Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Phenotypic and Pedigree Data
2.3. Genotyping and Quality Control
2.4. Genome-Wide Association Study
- y = vector of phenotypes for the genotyped individuals,
- β = vector of fixed effects,
- u = vector of random animal genetic effects not explained by the markers,
- pe = vector of random permanent environmental effects accounting for the covariance between observations of the same individual,
- α = vector of marker effects,
- e = vector of random residual effects,
- X, Z and W = incidence matrices relating records to fixed, animal and permanent environmental effects,
- M = genotype covariate (each coded as 0, 1 or 2).
- y = vector of phenotypes for the non-genotyped individuals,
- M = genotype covariate matrix for the non-genotyped individuals imputed from the genotyped relatives,
- Zn = incidence matrix corresponding to the imputation residual,
- ϵ = vector of imputation residuals accounting for errors in the genotype imputation.
2.5. Detection of Important Windows Associated with the Trait and Candidate Genes
3. Results
3.1. Descriptive Statistics
3.2. Genome-Wide Association Study (GWAS)
3.3. Top 10 Genomic Regions and Candidate Genes
3.4. Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Eenennaam, A.L.; van der Werf, J.H.; Goddard, M.E. The value of using DNA markers for beef bull selection in the seedstock sector. J. Anim. Sci. 2011, 89, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Bouquet, A.; Juga, J. Integrating genomic selection into dairy cattle breeding programmes: A review. Animal. 2013, 7, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef]
- Fernando, R.; Toosi, A.; Wolc, A.; Garrick, D.; Dekkers, J. Application of whole-genome prediction methods for genome-wide association studies: A Bayesian approach. J. Agric. Biol. Environ. Stat. 2017, 22, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Fernando, R.L.; Garrick, D. Bayesian methods applied to GWAS. In Genome-Wide Association Studies and Genomic Prediction; Humana Press: Totowa, NJ, USA, 2013; pp. 237–274. [Google Scholar]
- Fernando, R.L.; Dekkers, J.C.; Garrick, D.J. A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genet. Sel. Evol. 2014, 46, 50. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Fernando, R.; Garrick, D. JWAS: Julia implementation of whole-genome analysis software. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 7–11 February 2018. [Google Scholar]
- Wang, Z.; Zhang, H.; Yang, H.; Wang, S.; Rong, E.; Pei, W.; Li, H.; Wang, N. Genome-Wide Association Study for Wool Production Traits in a Chinese Merino Sheep Population. PLoS ONE 2014, 9, e107101. [Google Scholar] [CrossRef]
- Al-Mamun, H.A.; Kwan, P.; Clark, S.A.; Ferdosi, M.H.; Tellam, R.; Gondro, C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol. 2015, 47, 66. [Google Scholar] [CrossRef] [Green Version]
