The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Epigenomic Studies in Animal Models
3.2. Epigenomic Studies in Human Subjects
3.3. Cannabis-Associated Epigenetic Regulation of MDD Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ICD-10 Version:2016 [Internet]. Available online: http://apps.who.int/classifications/icd10/browse/2016/en (accessed on 26 April 2018).
- World Health Organization (WHO). The Global Burden of Disease; 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Sullivan, P.F.; de Geus, E.J.C.; Willemsen, G.; James, M.R.; Smit, J.H.; Zandbelt, T.; Arolt, V.; Baune, B.T.; Blackwood, D.; Cichon, S.; et al. Genome-wide association for major depressive disorder: A possible role for the presynaptic protein piccolo. Mol. Psychiatry 2009, 14, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Sullivan, P.F. Genome-Wide Association Analyses Identify 44 Risk Variants and Refine the Genetic Architecture of Major Depression; bioRxiv; Cold Spring Harbor Laboratory: New York, NY, USA, 2017; Available online: https://www.nature.com/articles/s41588-018-0090-3 (accessed on 28 July 2022).
- van Uffelen, J.G.Z.; van Gellecum, Y.R.; Burton, N.W.; Peeters, G.; Heesch, K.C.; Brown, W.J. Sitting-Time, Physical Activity, and Depressive Symptoms in Mid-Aged Women. Am. J. Prev. Med. 2013, 45, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Power, R.A.; Tansey, K.E.; Buttenschøn, H.N.; Cohen-Woods, S.; Bigdeli, T.; Hall, L.S.; Kutalik, Z.; Lee, S.H.; Ripke, S.; Steinberg, S.; et al. Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. In Biological Psychiatry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 81, pp. 325–335. [Google Scholar] [CrossRef]
- Flint, J.; Kendler, K.S. The Genetics of Major Depression. In Neuron; Elsevier: Amsterdam, The Netherlands, 2014; Volume 81, pp. 484–503. [Google Scholar] [CrossRef]
- Prince, M.J.; Harwood, R.H.; Blizard, R.A.; Thomas, A.; Mann, A.H. Social support deficits, loneliness and life events as risk factors for depression in old age. Psychol. Med. 1997, 27, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Negele, A.; Kaufhold, J.; Kallenbach, L.; Leuzinger-Bohleber, M. Childhood Trauma and Its Relation to Chronic Depression in Adulthood. Depress. Res. Treat. 2015, 2015, 650804. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.E.; Kaplan, G.A.; Shema, S.J.; Strawbridge, W.J. Prevalence and correlates of depression in an aging cohort: The Alameda County Study. J. Gerontol. B. Psychol. Sci. Soc. Sci. 1997, 52, S252–S258. [Google Scholar] [CrossRef]
- Mezuk, B.; Eaton, W.W.; Golden, S.H.; Ding, Y. The Influence of Educational Attainment on Depression and Risk of Type 2 Diabetes. Am. J. Public Health 2008, 98, 1480–1485. [Google Scholar] [CrossRef]
- Coryell, W.; Endicott, J.; Keller, M. Major depression in a nonclinical sample. Demographic and clinical risk factors for first onset. Arch. Gen. Psychiatry 1992, 49, 117–125. [Google Scholar] [CrossRef]
- Rao, T.S.S.; Asha, M.R.; Ramesh, B.N.; Rao, K.S.J. Understanding nutrition, depression and mental illnesses. Indian J. Psychiatry 2008, 50, 77–82. [Google Scholar]
