Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Case Presentation
3.2. Brain MRI Results
3.3. Genetic Results
4. Discussion
Study | Diagnosis (Patient Cohort) | Inheritance | Genomic Position (hg19) | Variant Type (NM_003611.2) | Effect (NP_003602.1) | Affected Exons |
---|---|---|---|---|---|---|
Krumm, 2015 [72] | ASD (SSC collection) | De novo | chrX:13774696 | c.1222-1G>T | Disruption of splice acceptor site of intron 12 | Exon 13 |
Li, 2017 [73] | ASD (ASC/SSC collection) | Inherited | chrX:13771497 | c.1066G>C | p.Glu356Gln | Exon 11 |
Sakakibara 2018 [56] | ASD (own cohort) | Inherited | chrX:13778441 | c.2260+2T>G | Disruption of splice donor site of intron 16 | Exons 16 and 17 |
Tran, 2020 [74] | ASD (own cohort) | Inherited | chrX:13778788 | c.2209A>G (rs778936071) | p.Thr737Ala | Exon 16 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Online Mendelian Inherintance in Man. Available online: https://omim.org/ (accessed on 4 November 2022).
- Papillon-Leage, M.; Psaume, J. Une malformation hereditaire de la muqueuse buccale: Brides et freins anormaux. Rev. Stomatol. 1954, 55, 209–227. [Google Scholar]
- Gorlin, R.J.; Psaume, J. Orodigitofacial dysostosis—A new syndrome. J. Pediat. 1962, 61, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Donnai, D.; Kerzin-Storrar, L.; Harris, R. Familial orofaciodigital syndrome type I presenting as adult polycystic kidney disease. J. Med. Genet. 1987, 24, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrante, M.I.; Giorgio, G.; Feather, S.A.; Bulfone, A.; Wright, V.; Ghiani, M.; Selicorni, A.; Gammaro, L.; Scolari, F.; Woolf, A.S.; et al. Identification of the gene for oral-facial-digital type I syndrome. Am. J. Hum. Genet. 2001, 68, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauth, C.; Steindl, K.; Toutain, A.; Farrell, S.; Witsch-Baumgartner, M.; Karall, D.; Joset, P.; Böhm, S.; Baumer, A.; Maier, O.; et al. A recurrent germline mutation in the PIGA gene causes Simpson-Golabi-Behmel syndrome type 2. Am. J. Med. Genet. A 2016, 170A, 392–402. [Google Scholar] [CrossRef]
- Fauth, C.; Toutain, A. Comment on “Whole exome sequencing and array-based molecular karyotyping as aids to prenatal diagnosis in fetuses with suspected Simpson-Golabi-Behmel syndrome”. Prenat. Diagn. 2017, 37, 1055–1056. [Google Scholar] [CrossRef]
- Pezzella, N.; Bove, G.; Tammaro, R.; Franco, B. OFD1: One gene, several disorders. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 190, 57–71. [Google Scholar] [CrossRef]
- Ferrante, M.I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dollé, P.; Franco, B. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 2006, 38, 112–117. [Google Scholar] [CrossRef]
- Giorgio, G.; Alfieri, M.; Prattichizzo, C.; Zullo, A.; Cairo, S.; Franco, B. Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. Mol. Biol. Cell. 2007, 18, 4397–4404. [Google Scholar] [CrossRef] [Green Version]
- Singla, V.; Romaguera-Ros, M.; Garcia-Verdugo, J.M.; Reiter, J.F. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev. Cell. 2010, 18, 410–424. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, I.; Carpenter, G.; Alfieri, M.; Colnaghi, R.; Outwin, E.; Parent, P.; Thauvin-Robinet, C.; Iaconis, D.; Franco, B.; O’Driscoll, M. Oral-facial-digital syndrome type I cells exhibit impaired DNA repair; unanticipated consequences of defective OFD1 outside of the cilia network. Hum. Mol. Genet. 2017, 26, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Higginbotham, H.; Li, J.; Nichols, J.; Hirt, J.; Ghukasyan, V.; Anton, E.S. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat. Commun. 2015, 6, 7857. [Google Scholar] [CrossRef] [Green Version]