- Abdoli, R.; Mirhoseini, S.Z.; Hossein-Zadeh, N.G.; Zamani, P.; Ferdosi, M.H.; Gondro, C. Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reprod. Fertil. Dev. 2019, 31, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Parsons, Y.M.; Cooper, D.W.; Piper, L.R. Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a Merino half-sib family. Anim. Genet. 1994, 25, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Kominakis, A.; Hager-Theodorides, A.L.; Zoidis, E.; Saridaki, A.; Antonakos, G.; Tsiamis, G. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol. 2017, 49, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Luo, H.; Huang, X.; Wei, C.; Di, J.; Tian, Y.; Fu, X.; Li, B.; Liu, G.E.; Fang, L.; et al. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genet. Sel. Evol. 2021, 53, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, S.; Guo, T.; Han, M.; Chen, B.; Qiao, G.; Wu, Y.; Yuan, C.; Liu, J.; Lu, Z.; et al. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J. Anim. Sci. 2021, 99, skab210. [Google Scholar] [CrossRef]
- Bolormaa, S.; Swan, A.A.; Stothard, P.; Khansefid, M.; Moghaddar, N.; Duijvesteijn, N.; van der Werf, J.H.; Daetwyler, H.D.; MacLeod, I.M. A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits. Genet. Sel. Evol. 2021, 53, 58. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.K.; Johnson, P.L.; Knowler, K.; Hickey, S.M.; Hess, A.S.; McEwan, J.C.; Rowe, S.J. GWAS for methane yield, residual feed intake and liveweight in New Zealand sheep. In Proceedings of the 23rd Conference of the Association for the Advancement of Animal Breeding and Genetics, Armidale, New South Wales, Australia, 27 October–1 November 2019. [Google Scholar]
- Macé, T.; González-García, E.; Foulquié, D.; Carrière, F.; Pradel, J.; Durand, C.; Douls, S.; Allain, C.; Parisot, S.; Hazard, D. Genome-wide analyses reveal a strong association between LEPR gene variants and body fat reserves in ewes. BMC Genom. 2022, 23, 412. [Google Scholar] [CrossRef]
- Carracelas, B.; Navajas, E.A.; Vera, B.; Ciappesoni, G. Genome-Wide Association Study of Parasite Resistance to Gastrointestinal Nematodes in Corriedale Sheep. Genes 2022, 13, 1548. [Google Scholar] [CrossRef]
- Grasso, N.; Aguilar, I.; Clariget, J.; Lema, M.; Brito, G.; Navajas, E. Genomics of carcass and meat quality traits in Hereford–preliminary results. In Proceedings of the 60th International Congress of Meat Science and Technology, Punta del Este, Uruguay, 17–22 August 2014. [Google Scholar]
- Jara, E.; Peñagaricano, F.; Armstrong, E.; Ciappesoni, G.; Iriarte, A.; Navajas, E.A. Revealing the genetic basis of eyelid pigmentation in Hereford cattle. J. Anim. Sci. 2022, 100, skac110. [Google Scholar] [CrossRef]
- Ramos, Z.; Blair, H.T.; De Barbieri, I.; Ciappesoni, G.; Montossi, F.; Kenyon, P.R. Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs. Agriculture 2021, 11, 179. [Google Scholar] [CrossRef]
- Ramos, Z.; Blair, H.T.; De Barbieri, I.; Ciappesoni, G.; Montossi, F.; Kenyon, P.R. Productivity and reproductive performance of mixed-age ewes across 20 years of selection for ultrafine wool in Uruguay. Agriculture 2021, 11, 712. [Google Scholar] [CrossRef]
- Carracelas, B.; Navajas, E.A.; Vera, B.; Ciappesoni, G. SNP arrays evaluation as tools in genetic improvement in Corriedale sheep in Uruguay. Agrociencia 2022, 26, e998. [Google Scholar] [CrossRef]
- Onteru, S.K.; Gorbach, D.M.; Young, J.M.; Garrick, D.J.; Dekkers, J.C.; Rothschild, M.F. Whole genome association studies of residual feed intake and related traits in the pig. PLoS ONE 2013, 8, e61756. [Google Scholar] [CrossRef]
