 (0.81) | 18 (0.50) | 0.23 (0.09–0.61) | 0.0042 |
C/T | 33 (0.29) | 6 (0.17) | 0.52 (0.19–1.37) | 0.267 | 7 (0.15) | 12 (0.33) | 3.74 (1.23–11.33) | 0.0058 | |
T/T | 3 (0.03) | 3 (0.09) | 3.55 (0.70–18.5) | 0.137 | 2 (0.04) | 6 (0.17) | 4.59 (0.87–24.33) | 0.0632 | |
T/* | 36 (0.32) | 9 (0.26) | 0.77 (0.33–1.82) | 0.673 | 9 (0.19) | 18 (0.50) | 4.33 (1.63–11.5) | 0.0042 |
Genes and SNP Alleles | Female | Male | |||||||
---|---|---|---|---|---|---|---|---|---|
CTRL | MNSC | OR (95% CI) | p-Value | CTRL | MNSC | OR (95% CI) | p-Value | ||
N (Gen. Freq.) | N (Gen. Freq.) | ||||||||
TGF-βR2 rs4522809 | A/A | 31 (0.40) | 17 (0.71) | 3.68 (1.37–9.91) | 0.011 | 24 (0.29) | 31 (0.67) | 5.08 (2.33–11.1) | 0.0001 |
A/G | 37 (0.47) | 4 (0.17) | 0.22 (0.07–0.71) | 0.008 | 41 (0.49) | 10 (0.22) | 0.28 (0.13–0.65) | 0.003 | |
G/G | 10 (0.13) | 3 (0.12) | 0.97 (0.24–3.86) | 1.000 | 18 (0.22) | 5 (0.11) | 0.44 (0.15–1.28) | 0.153 | |
G/* | 47 (0.60) | 7 (0.29) | 0.27 (0.10–0.73) | 0.011 | 59 (0.71) | 15 (0.33) | 0.20 (0.09–0.43) | 0.0001 | |
VEGF-A rs3025039 | C/C | 54 (0.69) | 13 (0.54) | 0.53 (0.21–1.34) | 0.221 | 62 (0.75) | 30 (0.65) | 0.64 (0.29–1.39) | 0.311 |
C/T | 22 (0.28) | 8 (0.33) | 1.27 (0.48–3.39) | 0.618 | 18 (0.21) | 10 (0.22) | 1.03 (0.42–2.40) | 1.00 | |
T/T | 2 (0.03) | 3 (0.13) | 5.43 (0.85–34.7) | 0.083 | 3 (0.04) | 6 (0.13) | 4.08 (0.95–16.8) | 0.068 | |
T/* | 24 (0.31) | 11 (0.46) | 1.90 (0.75–4.86) | 0.221 | 21 (0.25) | 16 (0.35) | 1.57 (0.72–3.45) | 0.311 |
Genes and SNP Alleles | BCC | SCC | Controls | BCC vs. SCC | BCC vs. Controls | SCC vs. Controls | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nr | Freq. | Nr | Freq. | Nr | Freq. | OR 95% CI | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
* TGF-βR1 rs334349 | G/G | 29 | 0.58 | 8 | 0.40 | 101 | 0.63 | 0.48 0.17–1.39 | 0.158 | 0.82 0.43–1.57 | 0.618 | 0.39 0.15–1.02 | 0.057 |
G/A | 18 | 0.36 | 7 | 0.35 | 48 | 0.3 | 1.39 0.41–4.71 | 0.882 | 1.37 0.68–2.78 | 0.61 | 1.84 0.63–5.42 | 0.615 | |
A/A | 3 | 0.06 | 5 | 0.25 | 12 | 0.07 | 7.09 1.31–38.48 | 0.019 | 0.81 0.21–3.18 | 1.000 | 5.48 1.52–19.7 | 0.044 | |
** TGF-βR2 rs4522809 | A/A | 33 | 0.66 | 15 | 0.75 | 55 | 0.34 | 1.54 0.48–4.98 | 0.444 | 3.74 1.91–7.31 | 0.0001 | 5.78 1.99–16.7 | 0.001 |
A/G | 12 | 0.24 | 2 | 0.10 | 78 | 0.48 | 0.35 0.07–1.81 | 0.145 | 0.24 0.11–0.52 | 0.0002 | 0.09 0.02–0.40 | 0.0004 | |
G/G | 5 | 0.10 | 3 | 0.03 | 28 | 0.17 | 1.31 0.27–6.35 | 0.567 | 0.53 0.19–1.45 | 0.268 | 0.84 0.23–3.06 | 1.000 | |
*** VEGF-A rs3025039 | C/C | 33 | 0.66 | 10 | 0.50 | 116 | 0.72 | 0.52 0.86–8.27 | 0.279 | 0.75 0.38–1.48 | 0.478 | 0.39 0.15–1.00 | 0.068 |
C/T | 10 | 0.20 | 8 | 0.40 | 40 | 0.25 | 2.67 1.00–13.00 | 0.129 | 0.99 0.44–2.23 | 0.091 | 2.59 0.94–7.17 | 0.085 | |
T/T | 7 | 0.14 | 2 | 0.10 | 5 | 0.03 | 1.20 0.20–7.13 | 0.745 | 5.08 1.53–16.8 | 0.0085 | 4.89 0.82–29.1 | 0.074 |
p-Hp | TGF-β1 rs1800471 G/C | TGF-β2rs900 A/T | TGF-βR1 rs334348 A/G | TGF-βR1 rs334349 G/A | TGF-βR2 rs4522809 A/G | VEGF-A rs3025039 C/T | CTRL | NMSC | OR (95%CI) | p Value |
---|---|---|---|---|---|---|---|---|---|---|
2 | G | A | A | G | G | C | 0.150 | 0.028 | 0.17 (0.04–0.73) | 0.0061 |
14 | G | A | A | G | A | T | 0.010 | 0.124 | 11.7 (2.46–55.9) | 0.0005 |
24 | G | T | G | A | A | C | 0.000 | 0.058 | 21.8 (1.16–411) | 0.0079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scola, L.; Bongiorno, M.R.; Forte, G.I.; Aiello, A.; Accardi, G.; Scrimali, C.; Spina, R.; Lio, D.; Candore, G. TGF-β/VEGF-A Genetic Variants Interplay in Genetic Susceptibility to Non-Melanocytic Skin Cancer. Genes 2022, 13, 1235. https://doi.org/10.3390/genes13071235
Scola L, Bongiorno MR, Forte GI, Aiello A, Accardi G, Scrimali C, Spina R, Lio D, Candore G. TGF-β/VEGF-A Genetic Variants Interplay in Genetic Susceptibility to Non-Melanocytic Skin Cancer. Genes. 2022; 13(7):1235. https://doi.org/10.3390/genes13071235
Chicago/Turabian StyleScola, Letizia, Maria Rita Bongiorno, Giusi Irma Forte, Anna Aiello, Giulia Accardi, Chiara Scrimali, Rossella Spina, Domenico Lio, and Giuseppina Candore. 2022. "TGF-β/VEGF-A Genetic Variants Interplay in Genetic Susceptibility to Non-Melanocytic Skin Cancer" Genes 13, no. 7: 1235. https://doi.org/10.3390/genes13071235
APA StyleScola, L., Bongiorno, M. R., Forte, G. I., Aiello, A., Accardi, G., Scrimali, C., Spina, R., Lio, D., & Candore, G. (2022). TGF-β/VEGF-A Genetic Variants Interplay in Genetic Susceptibility to Non-Melanocytic Skin Cancer. Genes, 13(7), 1235. https://doi.org/10.3390/genes13071235