- Hasenpusch-Theil, K.; Theil, T. Multifaceted roles of primary cilia in the development of the cerebral cortex. Front. Cell. Dev. Biol. 2021, 9, 630161. [Google Scholar] [CrossRef]
- Franco, B. Oral–facial–digital type I syndrome. In Ciliopathies: A Reference for Clinicians; Kenny, T.D., Beales, P.L., Eds.; Oxford Academic: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Bisschoff, I.J.; Zeschnigk, C.; Horn, D.; Wellek, B.; Rieß, A.; Wessels, M.; Willems, P.; Jensen, P.; Busche, A.; Bekkebraten, J.; et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: A study of the extensive clinical variability. Hum. Mutat. 2013, 34, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, E.; Macca, M.; Imperati, F.; D’Amico, A.; Parent, P.; Pasquier, L.; Layet, V.; Lyonnet, S.; Stamboul-Darmency, V.; Thauvin-Robinet, C.; et al. CNS involvement in OFD1 syndrome: A clinical, molecular, and neuroimaging study. Orphanet J. Rare Dis. 2014, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Odent, S.; Le Marec, B.; Toutain, A.; David, A.; Vigneron, J.; Tréguier, C.; Jouan, H.; Milon, J.; Fryns, J.P.; Verloes, A. Central nervous system malformations and early end-stage renal disease in oro-facio-digital syndrome type I: A review. Am. J. Med. Genet. 1998, 75, 389–394. [Google Scholar] [CrossRef]
- Holub, M.; Potocki, L.; Bodamer, O.A. Central nervous system malformations in oral-facial-digital syndrome, type 1. Am. J. Med. Genet. A 2005, 136, 218. [Google Scholar] [CrossRef]
- Dehghan Tezerjani, M.; Maroofian, R.; Vahidi Mehrjardi, M.Y.; Chioza, B.A.; Zamaninejad, S.; Kalantar, S.M.; Nori-Shadkam, M.; Ghadimi, H.; Baple, E.L.; Crosby, A.H.; et al. A novel mutation in the OFD1 gene in a family with oral-facial-digital syndrome type 1: A Case Report. Iran. J. Public Health 2016, 45, 1359–1366. [Google Scholar]
- Bruel, A.L.; Franco, B.; Duffourd, Y.; Thevenon, J.; Jego, L.; Lopez, E.; Deleuze, J.F.; Doummar, D.; Giles, R.H.; Johnson, C.A.; et al. Fifteen years of research on oral-facial-digital syndromes: From 1 to 16 causal genes. J. Med. Genet. 2017, 54, 371–380. [Google Scholar] [CrossRef]
- Miles, J.H. Autism spectrum disorders—A genetics review. Genet. Med. 2011, 13, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Abrahams, B.S.; Geschwind, D.H. Advances in autism genetics: On the threshold of a new neurobiology. Nat. Rev. Genet. 2008, 9, 341–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geschwind, D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci. 2011, 15, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, S.; Rutter, M. Infantile autism: A genetic study of 21 twin pairs. J. Child Psychol. Psychiatry 1977, 18, 297–321. [Google Scholar] [CrossRef]
- Bailey, A.; Le Couteur, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol. Med. 1995, 25, 63–77. [Google Scholar] [CrossRef]
- Autism Genome Project Consortium; Szatmari, P.; Paterson, A.D.; Zwaigenbaum, L.; Roberts, W.; Brian, J.; Liu, X.Q.; Vincent, J.B.; Skaug, J.L.; Thompson, A.P.; et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 2007, 9, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front. Cell. Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef]
