Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parental Materials and F1 Progeny Used to Generate the F1DH Population
2.2. Development of the F1DH Population Using Microspore Culture
2.3. Flow Cytometry Analysis
2.4. Plant Materials for Genetic Map Construction and DNA Extraction
2.5. Sequencing Library Construction and High-Throughput Resequencing
2.6. SNP Identification and Genotyping
2.7. Genetic Map Construction and Evaluation
2.8. Relationship between the Genetic and Physical Maps
2.9. Phenotyping of Leaf Shape
2.10. QTL Analysis
3. Results
3.1. Microspore Embryogenesis of Ornamental Kale F1 Progeny
3.2. Ploidy Level and Spontaneous Chromosome Doubling
3.3. Construction of the F1DH Mapping Population
3.4. Whole-Genome Resequencing of the F1DH Mapping Population and Two Parents
3.5. SNP Calling and High-Density Bin Genetic Linkage Map Construction
3.6. QTL Analysis for Leaf Shape Traits of Ornamental Kale
4. Discussion
4.1. Development of DH Lines Is an Effective Method for Germplasm Innovation of Ornamental Kale
4.2. The F1DH Population Will Play Important Roles in Genetic Analysis of Ornamental Kale
4.3. Features of the High-Density Genetic Map of Ornamental Kale
4.4. Utilizing High-Density Genetic Linkage Map for Leaf Morphology QTL Research
4.5. The Application Prospects of the High-Density Genetic Map of Ornamental Kale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Yu, X. Pollination with laser-irradiated pollens breaks cross-incompatibility between zicaitai (Brassica campestris var. purpurea) and ornamental kale (Brassica oleracea var. acephala) to produce hybrids with the aid of ovule culture. Sci. Hortic. 2006, 108, 397–402. [Google Scholar] [CrossRef]
- Forster, B.P.; Heberle-Bors, E.; Kasha, K.J.; Touraev, A. The resurgence of haploids in higher plants. Trends Plant Sci. 2007, 12, 368–375. [Google Scholar] [CrossRef]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Forster, B.P.; Thomas, W.T. Doubled haploids in genetics and plant breeding. Plant Breed. Rev. 2010, 25, 57–88. [Google Scholar]
- Ferrie, A.; Caswell, K. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 104, 301–309. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, Q.; Dai, X.; Bao, M. The culture of isolated microspores of ornamental kale (Brassica oleracea var. acephala) and the importance of genotype to embryo regeneration. Sci. Hortic. 2008, 117, 69–72. [Google Scholar]
- Yuan, S.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Sun, P. Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Plant Breed. 2011, 130, 80–85. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Q.; Yang, L.; Fang, Z.; Liu, Y.; Zhuang, M.; Zhang, Y.; Yang, Y.; Xie, B.; Wang, X. Breeding of cabbage (Brassica oleracea L. var. capitata) with fusarium wilt resistance based on microspore culture and marker-assisted selection. Euphytica 2014, 200, 465–473. [Google Scholar]
- Lou, P.; Zhao, J.; He, H.; Hanhart, C.; Pino Del Carpio, D.; Verkerk, R.; Custers, J.; Koornneef, M.; Bonnema, G. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol. 2008, 179, 1017–1032. [Google Scholar] [CrossRef]
- Hirani, A.H.; Li, G. Genetic Mapping, Quantitative Trait Analysis, and Gene Cloning in Brassica oleracea. In The Brassica oleracea Genome; Springer: Berlin/Heidelberg, Germany, 2021; pp. 7–22. [Google Scholar]
- Gao, M.; Li, G.; Yang, B.; Qiu, D.; Farnham, M.; Quiros, C. High-density Brassica oleracea linkage map: Identification of useful new linkages. Theor. Appl. Genet. 2007, 115, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, S.; Liu, Y.; Fang, Z.; Yang, L.; Hua, W.; Yuan, S.; Liu, S.; Sun, J.; Zhuang, M. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genom. 2012, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, D.; Bohra, A.; Thudi, M.; Varshney, R.K. Fine mapping and gene cloning in the post-NGS era: Advances and prospects. Theor. Appl. Genet. 2020, 133, 1791–1810. [Google Scholar] [CrossRef] [PubMed]
- Parkin, I.A.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef]