- Sollero, B.P.; Junqueira, V.S.; Gomes, C.C.; Caetano, A.R.; Cardoso, F.F. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet. Sel. Evol. 2017, 49, 49. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids. Res. 2021, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Li, H.; Liu, K.; Yu, J.; Cheng, M.; De, W.; Liu, J.; Shi, S.; He, Y.; Zhao, J. Differential expression of genes and proteins associated with wool follicle cycling. Mol. Biol. Rep. 2014, 41, 5343–5349. [Google Scholar] [CrossRef]
- Lin, H.Y.; Yang, L.T. Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling. Dev. Biol. 2013, 373, 394–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D. The Effects of Phosphodiesterase 3 (PDE3) Inhibitor on Hair Follicle Cell Viability and Hair Growth. Ph.D. Thesis, The Graduate School Seoul National University, Seoul, Republic of Korea, 2020. [Google Scholar]
- Heilmann-Heimbach, S.; Hochfeld, L.M.; Henne, S.K.; Nöthen, M.M. Hormonal regulation in male androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp. Dermatol. 2020, 29, 814–827. [Google Scholar] [CrossRef]
- Su, R.; Fan, Y.; Qiao, X.; Li, X.; Zhang, L.; Li, C.; Li, J. Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS ONE 2018, 13, e0204404. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Yang, M.M.; Dan, J.; Zhang, X.J.; Wei, Q.; Chen, T.; Wang, Q.J.; Yang, C.Y.; Wulan, B.; Zhang, T.T.; et al. Whole-genome sequencing of Chinese native goat offers biological insights into cashmere fiber formation. bioRxiv 2021. [Google Scholar] [CrossRef]
- Damak, S.; Su, H.Y.; Jay, N.P.; Bullock, D.W. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Nat. Biotechnol. 1996, 14, 185–188. [Google Scholar] [CrossRef]
- Darwish, H.R.; El-Shorbagy, H.M.; Abou-Eisha, A.M.; El-Din, A.E.; Farag, I.M. New polymorphism in the 5′ flanking region of IGF-1 gene and its association with wool traits in Egyptian Barki sheep. J. Genet. Eng. Biotechnol. 2017, 15, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, T.; Lu, Z.; Liu, J.; Zhu, S.; Qiao, G.; Han, M.; Yuan, C.; Wang, T.; Li, F.; et al. Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep. BMC Genom. 2021, 22, 127. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jarrell, A.; Guo, C.; Lang, R.; Atit, R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 2012, 139, 1522–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Yue, Y.; Yuan, C.; Liu, J.; Chen, Z.; Niu, C.; Sun, X.; Zhu, S.; Zhao, H.; Guo, T.; et al. Genome-wide association study of body weight traits in chinese fine-wool sheep. Animals 2020, 10, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawasreh, K.I.; Jadallah, R.; Al-Amareen, A.H.; Abdullah, A.Y.; Al-Qaisi, A.; Alrawashdeh, I.M.; Al-Zghoul, M.B.F.; Ahamed, M.; Obeidat, B. Association between MspI calpastatin gene polymorphisms, growth performance, and meat characteristics of Awassi sheep. Indian J. Anim. Sci. 2017, 87, 635–639. [Google Scholar]