- Schaaf, C.P.; Betancur, C.; Yuen, R.K.C.; Parr, J.R.; Skuse, D.H.; Gallagher, L.; Bernier, R.A.; Buchanan, J.A.; Buxbaum, J.D.; Chen, C.A.; et al. A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat. Rev. Genet. 2020, 21, 367–376. [Google Scholar] [CrossRef]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong association of de novo copy number mutations with autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, D.; Pagnamenta, A.T.; Klei, L.; Anney, R.; Merico, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466, 368–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, S.J.; He, X.; Willsey, A.J.; Ercan-Sencicek, A.G.; Samocha, K.E.; Cicek, A.E.; Murtha, M.T.; Bal, V.H.; Bishop, S.L.; Dong, S.; et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87, 1215–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Louvi, A.; Grove, E.A. Cilia in the CNS: The quiet organelle claims center stage. Neuron 2011, 69, 1046–1060. [Google Scholar] [CrossRef] [Green Version]
- Marley, A.; von Zastrow, M. A simple cell-based assay reveals that diverse neuropsychiatric risk genes converge on primary cilia. PLoS ONE 2012, 7, e46647. [Google Scholar] [CrossRef]
- Karalis, V.; Donovan, K.E.; Sahin, M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J. Dev. Biol. 2022, 10, 54. [Google Scholar] [CrossRef]
- Migliavacca, E.; Golzio, C.; Männik, K.; Blumenthal, I.; Oh, E.C.; Harewood, L.; Kosmicki, J.A.; Loviglio, M.N.; Giannuzzi, G.; Hippolyte, L.; et al. A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. Am. J. Hum. Genet. 2015, 96, 784–796. [Google Scholar] [CrossRef] [Green Version]
- Guemez-Gamboa, A.; Coufal, N.G.; Gleeson, J.G. Primary cilia in the developing and mature brain. Neuron 2014, 82, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Patowary, A.; Won, S.Y.; Oh, S.J.; Nesbitt, R.R.; Archer, M.; Nickerson, D.; Raskind, W.H.; Bernier, R.; Lee, J.E.; Brkanac, Z. Family-based exome sequencing and case-control analysis implicate CEP41 as an ASD gene. Transl. Psychiatry 2019, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Pruski, M.; Lang, B. Primary cilia—An underexplored topic in major mental illness. Front. Psychiatry 2019, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Alhassen, W.; Chen, S.; Vawter, M.; Robbins, B.K.; Nguyen, H.; Myint, T.N.; Saito, Y.; Schulmann, A.; Nauli, S.M.; Civelli, O.; et al. Patterns of cilia gene dysregulations in major psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 109, 11025. [Google Scholar] [CrossRef]
- Budisteanu, M.; Papuc, S.M.; Erbescu, A.; Iliescu, C.; Dobre, M.; Barca, D.; Tarta-Arsene, O.; Motoescu, C.; Dica, A.; Sandu, C.; et al. Clinical and genomic findings in brain heterotopia: Report of a pediatric patient cohort from Romania. Exp. Ther. Med. 2022, 23, 101. [Google Scholar] [CrossRef]
- Oda, H.; Sato, T.; Kunishima, S.; Nakagawa, K.; Izawa, K.; Hiejima, E.; Kawai, T.; Yasumi, T.; Doi, H.; Katamura, K.; et al. Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function. Eur. J. Hum. Genet. 2016, 24, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Papuc, S.M.; Budisteanu, M.; Erbescu, A.; Ionescu, V.; Iliescu, C.; Sandu, C.; Arghir, A. Novel DCX pathogenic variant in a girl with subcortical band heterotopia. Rev. Romana Med. Lab. 2022, 30, 345–351. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Thauvin-Robinet, C.; Cossée, M.; Cormier-Daire, V.; Van Maldergem, L.; Toutain, A.; Alembik, Y.; Bieth, E.; Layet, V.; Parent, P.; David, A.; et al. Clinical, molecular, and genotype-phenotype correlation studies from 25 cases of oral-facial-digital syndrome type 1: A French and Belgian collaborative study. J. Med. Genet. 2006, 43, 54–61. [Google Scholar] [CrossRef]
- Budny, B.; Chen, W.; Omran, H.; Fliegauf, M.; Tzschach, A.; Wisniewska, M.; Jensen, L.R.; Raynaud, M.; Shoichet, S.A.; Badura, M.; et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 2006, 120, 171–178. [Google Scholar] [CrossRef]
