The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
3.1. Association of Studied SNPs with the Course of Schizophrenia (Continuous vs. Episodic)
3.2. Association of Studied SNPs with Predominant (Negative vs. Positive) Symptoms of Schizophrenia
3.3. Association of Studied SNPs with Intensity of Symptoms in Patients with Schizophrenia
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howes, O.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharmacol. 2015, 29, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Collingridge, G.L.; Abraham, W.C. Glutamate receptors and synaptic plasticity: The impact of Evans and Watkins. Neuropharmacology 2022, 206, 108922. [Google Scholar] [CrossRef]
- Balu, D.T. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv. Pharmacol. 2016, 76, 351–382. [Google Scholar] [CrossRef] [Green Version]
- Adell, A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020, 10, 947. [Google Scholar] [CrossRef]
- Goff, D.C.; Wine, L. Glutamate in schizophrenia: Clinical and research implications. Schizophr. Res. 1997, 27, 157–168. [Google Scholar] [CrossRef]
- Dean, B.; Gibbons, A.S.; Boer, S.; Uezato, A.; Meador-Woodruff, J.; Scarr, E.; McCullumsmith, R. Changes in cortical N-methyl-daspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust. N. Z. J. Psychiatry 2016, 50, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, R.A.; Fanger, C.M.; Anderson, D.R.; Sirivolu, V.R.; Paschetto, K.; Gordon, E.; Virginio, C.; Gleyzes, M.; Buisson, B.; Steidl, E.; et al. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS ONE 2016, 11, e0148129. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chen, X.; Xu, X.; Wu, R.; Zhao, J.; Hu, Z.; Xia, K. Significant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-d-aspartate receptor subunit gene (GRIN2A) and schizophrenia. Neurosci. Lett. 2006, 409, 80–82. [Google Scholar] [CrossRef]
- Poltavskaya, E.G.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Kornetov, A.N.; Bokhan, N.A.; Ivanova, S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life 2021, 11, 997. [Google Scholar] [CrossRef]
- Fedorenko, O.Y.; Paderina, D.Z.; Kornetova, E.G.; Poltavskaya, E.G.; Pozhidaev, I.V.; Goncharova, A.A.; Bokhan, N.A.; Ivanova, S.A.; Freidin, M.B.; Bocharova, A.V.; et al. Genes of the glutamatergic system and tardive dyskinesia in patients with schizophrenia. Diagnostics 2022, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Kouzmitcheva, E.; Orsino, A.; Minassian, B.A. Chromosome 12p Deletion Spanning the GRIN2B Gene Presenting with a Neurodevelopmental Phenotype: A Case Report and Review of Literature. Child Neurol. Open 2016, 3, 2329048x16629980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Shibata, H.; Ninomiya, H.; Tashiro, N.; Iwata, N.; Ozaki, N.; Fukumaki, Y. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 2004, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, Y.; Ohnuma, T.; Karibe, J.; Shibata, N.; Maeshima, H.; Baba, H.; Hatano, T.; Hanzawa, R.; Arai, H. No genetic association between the SLC1A2 gene and Japanese patients with schizophrenia. Neurosci. Lett. 2009, 463, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, T.; Qiao, D.; Cui, K.; Bi, X.; Han, C.; Yang, L.; Sun, M.; Liu, L. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Spangaro, M.; Bosia, M.; Zanoletti, A.; Bechi, M.; Cocchi, F.; Pirovano, A.; Lorenzi, C.; Bramanti, P.; Benedetti, F.; Smeraldi, E.; et al. Cognitive dysfunction and glutamate reuptake: Effect of EAAT2 polymorphism in schizophrenia. Neurosci. Lett. 2012, 522, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Poletti, S.; Radaelli, D.; Bosia, M.; Buonocore, M.; Pirovano, A.; Lorenzi, C.; Cavallaro, R.; Smeraldi, E.; Benedetti, F. Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur. Psychiatry 2014, 29, 219–225. [Google Scholar] [CrossRef]
- Spangaro, M.; Bosia, M.; Zanoletti, A.; Bechi, M.; Mariachiara, B.; Pirovano, A.; Lorenzi, C.; Bramanti, P.; Smeraldi, E.; Cavallaro, R. Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 2014, 15, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Oni-Orisan, A.; Kristiansen, L.V.; Haroutunian, V.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol. Psychiatry 2008, 63, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Wallén-Mackenzie, A.; Wootz, H.; Englund, H. Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: What have we learnt about functional glutamatergic neurotransmission? Ups. J. Med. Sci. 2010, 115, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Callaerts-Vegh, Z.; Moechars, D.; Van Acker, N.; Daneels, G.; Goris, I.; Leo, S.; Naert, A.; Meert, T.; Balschun, D.; D’Hooge, R. Haploinsufficiency of VGluT1 but not VGluT2 impairs extinction of spatial preference and response suppression. Behav. Brain Res. 2013, 245, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, Y.; Shibata, H.; Kikuta, R.; Makino, C.; Tani, A.; Hirata, N.; Shibata, A.; Ninomiya, H.; Tashiro, N.; Fukumaki, Y. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr. Genet. 2003, 13, 71–76. [Google Scholar] [CrossRef]