- Cai, X.; Wu, J.; Liang, J.; Lin, R.; Zhang, K.; Cheng, F.; Wang, X. Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. Theor. Appl. Genet. 2020, 133, 3187–3199. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Y.; Han, F.; Ji, J.; Fang, Z.; Zhuang, M.; Li, Z.; Zhang, Y.; Yang, L. A high-quality reference genome for cabbage obtained with SMRT reveals novel genomic features and evolutionary characteristics. Sci. Rep. 2020, 10, 12394. [Google Scholar] [CrossRef]
- Guo, N.; Wang, S.; Gao, L.; Liu, Y.; Wang, X.; Lai, E.; Duan, M.; Wang, G.; Li, J.; Yang, M. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol. 2021, 19, 93. [Google Scholar] [CrossRef]
- Sun, D.; Wang, C.; Zhang, X.; Zhang, W.; Jiang, H.; Yao, X.; Liu, L.; Wen, Z.; Niu, G.; Shan, X. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Hortic. Res. 2019, 6, 82. [Google Scholar]
- Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.-C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.-M.; Delourme, R. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 2018, 4, 879–887. [Google Scholar] [CrossRef]
- Lee, J.; Izzah, N.K.; Choi, B.-S.; Joh, H.J.; Lee, S.-C.; Perumal, S.; Seo, J.; Ahn, K.; Jo, E.J.; Choi, G.J. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res. 2016, 23, 29–41. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, H.; Sheng, X.; Yu, H.; Wang, J.; Huang, L.; Wang, D. Genome-wide single-nucleotide polymorphisms discovery and high-density genetic map construction in cauliflower using specific-locus amplified fragment sequencing. Front. Plant Sci. 2016, 7, 334. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Zhao, Z.; Sheng, X.; Shen, Y.; Branca, F.; Gu, H. Construction of a high-density genetic map and identification of loci related to hollow stem trait in broccoli (Brassic oleracea L. italica). Front. Plant Sci. 2019, 10, 45. [Google Scholar] [CrossRef]
- Custers, J.; Cordewener, J.; Fiers, M.; Maassen, B.; van Lookeren Campagne, M.; Liu, C. Androgenesis in Brassica: A model system to study the initiation of plant embryogenesis. Curr. Trends Embryol. Angiosperms 2001, 451–470. [Google Scholar] [CrossRef]
- Han, S.; Guo, N.; Zhang, Y.; Zong, M.; Wang, G.; Liu, F. Researches on the double haploid breeding of ornamental kale (Brassica oleracea var. acephala). J. Agric. Biotechnol. 2018, 26, 521–529. [Google Scholar]
- Dpooležel, J.; Binarová, P.; Lcretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 1989, 31, 113–120. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Reumers, J.; De Rijk, P.; Zhao, H.; Liekens, A.; Smeets, D.; Cleary, J.; Van Loo, P.; Van Den Bossche, M.; Catthoor, K.; Sabbe, B. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat. Biotechnol. 2012, 30, 61–68. [Google Scholar] [CrossRef]
- Liu, D.; Ma, C.; Hong, W.; Huang, L.; Liu, M.; Liu, H.; Zeng, H.; Deng, D.; Xin, H.; Song, J. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 2014, 9, e98855. [Google Scholar] [CrossRef]
- Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Van Os, H.; Stam, P.; Visser, R.G.; van Eck, H.J. SMOOTH: A statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor. Appl. Genet. 2005, 112, 187–194. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, X.; Miao, C.; Zhang, J.; Ming, R.; Schnable, J.C.; Schnable, P.S.; Lyons, E.; Lu, J. ALLMAPS: Robust scaffold ordering based on multiple maps. Genome Biol. 2015, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, X.; Dou, J.; Aslam, A.; Gao, L.; Zhao, S.; He, N.; Liu, W. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus lanatus L.) based on whole-genome resequencing. Int. J. Mol. Sci. 2018, 19, 3268. [Google Scholar] [CrossRef]
- Demo, B.K. Development of Intervarietal Substitution Lines in Brassica napus L. Using Marker Assisted Selection and Mapping of QTL for Agronomically Important Traits. Ph.D. Thesis, University of Göttingen, Göttingen, Germany, 2007. [Google Scholar]
- Yadava, S.K.; Ramchiary, N. Molecular Linkage Mapping in Brassica juncea: Founding the Basis for Marker-Assisted Selection. In The Brassica juncea Genome; Springer: Berlin/Heidelberg, Germany, 2022; pp. 197–219. [Google Scholar]