- Farmer, A.; Harris, T.; Redman, K.; Sadler, S.; Mahmood, A.; McGuffin, P. Cardiff Depression Study. Br. J. Psychiatry 2000, 176, 150–155. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- Petersen, I.; McGue, M.; Tan, Q.; Christensen, K.; Christiansen, L. Change in Depression Symptomatology and Cognitive Function in Twins: A 10-Year Follow-Up Study. Twin Res. Hum. Genet. 2016, 19, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Levey, D.F.; Stein, M.B.; Wendt, F.R.; Pathak, G.A.; Zhou, H.; Aslan, M.; Quaden, R.; Harrington, K.M.; Nuñez, Y.Z.; Overstreet, C.; et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 2021, 24, 954–963. [Google Scholar] [CrossRef]
- Levinson, D.F.; Mostafavi, S.; Milaneschi, Y.; Rivera, M.; Ripke, S.; Wray, N.R.; Sullivan, P.F. Genetic studies of major depressive disorder: Why are there no genome-wide association study findings and what can we do about it? In Biological Psychiatry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 510–512. [Google Scholar]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. In Lancet; Elsevier: Amsterdam, The Netherlands, 2018; Volume 391, pp. 1357–1366. [Google Scholar] [CrossRef]
- Levkovitz, Y.; Tedeschini, E.; Papakostas, G.I. Efficacy of Antidepressants for Dysthymia: A Meta-Analysis of Placebo-Controlled Randomized Trials. J. Clin. Psychiatry. 2011, 72, 5964. [Google Scholar] [CrossRef] [PubMed]
- Fava, M. Diagnosis and definition of treatment-resistant depression. In Biological Psychiatry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 53, pp. 649–659. [Google Scholar] [CrossRef]
- Li, Q.S.; Tian, C.; Hinds, D.; Agee, M.; Alipanahi, B.; Auton, A.; Bell, R.K.; Bryc, K.; Elson, S.L.; Fontanillas, P.; et al. Genome-wide association studies of antidepressant class response and treatment-resistant depression. Transl. Psychiatry 2020, 10, 360. [Google Scholar] [CrossRef]
- Richards, D. Prevalence and clinical course of depression: A review. Clin. Psychol. Rev. 2011, 31, 1117–1125. [Google Scholar] [CrossRef]
- Blease, C.R.; O’neill, S.; Walker, J.; Hägglund, M.; Torous, J. Treatment outcomes for depression: Challenges and opportunities. Lancet Psychiatry 2020, 7, 925–927. [Google Scholar]
- Murillo-Rodriguez, E.; Pandi-Perumal, S.R.; Montii, J.M. Cannabinoids and Neuropsychiatric Disorders; Springer International Publishing: Cham, Switzerland, 2021; Volume 1264. [Google Scholar]
- Sexton, M.; Cuttler, C.; Finnell, J.S.; Mischley, L.K. A Cross-Sectional Survey of Medical Cannabis Users: Patterns of Use and Perceived Efficacy. Cannabis Cannabinoid Res. 2016, 1, 131–138. [Google Scholar] [CrossRef]
- Hines, L.A.; Freeman, T.; Gage, S.H.; Zammit, S.; Hickman, M.; Cannon, M.; Munafo, M.; Macleod, J.; Heron, J. Association of High-Potency Cannabis Use With Mental Health and Substance Use in Adolescence. JAMA Psychiatry 2020, 77, 1044. [Google Scholar] [CrossRef]
- Memedovich, K.A.; Dowsett, L.E.; Spackman, E.; Noseworthy, T.; Clement, F. The adverse health effects and harms related to marijuana use: An overview review. Can. Med. Assoc. Open Access J. 2018, 6, E339–E346. [Google Scholar] [CrossRef]
