DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses, Cells
2.2. Plasmid Construction
2.3. qPCR Was Used to Detect Gene Transcription
2.4. Immunofluorescence Was Used to Detect the Subcellular Localization of the Proteins
2.5. Overexpression and siRNA Knockdown of EPC DNAJA4
2.6. CGSIV Viral Titer
2.7. qPCR Was Used to Detect the Copy Number of Viral Genomic DNA
2.8. Protein Interaction Assay
2.9. Statistical Analysis
3. Results
3.1. Sequence Characterization of EPC DNAJA4
3.2. Expression and Localization of EPC DNAJA4
3.3. Overexpression of EPC DNAJA4 Enhanced CGSIV Replication
3.4. Knockdown of DNAJA4 Attenuated CGSIV Replication
3.5. EPC DNAJA4 Interacts with CGSIV PCNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritossa, F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 1962, 18, 571–573. [Google Scholar] [CrossRef]
- Trautinger, F.; Kindås, I.; Knobler, R. Stress proteins in the cellular response to ultraviolet radiation. J. Photochem. Photobiol. B Biol. 1996, 35, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Iyer, K.; Mitra, D. Comparative analysis of differential gene expression of HSP40 and HSP70 family isoforms during heat stress and HIV-1 infection in T-cells. Cell Stress Chaperones 2021, 26, 403–416. [Google Scholar] [CrossRef]
- Raman, B.; Ramakrishna, T.; Mohan, R. Small heat shock proteins: Role in cellular functions and pathology. Biochim. Biophys. Acta (BBA) Prot. Proteom. 2015, 1854, 291–319. [Google Scholar]
- Haslbeck, M.; Franzmann, T.; Weinfurtner, D.; Buchner, J. Some like it hot: The structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 2005, 12, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Bolhassani, A.; Agi, E. Heat shock proteins in infection. Clin. Chim. Acta 2019, 498, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Kampinga, H.-H.; Hageman, J.; Vos, M.-J.; Kubota, H.; Tanguay, R.-M.; Bruford, E.-A.; Cheetham, M.-E.; Chen, B.; Hightower, L.-E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bascos, N.-A.; Mayer, M.-P.; Bukau, B.; Landry, S.-J. The Hsp40 J-domain modulates Hsp70 conformation and ATPase activity with a semi-elliptical spring. Protein Sci. 2017, 26, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Qinglian, L.; Ce, L.; Lei, Z. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci. 2019, 29, 378–390. [Google Scholar]
- Kohli, E.; Causse, S.; Baverel, V.; Dubrez, L.; Borges, B.-N.; Demidov, O.; Garrido, C. Endoplasmic reticulum chaperones in viral infection: Therapeutic perspectives. Microbiol. Mol. Biol. Rev. 2021, 85, e00035-21. [Google Scholar] [CrossRef]
- Yang, D.; Lv, X.; Zhang, S.; Zheng, S. Tandem mass tag-based quantitative proteomic analysis of chicken bursa of fabricius infected with reticuloendotheliosis virus. Front. Vet. Sci. 2021, 8, 666512. [Google Scholar] [CrossRef] [PubMed]
- Uthe, J.-J.; Stabel, T.-J.; Zhao, S.-H.; Tuggle, C.-K.; Bearson, S.M. Analysis of porcine differential gene expression following challenge with Salmonella enterica serovar Choleraesuis using suppression subtractive hybridization. Vet. Microbiol. 2006, 114, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Z.; Ren, Y.; Zhang, Y.-J.; Han, Y.; Yang, Y.; Gao, Y.-L.; Zhu, L.-L.; Qi, R.-Q.; Chen, H.-D.; Gao, X.-H. DNAJA4 deficiency enhances NF-kappa B-related growth arrest induced by hyperthermia in human keratinocytes. J. Dermatol. Sci. 2018, 91, 256–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinchar, V.-G.; Hick, P.; Ince, I.-A.; Jancovich, J.-K.; Marschang, R.; Qin, Q.; Subramaniam, K.; Waltzek, T.-B.; Whittington, R.; Williams, T.; et al. ICTV virus taxonomy profile: Iridoviridae. J. Gen. Virol. 2017, 98, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Fei, K.; Yu, X.-D.; Wang, Z.-H.; Gui, J.-F.; Zhang, Q.-Y. Replication and transcription machinery for ranaviruses: Components, correlation, and functional architecture. Cell Biosci. 2022, 12, 1–6. [Google Scholar]