- Armstrong, E.; Ciappesoni, G.; Iriarte, W.; Da Silva, C.; Macedo, F.; Navajas, E.A.; Brito, G.; San Julián, R.; Gimeno, D.; Postiglioni, A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 2018, 145, 202–208. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Anim. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Huisman, A.E.; Brown, D.J. Genetic parameters for bodyweight, wool, and disease resistance and reproduction traits in Merino sheep. 2. Genetic relationships between bodyweight traits and other traits. Aust. J. Exp. Agric 2008, 48, 1186–1193. [Google Scholar] [CrossRef]
- Al Kalaldeh, M.; Gibson, J.; Lee, S.H.; Gondro, C.; Van Der Werf, J.H. Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genet. Sel. Evol. 2019, 51, 37. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Fernández, I.; Soudré, A.; Traoré, A.; Pérez-Pardal, L.; Sanou, M.; Tapsoba, S.A.; Menéndez-Arias, N.A.; Goyache, F. Identification of genomic regions and candidate genes of functional importance for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso. Arch. Anim. Breed. 2019, 62, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; He, X.; Jiang, Y.; Liu, Y.; Ouyang, Y.; Shen, Y.; Hong, Q.; Chu, M. Genome-wide analyses reveal genetic convergence of prolificacy between goats and sheep. Genes 2021, 12, 480. [Google Scholar] [CrossRef]
- Karisa, B.K.; Thomson, J.; Wang, Z.; Stothard, P.; Moore, S.S.; Plastow, G.S. Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle. J. Anim. Sci. 2013, 91, 3502–3513. [Google Scholar] [CrossRef] [Green Version]
- de Las Heras-Saldana, S.; Clark, S.A.; Duijvesteijn, N.; Gondro, C.; van der Werf, J.H.; Chen, Y. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genom. 2019, 20, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, N.M.; Dzomba, E.F.; Magawana, M.; Ngcamu, S.; Muchadeyi, F.C. Linkage Disequilibrium, Haplotype Block Structures, Effective Population Size and Genome-Wide Signatures of Selection of Two Conservation Herds of the South African Nguni Cattle. Animals 2022, 12, 2133. [Google Scholar] [CrossRef]
- Ponsuksili, S.; Murani, E.; Phatsara, C.; Schwerin, M.; Schellander, K.; Wimmers, K. Porcine muscle sensory attributes associate with major changes in gene networks involving CAPZB, ANKRD1, and CTBP2. Funct. Integr. Genom. 2009, 9, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Piórkowska, K.; Żukowski, K.; Ropka-Molik, K.; Tyra, M.; Gurgul, A. A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits. Genet. Mol. Biol. 2018, 41, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, E.; Liu, Z.; Kijas, J.W.; Zhu, C.; Hu, S.; Ma, X.; Zhang, L.; Du, L.; Wang, H.; et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 2017, 48, 55–66. [Google Scholar] [CrossRef]
- Kim, Y.H.; Barclay, J.L.; He, J.; Luo, X.; O’Neill, H.M.; Keshvari, S.; Webster, J.A.; Ng, C.; Hutley, L.J.; Prins, J.B.; et al. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis. FASEB J. 2016, 30, 2528–2540. [Google Scholar] [CrossRef]
- Veeravalli, S.; Omar, B.A.; Houseman, L.; Hancock, M.; Malagon, S.G.G.; Scott, F.; Janmohamed, A.; Phillips, I.R.; Shephard, E.A. The phenotype of a flavin-containing monooyxgenase knockout mouse implicates the drug-metabolizing enzyme FMO1 as a novel regulator of energy balance. Biochem. Pharmacol. 2014, 90, 88–95. [Google Scholar] [CrossRef]