- Boopathi, N.M.; Boopathi, N.M. Linkage map construction. In Genetic Mapping and Marker Assisted Selection: Basics, Practice and Benefits; Springer: Singapore, 2020; pp. 179–227. [Google Scholar]
- Yu, H.; Wang, J.; Sheng, X.; Zhao, Z.; Shen, Y.; Branca, F.; Gu, H. Construction of a high-density genetic map and identification of loci controlling purple sepal trait of flower head in Brassica oleracea L. italica. BMC Plant Biol. 2019, 19, 228. [Google Scholar] [CrossRef] [PubMed]
- MPerez-de-Castro, A.; Vilanova, S.; Cañizares, J.; Pascual, L.; MBlanca, J.; JDiez, M.; Prohens, J.; Picó, B. Application of genomic tools in plant breeding. Curr. Genom. 2012, 13, 179–195. [Google Scholar] [CrossRef]
- Lim, J.-H.; Yang, H.-J.; Jung, K.-H.; Yoo, S.-C.; Paek, N.-C. Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol. Cells 2014, 37, 149. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, L.; Tao, Y.; Vuong, T.; Wan, J.; Boerma, R.; Noe, J.; Li, Z.; Finnerty, S.; Pathan, S.M. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 13469–13474. [Google Scholar] [CrossRef]
- Scheben, A.; Batley, J.; Edwards, D. Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool for the right application. Plant Biotechnol. J. 2017, 15, 149–161. [Google Scholar] [CrossRef]
- Torkamaneh, D.; Boyle, B.; Belzile, F. Efficient genome-wide genotyping strategies and data integration in crop plants. Theor. Appl. Genet. 2018, 131, 499–511. [Google Scholar] [CrossRef]
- Le Nguyen, K.; Grondin, A.; Courtois, B.; Gantet, P. Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 2019, 24, 263–274. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Clean Reads | Total Clean Bases | Q30 Percentage (%) | GC Percentage (%) |
---|---|---|---|---|
05-DH-65 | 145,119,251 | 43,453,720,350 | 91.45 | 37.59 |
06-DH-71 | 72,896,717 | 21,830,253,446 | 85.59 | 36.74 |
F1DH offspring | 694,710,016 | 208,094,995,584 | 90.88 | 37.07 |
Total | 912,725,984 | 273,378,969,380 | 90.84 | 37.07 |
Sample | Clean Reads | Mapped (%) | Properly Mapped (%) |
---|---|---|---|
05-DH-65 | 145,119,251 | 94.12 | 80.85 |
06-DH-71 | 72,896,717 | 92.59 | 78.45 |
F1DH offspring (average) | 9,199,180 | 93.55 | 81.41 |
LG ID | Total Bin Marker | Total Distance (cM) | Average Distance (cM) | Max Gap (cM) | Gaps < 5 cM (%) |
---|---|---|---|---|---|
LG1 | 156 | 85.73 | 0.55 | 2.67 | 100 |
LG2 | 164 | 81.89 | 0.5 | 2.73 | 98.36 |
LG3 | 272 | 132.88 | 0.49 | 5.35 | 99.73 |
LG4 | 221 | 96.06 | 0.43 | 2.67 | 98.89 |
LG5 | 179 | 88.25 | 0.49 | 2 | 100 |
LG6 | 170 | 62.4 | 0.37 | 3.34 | 100 |
LG7 | 126 | 51.34 | 0.41 | 2.67 | 100 |
LG8 | 180 | 72.45 | 0.4 | 2 | 100 |
LG9 | 228 | 104.81 | 0.46 | 0.02 | 100 |
Total | 1696 | 775.81 | 0.46 | 99.66 |
Name | Chromosome | Marker Interval | Position (cM) | LOD | Additive | expl% |
---|---|---|---|---|---|---|
LL-C4 | C4 | Block1663–Block1708 | 52.01 | 3.89 | −1.39 | 14.12 |
LL-C9 | C9 | Block4146 | 104.141 | 4.67 | −1.10 | 8.88 |
LW-C3 | C3 | Block1065 | 79.506 | 4.31 | 0.95 | 15.39 |
LW-C9 | C9 | Block4118–Block4144 | 102.807 | 2.47 | 0.85 | 12.22 |
LSI-C1 | C1 | Block314 | 2.07 | 3.16 | −0.11 | 4.89 |
LSI-C3 | C3 | Block1168 | 54.838 | 5.79 | −0.18 | 14.20 |
LSI-C7 | C7 | Block2891–Block2970 | 5.334 | 2.34 | −0.22 | 21.08 |
LSI-C9 | C9 | Block4145 | 103.474 | 13.55 | −0.28 | 32.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Han, S.; Zong, M.; Wang, G.; Duan, M.; Liu, F. Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding. Genes 2023, 14, 2104. https://doi.org/10.3390/genes14112104
Guo N, Han S, Zong M, Wang G, Duan M, Liu F. Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding. Genes. 2023; 14(11):2104. https://doi.org/10.3390/genes14112104
Chicago/Turabian StyleGuo, Ning, Shuo Han, Mei Zong, Guixiang Wang, Mengmeng Duan, and Fan Liu. 2023. "Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding" Genes 14, no. 11: 2104. https://doi.org/10.3390/genes14112104
APA StyleGuo, N., Han, S., Zong, M., Wang, G., Duan, M., & Liu, F. (2023). Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding. Genes, 14(11), 2104. https://doi.org/10.3390/genes14112104