- Small, E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. iScience Cannabinoids and Cannabinoid Receptors: The Story So Far; Cell Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Li, X.; Hempel, B.J.; Yang, H.-J.; Han, X.; Bi, G.-H.; Gardner, E.L.; Xi, Z.-X. Dissecting the role of CB1 and CB2 receptors in cannabinoid reward versus aversion using transgenic CB1- and CB2-knockout mice. In European Neuropsychopharmacology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 43, pp. 38–51. [Google Scholar] [CrossRef]
- Joca, S.; Silote, G.P.; Sartim, A.; Sales, A.; Guimarães, F.; Wegener, G. Putative effects of cannabidiol in depression and synaptic plasticity. In The Neuroscience of Depression; Academic Press: Cambridge, MA, USA, 2021; pp. 459–467. [Google Scholar] [CrossRef]
- Sales, A.J.; Guimarães, F.S.; Joca, S.R. CBD modulates DNA methylation in the prefrontal cortex and hippocampus of mice exposed to forced swim. In Behavioural Brain Research; Elsevier: Amsterdam, The Netherlands, 2020; Volume 388, p. 112627. [Google Scholar] [CrossRef]
- Milutinovic, S.; D’Alessio, A.C.; Detich, N.; Szyf, M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2007, 28, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.J.; Guimarães, F.S.; Joca, S.R.L. DNA methylation in stress and depression: From biomarker to therapeutics. Acta Neuropsychiatr. 2021, 33, 217–241. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.J.; Maciel, I.S.; Suavinha, A.C.D.R.; Joca, S.R.L. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. In Molecular Neurobiology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 58, pp. 777–794. [Google Scholar] [CrossRef]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Team, R.C.R. A Language and Environment for Statistical Computing. 2015. Available online: http://www.gbif.org/resource/81287 (accessed on 1 May 2016).
- Wanner, N.M.; Colwell, M.; Drown, C.; Faulk, C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. In Environmental and Molecular Mutagenesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 61, pp. 890–900. [Google Scholar] [CrossRef]
- Wanner, N.M.; Colwell, M.; Drown, C.; Faulk, C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin. Epigenet. 2021, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.T.; Szutorisz, H.; Garg, P.; Martin, Q.; Landry, J.A.; Sharp, A.J.; Hurd, Y.L. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Changes in the Rat Nucleus Accumbens Associated With Cross-Generational Effects of Adolescent THC Exposure. Neuropsychopharmacology 2015, 40, 2993–3005. [Google Scholar] [CrossRef]
- Clark, S.L.; Chan, R.; Zhao, M.; Xie, L.Y.; Copeland, W.E.; Aberg, K.A.; Oord, E.J.V.D. Methylomic Investigation of Problematic Adolescent Cannabis Use and Its Negative Mental Health Consequences. In Child & Adolescent Psychiatry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 60, pp. 1524–1532. [Google Scholar] [CrossRef]
- Osborne, A.J.; Pearson, J.F.; Noble, A.J.; Gemmell, N.J.; Horwood, L.J.; Boden, J.M.; Benton, M.C.; Macartney-Coxson, D.P.; Kennedy, M.A. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl. Psychiatry 2020, 10, 114. [Google Scholar] [CrossRef]
- Markunas, C.A.; Hancock, D.; Xu, Z.; Quach, B.C.; Fang, F.; Sandler, D.P.; Johnson, E.O.; Taylor, J.A. Epigenome-wide analysis uncovers a blood-based DNA methylation biomarker of lifetime cannabis use. In American Journal of Medical Genetics Part B: Neuropsychiatric Genetics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 186, pp. 173–182. [Google Scholar] [CrossRef]