- Webb, T.R.; Parfitt, D.A.; Gardner, J.C.; Martinez, A.; Bevilacqua, D.; Davidson, A.E.; Zito, I.; Thiselton, D.L.; Ressa, J.H.; Apergi, M.; et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum. Mol. Genet. 2012, 21, 3647–3654. [Google Scholar] [CrossRef] [Green Version]
- Bouman, A.; Alders, M.; Oostra, R.J.; van Leeuwen, E.; Thuijs, N.; van der Kevie-Kersemaekers, A.M.; van Maarle, M. Oral-facial-digital syndrome type 1 in males: Congenital heart defects are included in its phenotypic spectrum. Am. J. Med. Genet. A 2017, 173, 1383–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentzensen, I.M.; Johnston, J.J.; Patton, J.H.; Graham, J.M.; Sapp, J.C.; Biesecker, L.G. Exome sequencing identifies a mutation in OFD1 in a male with Joubert syndrome, orofaciodigital spectrum anomalies and complex polydactyly. Hum. Genome Var. 2016, 3, 15069. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, N.; Morisada, N.; Nozu, K.; Nagatani, K.; Ohta, T.; Shimizu, J.; Wada, T.; Shima, Y.; Yamamura, T.; Minamikawa, S.; et al. Clinical spectrum of male patients with OFD1 mutations. J. Hum. Genet. 2019, 64, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Morleo, M.; Franco, B. OFD Type I syndrome: Lessons learned from a rare ciliopathy. Biochem. Soc. Trans. 2020, 48, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- de Conciliis, L.; Marchitiello, A.; Wapenaar, M.C.; Borsani, G.; Giglio, S.; Mariani, M.; Consalez, G.G.; Zuffardi, O.; Franco, B.; Ballabio, A.; et al. Characterization of Cxorf5 (71-7A), a novel human cDNA mapping to Xp22 and encoding a protein containing coiled-coil alpha-helical domains. Genomics 1998, 51, 243–250. [Google Scholar] [CrossRef]
- D’Angelo, A.; De Angelis, A.; Avallone, B.; Piscopo, I.; Tammaro, R.; Studer, M.; Franco, B. Ofd1 controls dorso-ventral patterning and axoneme elongation during embryonic brain development. PLoS ONE 2012, 7, e52937. [Google Scholar] [CrossRef] [Green Version]
- Romio, L.; Fry, A.M.; Winyard, P.J.; Malcolm, S.; Woolf, A.S.; Feather, S.A. OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. J. Am. Soc. Nephrol. 2004, 15, 2556–2568. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, M.G.; Stowe, T.R.; Chen, S.; Zhu, M.; Stearns, T.; Franco, B.; Zhong, Q. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013, 502, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Morleo, M.; Brillante, S.; Formisano, U.; Ferrante, L.; Carbone, F.; Iaconis, D.; Palma, A.; Buonomo, V.; Maione, A.S.; Grumati, P.; et al. Regulation of autophagosome biogenesis by OFD1-mediated selective autophagy. EMBO J. 2021, 40, e105120. [Google Scholar] [CrossRef]
- Emes, R.D.; Ponting, C.P. A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum. Mol. Genet. 2001, 10, 2813–2820. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, M.; Iaconis, D.; Tammaro, R.; Perone, L.; Calì, G.; Nitsch, L.; Dougherty, G.W.; Ragnini-Wilson, A.; Franco, B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell. 2020, 64, 101369. [Google Scholar] [CrossRef]
- Franco, B.; Morleo, M. The role of OFD1 in selective autophagy. Mol. Cell. Oncol. 2021, 8, 1903291. [Google Scholar] [CrossRef]
- Morleo, M.; Franco, B. The OFD1 protein is a novel player in selective autophagy: Another tile to the cilia/autophagy puzzle. Cell Stress 2021, 5, 33–36. [Google Scholar] [CrossRef]
- Gangaram, B.; Devine, W.P.; Slavotinek, A. Expanding the phenotype of males with OFD1 pathogenic variants-a case report and literature review. Eur. J. Med. Genet. 2022, 65, 104496. [Google Scholar] [CrossRef]
- Carrel, L.; Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434, 400–404. [Google Scholar] [CrossRef]