- Vilaça, S.-T.; Bienentreu, J.-F.; Brunetti, C.-R.; Lesbarrères, D.; Murray, D.-L.; Kyle, C.-J. Frog Virus 3 Genomes Reveal Prevalent Recombination between Ranavirus Lineages and Their Origins in Canada. J. Virol. 2019, 93, e00765-19. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gui, J.; Gao, X.; Pei, C.; Hong, Y.; Zhang, Q. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV). Vet. Res. 2013, 44, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Zhang, X.; Yang, C.; An, J.; Qin, J.; Song, F.; Zeng, W. Iridovirus infection in Chinese giant salamanders, China, 2010. Emerg. Infect. Dis. 2011, 17, 2388–2389. [Google Scholar] [CrossRef]
- Geng, Y.; Geng, Y.; Wang, K.-Y.; Zhou, Z.-Y.; Li, C.-W.; Wang, J.; He, M.; Yin, Z.-Q.; Lai, W.-M. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J. Comp. Pathol. 2011, 145, 95–102. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Weng, S.; Zhao, G.; He, J.; Dong, C. Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP). Vet. Microbiol. 2014, 172, 129–139. [Google Scholar] [CrossRef]
- Wei, J.; Li, C.; Zhang, X.; Zhou, S.; Zang, S.; Wei, S.; Qin, Q. Molecular cloning and characterization of Aos1 and Uba2 from the orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 2018, 81, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Ke, F.; Wang, R.; Wang, Z.; Zhang, Q. Andrias davidianus Ranavirus (ADRV) Genome Replicate Efficiently by Engaging Cellular Mismatch Repair Protein MSH2. Viruses 2022, 14, 952. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, H.; Chen, Y.; Chen, Y.; Wang, S.; Weng, S.-P.; Xu, X.; He, J. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci. Rep. 2015, 5, 15078. [Google Scholar] [CrossRef]
- Yi, W.; Zhang, X.; Zeng, K.; Xie, D.; Song, C.; Tam, K.; Liu, Z.; Zhou, T.; Li, W. Construction of a DNA vaccine and its protective effect on largemouth bass (Micropterus salmoides) challenged with largemouth bass virus (LMBV). Fish Shellfish Immunol. 2020, 106, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Eaton, H.-E.; Metcalf, J.; Penny, E.; Tcherepanov, V.; Upton, C.; Brunetti, C.-R. Comparative genomic analysis of the family Iridoviridae: Re-annotating and defining the core set of iridovirus genes. Virol. J. 2007, 4, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Ke, F.; Zhao, Z.; Zhang, Q. Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue. Mol. Biol. Rep. 2008, 36, 1651–1659. [Google Scholar] [CrossRef]
- Feng, L.; Sheng, J.; Vu, G.-P.; Liu, Y.; Foo, C.; Wu, S.; Trang, P.; Paliza, C.-M.; Ran, Y.; Yang, X.; et al. Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog. 2018, 14, e1006867. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Huang, X.; Li, S.; Sun, L.; Li, Y.; Li, H.; Zhou, Y.; Chu, Y.; Zhou, T. Identification of prosaposin as a novel interaction partner for Rhox5. J. Genet. Genom. 2007, 34, 392–399. [Google Scholar] [CrossRef]
- Liu, R.-J.; Niu, X.-L.; Yuan, J.-P.; Chen, H.-D.; Gao, X.-H.; Qi, R.-Q. DnaJA4 is involved in responses to hyperthermia by regulating the expression of F-actin in HaCaT cells. Chin. Med. J. 2020, 134, 456–462. [Google Scholar] [CrossRef]
- Robichon, C.; Varret, M.; Le, L.-X.; Lasnier, F.; Hajduch, E.; Ferré, P.; Dugail, I. DnaJA4 is a SREBP-regulated chaperone involved in the cholesterol biosynthesis pathway. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2006, 1761, 1107–1113. [Google Scholar] [CrossRef]
- Ahrendt, E.; Braun, J. Channel triage: Emerging insights into the processing and quality control of hERG potassium channels by DnaJA proteins 1, 2 and 4. Channels 2014, 4, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, R.; Tu, Z.; Nie, X.; Song, B.; He, C.; Xie, C.; Nie, B. Global Screening and Functional Identification of Major HSPs Involved in PVY Infection in Potato. Genes 2022, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.-D.; Sun, Y.-Z.; Tu, C.-X.; Qi, R.-Q.; Huo, W.; Chen, H.-D.; Gao, X.-H. DNAJA4 deficiency augments hyperthermia-induced Clusterin and ERK activation: Two critical protective factors of human keratinocytes from hyperthermia-induced injury. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2308–2317. [Google Scholar] [CrossRef] [PubMed]