- Ha, M.; Han, M.E.; Kim, J.Y.; Jeong, D.C.; Oh, S.O.; Kim, Y.H. Prognostic role of TPD52 in acute myeloid leukemia: A retrospective multicohort analysis. J. Cell. Biochem. 2019, 120, 3672–3678. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lima, N.; Fondevila, M.F.; Nóvoa, E.; Buqué, X.; Mercado-Gómez, M.; Gallet, S.; González-Rellan, M.J.; Fernandez, U.; Loyens, A.; Garcia-Vence, M.; et al. Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. J. Hepatol. 2022, 76, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Wang, T.; Ma, B.; Wu, P.; Xu, X.; Xiong, J. The downstream PPARγ target LRRC1 participates in early-stage adipocytic differentiation. Mol. Cell. Bioachem. 2022, 1–9. [Google Scholar] [CrossRef]
- Dull, K.; Fazekas, F.; Törőcsik, D. Factor XIII-A in Diseases: Role Beyond Blood Coagulation. Int. J. Mol. Sci. 2021, 22, 1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sui, Z.; Zhang, J.; Li, Q.; Zhang, Y.; Wang, C.; Li, X.; Xing, F. Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations. Animals 2022, 12, 2520. [Google Scholar] [CrossRef]
- Höglund, J.K.; Sahana, G.; Guldbrandtsen, B.; Lund, M.S. Validation of associations for female fertility traits in Nordic Holstein, Nordic Red and Jersey dairy cattle. BMC Genet. 2014, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.N.; Zhai, H.L.; Cheng, M.; Ma, J.Y.; Cheng, S.F.; Ge, W.; Zhang, G.L.; Wang, J.J.; Zhang, R.Q.; Wang, X.; et al. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Li, Y.; Liu, X.; Berihulay, H.; Abied, A.; Gebreselassie, G.; Ma, Q.; Ma, Y. Genome-wide runs of homozygosity, effective population size, and detection of positive selection signatures in six Chinese goat breeds. Genes 2019, 10, 938. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, J.; Liu, S.; Plastow, G.; Zhang, C.; Wang, Z.; Campanile, G.; Salzano, A.; Gasparrini, B.; Hua, G.; et al. Integrating RNA-seq and GWAS reveals novel genetic mutations for buffalo reproductive traits. Anim. Reprod. Sci. 2018, 197, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, Z.; Zeng, Z.; Jiang, Y.; Jiang, Y.; Ding, Y.; Tang, S.; Shi, H.; Ding, X. Using High-Density SNP Array to Reveal Selection Signatures Related to Prolificacy in Chinese and Kazakhstan Sheep Breeds. Animals 2020, 10, 1633. [Google Scholar] [CrossRef]
- Liu, C.; Ran, X.; Niu, X.; Li, S.; Wang, J.; Zhang, Q. Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs. Anim. Reprod. Sci. 2018, 195, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Moschos, S.; Chan, J.L.; Mantzoros, C.S. Leptin and reproduction: A review. Fertil. Steril. 2002, 77, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.J.; Parham, A. Sheep oocyte expresses leptin and functional leptin receptor mRNA. Asian Pac. J. Reprod. 2016, 5, 395–399. [Google Scholar] [CrossRef]
- Juengel, J.L.; French, M.C.; O’Connell, A.R.; Edwards, S.J.; Haldar, A.; Brauning, R.; Farquhar, P.A.; Dodds, K.G.; Galloway, S.M.; Johnstone, P.D.; et al. Mutations in the leptin receptor gene associated with delayed onset of puberty are also associated with decreased ovulation and lambing rates in prolific Davisdale sheep. Reprod. Fertil. Dev. 2016, 28, 1318–1325. [Google Scholar] [CrossRef]