- Morleo, M.; Franco, B. Dosage compensation of the mammalian X chromosome influences the phenotypic variability of X-linked dominant male-lethal disorders. J. Med. Genet. 2008, 45, 401–408. [Google Scholar] [CrossRef]
- Prattichizzo, C.; Macca, M.; Novelli, V.; Giorgio, G.; Barra, A.; Franco, B.; Oral-Facial-Digital Type I (OFDI) Collaborative Group. Mutational spectrum of the oral-facial-digital type I syndrome: A study on a large collection of patients. Hum. Mutat. 2008, 29, 1237–1246. [Google Scholar] [CrossRef]
- Towfighi, J.; Berlin, C.M.; Ladda, R.L., Jr.; Frauenhoffer, E.E.; Lehman, R.A. Neuropathology of oral-facial-digital syndromes. Arch. Pathol. Lab. Med. 1985, 109, 642–646. [Google Scholar]
- Krumm, N.; Turner, T.N.; Baker, C.; Vives, L.; Mohajeri, K.; Witherspoon, K.; Raja, A.; Coe, B.P.; Stessman, H.A.; He, Z.X.; et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 2015, 47, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, L.; Guo, H.; Shi, L.; Zhang, K.; Tang, M.; Hu, S.; Dong, S.; Liu, Y.; Wang, T.; et al. Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol. Psychiatry 2017, 22, 1282–1290. [Google Scholar] [CrossRef]
- Tran, K.T.; Le, V.S.; Bui, H.T.P.; Do, D.H.; Ly, H.T.T.; Nguyen, H.T.; Dao, L.T.M.; Nguyen, T.H.; Vu, D.M.; Ha, L.T.; et al. Genetic landscape of autism spectrum disorder in Vietnamese children. Sci. Rep. 2020, 10, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coene, K.L.; Roepman, R.; Doherty, D.; Afroze, B.; Kroes, H.Y.; Letteboer, S.J.; Ngu, L.H.; Budny, B.; van Wijk, E.; Gorden, N.T.; et al. OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. Am. J. Hum. Genet. 2009, 85, 465–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zheng, C.; Liu, W.; Yang, H. Retinitis Pigmentosa and Bilateral Idiopathic Demyelinating Optic Neuritis in a 6-Year-Old Boy with OFD1 Gene Mutation. Case Rep. Ophthalmol. Med. 2017, 2017, 5310924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sheng, X.; Liu, Y.; Li, Z.; Sun, X.; Jiang, C.; Qi, R.; Yuan, S.; Wang, X.; Zhou, G.; et al. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: A demonstration of the importance of genetic annotations in complicated pedigrees. J. Transl. Med. 2018, 16, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah, W.B.; DeBrosse, S.; Kinghorn, B.; Strausbaugh, S.; Aitken, M.L.; Rosenfeld, M.; Wolf, W.E.; Knowles, M.R.; Zariwala, M.A. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genom. Med. 2019, 7, e911. [Google Scholar] [CrossRef] [Green Version]
- Bukowy-Bieryllo, Z.; Rabiasz, A.; Dabrowski, M.; Pogorzelski, A.; Wojda, A.; Dmenska, H.; Grzela, K.; Sroczynski, J.; Witt, M.; Zietkiewicz, E. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J. Med. Genet. 2019, 56, 769–777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papuc, S.M.; Erbescu, A.; Glangher, A.; Streata, I.; Riza, A.-L.; Budisteanu, M.; Arghir, A. Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome. Genes 2023, 14, 327. https://doi.org/10.3390/genes14020327
Papuc SM, Erbescu A, Glangher A, Streata I, Riza A-L, Budisteanu M, Arghir A. Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome. Genes. 2023; 14(2):327. https://doi.org/10.3390/genes14020327
Chicago/Turabian StylePapuc, Sorina Mihaela, Alina Erbescu, Adelina Glangher, Ioana Streata, Anca-Lelia Riza, Magdalena Budisteanu, and Aurora Arghir. 2023. "Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome" Genes 14, no. 2: 327. https://doi.org/10.3390/genes14020327
APA StylePapuc, S. M., Erbescu, A., Glangher, A., Streata, I., Riza, A. -L., Budisteanu, M., & Arghir, A. (2023). Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome. Genes, 14(2), 327. https://doi.org/10.3390/genes14020327