- Price, S.-J.; Ariel, E.; Maclaine, A.; Rosa, G.-M.; Gray, M.-J.; Brunner, J.-L.; Garner, T.-W. From fish to frogs and beyond: Impact and host range of emergent ranaviruses. Virology 2017, 511, 272–279. [Google Scholar] [CrossRef]
- Hong, S.; Haiying, Z.; Xinyi, C. Network analyses of the differential expression of heat shock proteins in glioma. DNA Cell Biol. 2020, 39, 1228–1242. [Google Scholar]
- Cho, S.-Y.; Cho, W.-K.; Sohn, S.-H.; Kim, K.-H. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement. Biochem. Biophys. Res. Commun. 2012, 417, 451–456. [Google Scholar] [CrossRef]
- Cao, M.; Wei, C.; Zhao, L.; Wang, J.; Jia, Q.; Wang, X.; Jin, Q.; Deng, T. DnaJA1/Hsp40 Is Co-Opted by Influenza A Virus To Enhance Its Viral RNA Polymerase Activity. J. Virol. 2014, 88, 14078–14089. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.-Y.; Kim, S.-B.; Kim, J.; Ahn, B.-Y. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J. Gen. Virol. 2006, 87, 1883–1891. [Google Scholar] [CrossRef]
- Eom, C.; Lehman, I. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc. Natl. Acad. Sci. USA 2002, 99, 1894–1898. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-S.; Kuo, S.-R.; Makhov, A.-M.; Cyr, D.-M.; Griffith, J.-D.; Broker, T.-R.; Chow, L.-T. Human Hsp70 and Hsp40 Chaperone Proteins Facilitate Human Papillomavirus-11 E1 Protein Binding to the Origin and Stimulate Cell-free DNA Replication. J. Biol. Chem. 1998, 273, 30704–30712. [Google Scholar] [CrossRef] [Green Version]
- Mathews, M.-B.; Bernstein, R.-M.; Franza, B.-R.; Garrels, J.-I. Identity of the proliferating cell nuclear antigen and cyclin. Nature 1984, 309, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Bravo, R.; Frank, R.; Blundell, P.-A.; Macdonald, B.-H. Cyclin PCNA is the auxiliary protein of DNA polymerase-delta. Nature 1987, 326, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Kelch, B.-A.; Makino, D.-L.; O’Donnell, M.; Kuriyan, J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol. 2012, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Lallemand, T.; Leduc, M.; Landès, C.; Rizzon, C.; Lerat, E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes 2020, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.T.; Zhang, Q.Y. Interaction between two iridovirus core proteins and their effects on ranavirus (RGV) replication in cells from different species. Viruses 2019, 11, 416. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence |
---|---|
DNAJA4-F1 | CCCAAGCTTGCCACCATGGTTCGAGAAACCGG |
DNAJA4-R1 | GCTCTAGATTAAGCGTAGTCTGGGACGTCGTATGGGTATTGAGTCTGGCACTGGACAC |
DNAJA4-F2 | GGGTTTCATATGCACCACCACCACCACCACATGGTTCGAGAAACCGGTTTCTACG |
DNAJA4-R2 | CCCAAGCTTTTGAGTCTGGCACTGGACACCACCTTGCC |
PCNA-F1 | CGGAATTCGCCACCATGCTGTGGGAAGCCGTA |
PCNA-R1 | GCGTCGACTTAGCCCTCAAAGAGAGTCACG |
PCNA-F2 | CGGAATTCATGCTGTGGGAAGCCGTAACA |
PCNA-R2 | GATGCGGCCGCTTAGCCCTCAAAGAGAGTCACGGTC |
qDNAJA4-F | AAGGCTCAACGAGGAAAC |
qDNAJA4-R | CACATGCTCTGGGTCTGC |
DNAJA4-80F | GCAAACUGGCAUUGAAAUATT |
DNAJA4-80R | UAUUUCAAUGCCAGUUUGCTT |
DNAJA4-536F | GCCAAGGACAAGGAGAGAATT |
DNAJA4-536R | UUCUCUCCUUGUCCUUGGCTT |
DNAJA4-930F | CAAAGACCCUUGUGAGAAATT |
DNAJA4-930R | UUUCUCACAAGGGUCUUUGTT |
FAM NC-F | UUCUCCGAACGUGUCACGUTT |
FAM NC-R | ACGUGACACGUUCGGAGAATT |
β-actin-F | CACTGTGCCCATCTACGAG |
qMCP-F | CTGGAGAAGAAGAATGGGAGGGG |
qMCP-R | CTTTCGGGCAGCAGTTTTCGGTC |
β-actin-R | CCATCTCCTGCTCGAAGTC |
q18S-F | ATGGTACTTTAGGCGCCTAC |
q18S-R | TATACGCTATTGGAGCTGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xie, D.; He, X.; Zhou, T.; Li, W. DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus. Genes 2023, 14, 58. https://doi.org/10.3390/genes14010058
Liu Z, Xie D, He X, Zhou T, Li W. DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus. Genes. 2023; 14(1):58. https://doi.org/10.3390/genes14010058
Chicago/Turabian StyleLiu, Zijing, Daofa Xie, Xianhui He, Tianhong Zhou, and Wei Li. 2023. "DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus" Genes 14, no. 1: 58. https://doi.org/10.3390/genes14010058
APA StyleLiu, Z., Xie, D., He, X., Zhou, T., & Li, W. (2023). DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus. Genes, 14(1), 58. https://doi.org/10.3390/genes14010058