- Lakhssassi, K.; Serrano, M.; Lahoz, B.; Sarto, M.P.; Iguácel, L.P.; Folch, J.; Alabart, J.L.; Calvo, J.H. The LEPR gene is associated with reproductive seasonality traits in Rasa Aragonesa sheep. Animals 2020, 10, 2448. [Google Scholar] [CrossRef] [PubMed]
- Akhatayeva, Z.; Mao, C.; Jiang, F.; Pan, C.; Lin, C.; Hao, K.; Lan, T.; Chen, H.; Zhang, Q.; Lan, X. Indel variants within the PRL and GHR genes associated with sheep litter size. Reprod. Domest. Anim. 2020, 55, 1470–1478. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Zhang, X.; Zhang, J.; Guo, X.; Sun, W.; Chu, M. Transcriptome Profile of Key CircRNAs and MiRNAs in Oviduct that Affect Sheep Reproduction. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Mohammadi, A.; Alijani, S.; Rafat, S.A.; Abdollahi-Arpanahi, R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest. Sci. 2022, 262, 104971. [Google Scholar] [CrossRef]
Trait | Mean | SD 1 | Records |
---|---|---|---|
Fibre diameter (A_FD, μm) | 16.6 | 1.75 | 7079 |
Clean fleece weight (A_CFW, kg) | 2.80 | 0.51 | 6288 |
Live weight at mating (LWM, kg) | 47.4 | 5.97 | 6589 |
Body condition score at mating (BCSM) | 3.2 | 0.65 | 6442 |
Pregnancy rate (PR) | 0.73 | 0.44 | 6376 |
Lambing potential (LP) | 0.91 | 0.66 | 6376 |
Trait | Chr | Window Bounds (bp) | PVE (%) | Candidate Genes |
---|---|---|---|---|
A_FD | 1 | 221,133,506–241,462,240 | 0.66 | - |
2 | 132,440,576–134,761,891 | 0.28 | HOXD10, OLA1, SP9, CHN1, CHRNA1, MTX2 | |
3 | 171,178,810–174,258,094 | 0.29 | IGF-1, PAH, STAB2, NT5DC3, GLT8D2, SLC41A2, TDG | |
3 | 191,554,038–194,804,430 | 0.26 | PDE3A, C2CD5, ST8SIA1, HPCAL1, KCNJ8, PYROXD1, SLCO1C1 | |
8 | 35,247,461–84,539,654 | 0.52 | ESR1, PLEKHG1, NT5E, NHSL1, ANKRD6, CGA, PLEKHG1 | |
8 | 66,612,859–69,354,718 | 0.51 | ADGRG6, PHACTR2, UTRN, VTA1 | |
9 | 48,994,813–16,528,100 | 0.26 | PRDM14, WWP1, EXT1, MATN2, PTDSS1, ZNF704 | |
15 | 47,505,272–4,779,161 | 0.34 | DYNC2H1, LOC101106199, LOC101105437 | |
16 | 52,688,043–60,285,005 | 0.68 | ARHGAP22, CDH18, TSNAX | |
25 | 36,631,465–40,822,020 | 0.30 | WAPL, GRID1 | |
A_CFW | 1 | 111,294,404–122,825,051 | 0.58 | UHMK1, DDR2, NUF2, ATF6, INPP5B, RGS5 |
6 | 36,295,216–36,872,516 | 0.72 | BBS7, HERC6, CCNA2, LOC101120495, | |
6 | 36,066,911–36,286,475 | 0.56 | HERC3, HERC5, HERC6, PYURF, PIGY | |
6 | 36,905,457–37,129,550 | 0.51 | LAP3, MED28, | |
6 | 35,191,867–35,728,962 | 0.50 | GPRIN3, TIGD2 | |
6 | 33,844,752–35,184,703 | 0.42 | MMRN1, CCSER1, | |
6 | 37,767,491–38,052,441 | 0.41 | - | |
9 | 77,283,695–85,378,072 | 0.61 | STK3, MTDH, MATN2, OSR2, VPS13B | |
11 | 66,432,553–10,722,809 | 0.50 | PRKCA, DHX40, LOC101102402, COIL, INTS2, PPM1E, SRSF1 | |
19 | 4,811,675–54,605,752 | 0.45 | PBRM1, TGFBR2, BAC5, RBM6, CACNA2D3, DCP1A, MAP4 |
Trait | Chr | Window Bounds | PVE (%) | Candidate Genes |
---|---|---|---|---|
LWM | 5 | 93,416,569–93,461,942 | 1.54 | CAST |
6 | 36,905,457–37,129,550 | 5.67 | LAP3, MED28 | |
6 | 36,295,216–36,872,516 | 4.43 | BBS7, HERC6, CCNA2, LOC101120495 | |
6 | 35,191,867–35,728,962 | 2.05 | GPRIN3, TIGD2 | |
10 | 57,396,545–59,143,370 | 1.41 | - | |
11 | 13,795,276–16,306,848 | 8.68 | LOC101110777, AP2B1, CCT6B, ZNF830 | |
13 | 85,702,745–58,406,417 | 0.74 | GPR158, MKX, SYNDIG1, PREX1 | |
16 | 54,796,169–58,047,574 | 0.76 | MYO10, CPEB4 | |