- Acharya, K.; Mitchell, J.T.; Visco, Z.; Grenier, C.; Murphy, S.K.; Schrott, R.; Hall, B.J.; Price, T.M.; McClernon, J.; Levin, E.D.; et al. Data from: Cannabinoid Exposure and Altered DNA Methylation in Rat and Human Sperm; Duke Research Data Repository: Online, 2020. [Google Scholar] [CrossRef]
- Schrott, R.; Murphy, S.K.; Modliszewski, J.L.; King, D.E.; Hill, B.; Itchon-Ramos, N.; Raburn, D.; Price, T.; Levin, E.D.; Vandrey, R.; et al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. In Environmental Epigenetics; Oxford Academic: Oxford, UK, 2021; Volume 7, pp. 1–10. [Google Scholar]
- Mojtabai, R.; Olfson, M.; Han, B. National Trends in the Prevalence and Treatment of Depression in Adolescents and Young Adults. Pediatrics 2016, 138, e20161878. [Google Scholar] [CrossRef]
- Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. In Patient Preference Adherence; Dove Press: Lincolnshire, UK, 2012; Volume 6, pp. 369–388. [Google Scholar]
- García-Gutiérrez, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules 2020, 10, 1575. [Google Scholar] [CrossRef]
- Mustonen, A.; Hielscher, E.; Miettunen, J.; Denissoff, A.; Alakokkare, A.-E.; Scott, J.G.; Niemelä, S. Adolescent cannabis use, depression and anxiety disorders in the Northern Finland Birth Cohort 1986. In BJPsych Open; Cambridge University Press: Cambridge, UK, 2021; Volume 7. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Khardali, I.A.; Oraiby, M.E.; Hakami, A.F.; Shaheen, E.S.; Ageel, I.M.; Abutawil, E.H.; Abu-Taweel, G.M. Anxiety, depression-like behaviors and biochemistry disorders induced by cannabis extract in female mice. Saudi J. Biol. Sci. 2021, 28, 6097–6111. [Google Scholar] [CrossRef] [PubMed]
- Szutorisz, H.; Hurd, Y.L. Epigenetic Effects of Cannabis Exposure. Biol. Psychiatry 2015, 79, 586–594. [Google Scholar] [CrossRef]
- Takeuchi, T.; Misaki, A.; Liang, S.-B.; Tachibana, A.; Hayashi, N.; Sonobe, H.; Ohtsuki, Y. Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J. Neurochem. 2002, 74, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- King, C.P.; Militello, L.; Hart, A.; Pierre, C.L.S.; Leung, E.; Versaggi, C.L.; Roberson, N.; Catlin, J.; Palmer, A.A.; Richards, J.B.; et al. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. Genes Brain Behav. 2017, 16, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Fredette, B.J.; Miller, J.; Ranscht, B. Inhibition of motor axon growth by T-cadherin substrata. Development 1996, 122, 3163–3171. [Google Scholar] [CrossRef]
- Rivero, O.; Sich, S.; Popp, S.; Schmitt, A.; Franke, B.; Lesch, K.-P. Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. In European Neuropsychopharmacology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 23, pp. 492–507. [Google Scholar] [CrossRef]
- Kiser, D.P.; Popp, S.; Schmitt-Böhrer, A.G.; Strekalova, T.; Hove, D.L.V.D.; Lesch, K.-P.; Rivero, O. Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice. In Progress in Neuro-Psychopharmacology and Biological Psychiatry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 89, pp. 158–168. [Google Scholar] [CrossRef]
- Drgonova, J.; Walther, N.; Hartstein, G.L.; Bukhari, M.O.; Baumann, M.; Katz, J.; Hall, F.S.; Arnold, E.R.; Flax, S.; Riley, A.; et al. Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice. Mol. Med. 2016, 22, 537–547. [Google Scholar] [CrossRef]
- Johnson, C.; Drgon, T.; Walther, N.; Uhl, G.R. Genomic Regions Identified by Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide Studies of Alcohol and Illegal Substance Dependence. PLoS ONE 2011, 6, e19210. [Google Scholar] [CrossRef]
- Drgon, T.; Montoya, I.; Johnson, C.; Liu, Q.-R.; Walther, D.; Hamer, D.; Uhl, G.R. Genome-Wide Association for Nicotine Dependence and Smoking Cessation Success in NIH Research Volunteers. Mol. Med. 2009, 15, 21–27. [Google Scholar] [CrossRef]
- Salatino-Oliveira, A.; Genro, J.P.; Polanczyk, G.V.; Zeni, C.; Schmitz, M.; Kieling, C.; Anselmi, L.; Menezes, A.M.B.; Barros, F.C.; Polina, E.R.; et al. Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. Am. J. Med Genet. B Neuropsychiatr. Genet. 2015, 168, 162–169. [Google Scholar] [CrossRef]
- Tiihonen, J.; Rautiainen, M.-R.; Ollila, H.; Repotiihonen, E.; Virkkunen, M.; Palotie, A.; Pietilainen, O.; Kristiansson, K.; Joukamaa, M.; Lauerma, H.; et al. Genetic background of extreme violent behavior. Mol. Psychiatry 2014, 20, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Børglum, A.D.; Demontis, D.; Grove, J.; Pallesen, J.; Hollegaard, M.V.; Pedersen, C.B.; Hedemand, A.; Mattheisen, M.; Uitterlinden, A.; Nyegaard, M.; et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol. Psychiatry 2014, 19, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Lee, H.-J.; Woo, H.G.; Choi, J.-H.; Greenwood, T.A.; Kelsoe, J.R. CDH13 and HCRTR2 May Be Associated with Hypersomnia Symptom of Bipolar Depression: A Genome-Wide Functional Enrichment Pathway Analysis. Psychiatry Investig. 2015, 12, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Denzel, M.S.; Scimia, M.-C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Investig. 2010, 120, 4342–4352. [Google Scholar] [CrossRef] [PubMed]
- Hebbard, L.W.; Garlatti, M.; Young, L.J.; Cardiff, R.D.; Oshima, R.G.; Ranscht, B. T-cadherin Supports Angiogenesis and Adiponectin Association with the Vasculature in a Mouse Mammary Tumor Model. Cancer Res. 2008, 68, 1407–1416. [Google Scholar] [CrossRef]
- Sibille, E.; Wang, Y.; Joeyen-Waldorf, J.; Gaiteri, C.; Surget, A.; Oh, S.; Belzung, C.; Tseng, G.C.; Lewis, D. A Molecular Signature of Depression in the Amygdala. Am. J. Psychiatry 2009, 166, 1011–1024. [Google Scholar] [CrossRef]
- Andrade, A.; Brennecke, A.; Mallat, S.; Brown, J.; Gomez-Rivadeneira, J.; Czepiel, N.; Londrigan, L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int. J. Mol. Sci. 2019, 20, 3537. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Z.D.; Lee, A.S.; Burgdorf, C.E.; Fischer, D.K.; Rajadhyaksha, A.M.; Mok, E.; Rizzo, B.; Rice, R.C.; Singh, K.; Ota, K.T.; et al. Cacna1c in the Prefrontal Cortex Regulates Depression-Related Behaviors via REDD1. Neuropsychopharmacology 2016, 42, 2032–2042. [Google Scholar] [CrossRef]
- Moon, A.L.; Haan, N.; Wilkinson, L.S.; Thomas, K.L.; Hall, J. CACNA1C: Association With Psychiatric Disorders, Behavior, and Neurogenesis. Schizophr. Bull. 2018, 44, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Royer-Bertrand, B.; Gygax, M.J.; Cisarova, K.; Rosenfeld, J.A.; Bassetti, J.A.; Moldovan, O.; O’Heir, E.; Burrage, L.C.; Allen, J.; Emrick, L.T.; et al. De novo variants in CACNA1E found in patients with intellectual disability, developmental regression and social cognition deficit but no seizures. Mol. Autism. 2021, 12, 69. [Google Scholar] [CrossRef]