22 | 55,395,817–44,154,558 | 0.76 | A1CF, CTBP2, GRK5, XPNPEP1, CFAP46, DOCK1, INSYN2A, LIPA, MUOF, PLCE1 | |
23 | 36,106,915–38,820,448 | 3.53 | MYOM1, DLGAP1, SMCHD1 | |
BCSM | 1 | 173,862,929–190,851,636 | 0.88 | ATP6V1A, CD200, ATG3, CFAP44, CCDC191, NECTIN3, NEPRO, PLCXD2, SLC9C1 |
2 | 111,201,892–114,207,253 | 2.21 | HPGD, ECPAS, FBXO8, GLRA3 | |
2 | 114,746,188–116,378,689 | 0.65 | GALNTL6 | |
9 | 57,388,779–56,572,469 | 3.35 | STMN2, TPD52, ZBTB10 | |
10 | 56,843,164–69,129,301 | 1.14 | LOC101115632, SPATA13 | |
12 | 36,958,022–40,040,678 | 0.69 | FMO1, FMO2, FMO4, MTHFR, MFN2, PRRC2C, TNFRF1B | |
13 | 51,269,879–54,158,422 | 13.89 | TMC2, SIRPA, CPXM1, KCNQ2, RBBP8NL, DNAAF9 | |
13 | 26,807,364–30,712,871 | 5.61 | ITGA8, FRMD4A, MINDY3, RSU1, ANKEF1, CUBN, FAM171A1, PTER, PRPF18, TRDMT1 | |
13 | 42,377,205–45,741,876 | 4.68 | PGF2, LOC106990122, LOC101108592 | |
20 | 52,019,528–6,887,963 | 4.33 | KHDRBS2, F13A1, GMDS, CDYL, HCRTR2, LRRC1, LOC101114063 |
Trait | Chr | Window Bounds | PVE (%) | Candidate Genes |
---|---|---|---|---|
PR | 1 | 40,646,909–41,530,079 | 0.38 | LEPR, DNAJC6 |
4 | 107,666,587–70,951,540 | 3.84 | ADCY1, PDIA4, LOC101113583, LRRC4, SND1, TAC1 | |
4 | 52,544,546–58,541,568 | 1.87 | - | |
4 | 42,940,192–48,319,572 | 0.73 | NAPEPLD, PTPN12, RELN, FBXL13, GSAP, FAM185A, ORC5 | |
4 | 113,244,910–125,545,756 | 0.61 | RBM33, XRCC2, CNPY1, LMBR1, PPP1R9A, RNF32 | |
16 | 45,966,691–50,076,565 | 8.98 | CDH10 | |
16 | 50,280,874–54,676,335 | 0.62 | CDH12 | |
16 | 25,883,094–30,276,428 | 0.50 | PARP8 | |
16 | 30,392,117–33,873,022 | 0.45 | OXCT1, CARD6, GHR, CCL28, RIMOC1, RANBP17, MROH2B, PAIP1 | |
21 | 18,437,167–23,229,347 | 0.46 | FAT3, LOC101117547, LUZP2 | |
LP | 2 | 138,951,962–150,539,090 | 1.03 | LRP2, CERS6, STK39 |
2 | 67,932,661–69,907,932 | 0.51 | ABHD17B, GDA, TRPM3 | |
2 | 195,395,266–197,769,393 | 0.39 | HECW2, DNAH7, SLC39A10 | |
3 | 192,191,853–194,520,670 | 0.46 | PDE3A, LOC101117577, C2CD5, SLCO1A2, SPX, LOC101115359 | |
4 | 107,666,587–70,951,540 | 5.68 | ADCY1, PDIA4, LOC101113583, LRRC4, SND1, TAC1 | |
5 | 30,712,220–3,475,920 | 1.29 | LPAR2, DMXL1, FLT4, | |
16 | 45,966,691–50,076,565 | 2.00 | CDH10 | |
16 | 1,653,965–4,370,649 | 1.25 | DOCK2, MROH2B, BDP1, LOC101122306, ANKRD55, SLIT3, SGTB | |
19 | 60,339,892–10,882,333 | 0.45 | LRRFIP2, STAC, TRANK1 | |
25 | 38,239,943–41,537,781 | 0.47 | CCSER2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, Z.; Garrick, D.J.; Blair, H.T.; Vera, B.; Ciappesoni, G.; Kenyon, P.R. Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes 2023, 14, 167. https://doi.org/10.3390/genes14010167
Ramos Z, Garrick DJ, Blair HT, Vera B, Ciappesoni G, Kenyon PR. Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes. 2023; 14(1):167. https://doi.org/10.3390/genes14010167
Chicago/Turabian StyleRamos, Zully, Dorian J. Garrick, Hugh T. Blair, Brenda Vera, Gabriel Ciappesoni, and Paul R. Kenyon. 2023. "Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep" Genes 14, no. 1: 167. https://doi.org/10.3390/genes14010167
APA StyleRamos, Z., Garrick, D. J., Blair, H. T., Vera, B., Ciappesoni, G., & Kenyon, P. R. (2023). Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes, 14(1), 167. https://doi.org/10.3390/genes14010167