- Starnawska, A.; Demontis, D.; Pen, A.; Hedemand, A.; Nielsen, A.L.; Staunstrup, N.H.; Grove, J.; Als, T.D.; Jarram, A.; O’Brien, N.L.; et al. CACNA1C hypermethylation is associated with bipolar disorder. Transl. Psychiatry 2016, 6, e831. [Google Scholar] [CrossRef] [PubMed]
- Vysokov, N.V.; Silva, J.P.; Lelianova, V.G.; Ho, C.; Djamgoz, M.B.; Tonevitsky, A.G.; Ushkaryov, Y.A. The Mechanism of Regulated Release of Lasso/Teneurin-2. Front. Mol. Neurosci. 2016, 9, 59. [Google Scholar] [CrossRef]
- Vysokov, N.V.; Silva, J.P.; Lelianova, V.G.; Suckling, J.; Cassidy, J.; Blackburn, J.K. Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal growth cones. Elife 2018, 7, e37935. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.-P.; Lelianova, V.G.; Ermolyuk, Y.S.; Vysokov, N.; Hitchen, P.G.; Berninghausen, O.; Rahman, M.A.; Zangrandi, A.; Fidalgo, S.; Tonevitsky, A.G.; et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc. Natl. Acad. Sci. USA 2011, 108, 12113–12118. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.R.; Szeto, R.A.; Carvalho, V.M.A.; Muotri, A.R.; Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 2021, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Sun, N.; Polimanti, R.; Pietrzak, R.; Levey, D.; Bryois, J.; Lu, Q.; Hu, Y.; Li, B. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 2019, 22, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Tessarin, G.W.L.; Michalec, O.M.; Torres-Da-Silva, K.R.; Da Silva, A.V.; Cruz-Rizzolo, R.J.; Gonçalves, A.; Gasparini, D.C.; Horta-Junior, J.D.A.; Ervolino, E.; Bittencourt, J.C.; et al. A Putative Role of Teneurin-2 and Its Related Proteins in Astrocytes. In Frontiers in Neuroscience; Frontiers Media S.A.: Lausanne, Switzerland, 2019; Volume 13, p. 655. [Google Scholar] [CrossRef]
- Antonyová, V.; Kejík, Z.; Brogyanyi, T.; Kaplánek, R.; Veselá, K.; Abramenko, N.; Ocelka, T.; Masařík, M.; Matkowski, A.; Gburek, J.; et al. Non-psychotropic cannabinoids as inhibitors of TET1 protein. In Bioorganic Chemistry; Academic Press: Cambridge, MA, USA, 2022; Volume 124, p. 105793. [Google Scholar] [CrossRef]
- Rusconi, F.; Rubino, T.; Battaglioli, E. Endocannabinoid-Epigenetic Cross-Talk: A Bridge toward Stress Coping. Int. J. Mol. Sci. 2020, 21, 6252. [Google Scholar] [CrossRef] [PubMed]
- Rusconi, F.; Battaglioli, E. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression. In Frontiers in Molecular Neuroscience; Frontiers Media S.A.: Lausanne, Switzerland, 2018; Volume 11, p. 184. [Google Scholar] [CrossRef]
- Romanoski, C.E.; Glass, C.K.; Stunnenberg, H.G.; Wilson, L.; Almouzni, G. Epigenomics: Roadmap for regulation. Nature 2015, 518, 314–316. [Google Scholar] [CrossRef]
- Consortium, R.E.; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef]
- Smith, A.K.; Kilaru, V.; Kocak, M.; Almli, L.M.; Mercer, K.B.; Ressler, K.J.; Tylavsky, F.A.; Conneely, K.N. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genom. 2014, 15, 145. [Google Scholar] [CrossRef]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed]
Reference | Organism | Tissue | Exposure | DNAm Quantification Method | Genes Overlapping with MDD-Associated Loci |
---|---|---|---|---|---|
[32] | Mouse | HPC | 20 mg/kg CBD daily for 2 weeks. | RRBS | ELAVL4, NEGR1, CACNA1E, CRB1, GALNT2, TGM4, LSAMP, MAML3, PCDHA8, TENM2, CTTNBP2, PAX5, PHF2, PTCH1, DENND1A, COMTD1, TRIM8, WBP1L, SORCS3, PRRG4, ARFGAP2, NCAM1, KIRREL3, CACNA1C, SOX5, FARP1, SYNE2, DLST, AMN, HERC1, MEGF11, FES, RBFOX1, CDH13, TCF4, EYA2 |
[33] | Mouse | F0 cortex | F0: Adult female mice exposed to 0 mg/kg CBD daily for 9 weeks. | RRBS | RERE, CACNA1E, DENND1B, LRP1B, RBMS1, FHIT, LSAMP, NLGN1, MAML3, ADCY2, PCDHA1, PCDHA5, TENM2, MAD1L1, PAX5, DENND1A, CNNM2, MADD, MYBPC3, SPI1, FADS2, CACNA1C, ACVRL1, UNC119B, SPPL3, FARP1, MTHFD1, KLC1, FAM189A1, MEGF11, RBFOX1, CDH13, MYO18A, CELF4, TCF4, EYA2, ZMYND8 |
F1cortex | F1: exposed to CBD during gestation and lactation. | CACNA1E, NRXN1, EFHD1, BSN, FHIT, PCDHA4, TENM2, ZSCAN12, MAD1L1, CTTNBP2, ADARB2, SORCS3, PAX6, KIRREL3, SOX5, GRASP, CABP1, OLFM4, SYNE2, RPS6KL1, AMN, FES, CDH13, MYO18A, TCF4, EYA2 | |||
F1: HPC | F1: exposed to CBD during gestation and lactation. | CACNA1E, ESRRG, REEP1, LRP1B, RBMS1, BSN, RSRC1, MAML3, TMCO6, TENM2, ITPR3, PACRG, ADARB2, ARL3, SFXN2, NT5C2, INA, SORCS3, ARFGAP2, MADD, MYRF, FADS1, KIRREL3, CACNA1C, SOX5, ACVRL1, PCDH9, GPC5, FARP1, SYNE2, TRAF3, AMN, MEGF11, CD276, RBFOX1, SHISA9, CDH13, TCF4, EYA2, ARFGEF2 | |||
[34] | Rat | F1: NAc | F0 exposed to 1.5 mg/kg THC every third day from postnatal day 28–49 and mated when no THC was detectable. | ERRBS | ESRRG, ITPR3, PARK2, CNNM2, NR1H3, SOX5, FARP1, MTHFD1, TRAF3, CDH13, CTC1 |
[38] | Human | Sperm | Cannabis users with use frequency at least once weekly in the last 6 months compared with non-users. | RRBS | MAD1L1, ADARB2 |
[39] | Human | Sperm | Cannabis users with a self-reported frequency of cannabis use at least once weekly over the prior 6 months compared to non-users. | WGBS | RERE, PCDH9, RBFOX1, ASXL3 |
[36] | Human | Blood | Regular cannabis users, consumed cannabis via smoking compared to matched controls. | EPIC array | No overlap between the genes identified at p-value < 10−5 and the ones residing in MDD-associated loci. |
[35] | Human | Blood | Problematic cannabis users compared with non-users. | MBD-seq | ESRRG, EYS, NKAIN2, CACNA1C, GPC5, FAM189A1 |
[37] | Human | Blood | Lifetime cannabis use | 450K array | No overlap between the genes identified at p-value < 10−5 and the ones residing in MDD-associated loci. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, G.S.; Joca, S.; Starnawska, A. The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes 2022, 13, 1435. https://doi.org/10.3390/genes13081435
Mohammad GS, Joca S, Starnawska A. The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes. 2022; 13(8):1435. https://doi.org/10.3390/genes13081435
Chicago/Turabian StyleMohammad, Guldar Sayed, Sâmia Joca, and Anna Starnawska. 2022. "The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder" Genes 13, no. 8: 1435. https://doi.org/10.3390/genes13081435
APA StyleMohammad, G. S., Joca, S., & Starnawska, A. (2022). The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes, 13(8), 1435. https://doi.org/10.3390/genes13081435