- Egan, M.F.; Straub, R.E.; Goldberg, T.E.; Yakub, I.; Callicott, J.H.; Hariri, A.R.; Mattay, V.S.; Bertolino, A.; Hyde, T.M.; Shannon-Weickert, C.; et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 2004, 101, 12604–12609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.M.; Mancuso, S.G.; Mostaid, M.S.; Liu, C.; Pantelis, C.; Everall, I.P.; Bousman, C.A. Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk. Transl. Psychiatry 2017, 7, e1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalan-Sakrikar, N.; Field, J.R.; Klar, R.; Mattmann, M.E.; Gregory, K.J.; Zamorano, R.; Engers, D.W.; Bollinger, S.R.; Weaver, C.D.; Days, E.L.; et al. Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem. Neurosci. 2014, 5, 1221–1237. [Google Scholar] [CrossRef] [Green Version]
- Azari, I.; Moghadam, R.H.; Fallah, H.; Noroozi, R.; Ghafouri-Fard, S.; Taheri, M. GRM7 polymorphisms and risk of schizophrenia in Iranian population. Metab. Brain Dis. 2019, 34, 847–852. [Google Scholar] [CrossRef]
- Niu, W.; Huang, X.; Yu, T.; Chen, S.; Li, X.; Wu, X.; Cao, Y.; Zhang, R.; Bi, Y.; Yang, F.; et al. Association study of GRM7 polymorphisms and schizophrenia in the Chinese Han population. Neurosci. Lett. 2015, 604, 109–112. [Google Scholar] [CrossRef]
- Li, W.; Ju, K.; Li, Z.; He, K.; Chen, J.; Wang, Q.; Yang, B.; An, L.; Feng, G.; Sun, W.; et al. Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur. Neuropsychopharmacol. 2016, 26, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Koga, M.; Ishiguro, H.; Horiuchi, Y.; Arai, M.; Niizato, K.; Itokawa, M.; Inada, T.; Iwata, N.; Iritani, S.; et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr. Res. 2008, 101, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhong, X.; An, Z.; Han, S.; Luo, X.; Shi, Y.; Yi, Q. Association analysis of the GRM8 gene with schizophrenia in the Uygur Chinese population. Hereditas 2014, 151, 140–144. [Google Scholar] [CrossRef]
- Takaki, H.; Kikuta, R.; Shibata, H.; Ninomiya, H.; Tashiro, N.; Fukumaki, Y. Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2004, 128, 6–14. [Google Scholar] [CrossRef]
- Tavakkoly-Bazzaz, J.; Azarnezhad, A.; Mousavi, N.; Salehipour, P.; Shahsavand Ananloo, E.; Alizadeh, F. TCF4 and GRM8 gene polymorphisms and risk of schizophrenia in an Iranian population: A case-control study. Mol. Biol. Rep. 2018, 45, 2403–2409. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Crow, T.J. The two-syndrome concept: Origins and current status. Schizophr. Bull. 1985, 11, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, S.; Loonen, A.J.; Bakker, P.R.; Freidin, M.B.; Ter Woerds, N.J.; Al Hadithy, A.F.; Semke, A.V.; Fedorenko, O.Y.; Brouwers, J.R.; Bokhan, N.A.; et al. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med. 2016, 4, 2050312116643673. [Google Scholar] [CrossRef]
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Abel, K.M.; Drake, R.; Goldstein, J.M. Sex differences in schizophrenia. Int. Rev. Psychiatry 2010, 22, 417–428. [Google Scholar] [CrossRef]
- Loonen, A.J.M. Het Beweeglijke Brein. de Neurowetenschappelijke Achtergrond van de Psychische Functies, 3rd ed.; Mension: Haarlem, The Netherlands, 2021. [Google Scholar]
- Armada-Moreira, A.; Gomes, J.I.; Pina, C.C.; Savchak, O.K.; Gonçalves-Ribeiro, J.; Rei, N.; Pinto, S.; Morais, T.P.; Martins, R.S.; Ribeiro, F.F.; et al. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front. Cell. Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, A.; Sharp, S.I.; McQuillin, A. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur. J. Hum. Genet. 2015, 23, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorenko, O.; Tang, C.; Sopjani, M.; Föller, M.; Gehring, E.-M.; Strutz-Seebohm, N.; Ureche, O.N.; Ivanova, S.; Semke, A.; Lang, F.; et al. PIP5K2A-dependent regulation of excitatory amino acid transporter EAAT3. Psychopharmacology 2009, 206, 429–435. [Google Scholar] [CrossRef]
- Poltavskaya, E.G.; Fedorenko, O.Y.; Vyalova, N.M.; Kornetova, E.G.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Genetic polymorphisms of PIP5K2A and course of schizophrenia. BMC Med Genet. 2020, 21 (Suppl. 1), 171. [Google Scholar] [CrossRef] [PubMed]
Sample Size, n | 805 |
Sex, n (%) | Men: 423 (52.5%) Women: 382 (47.5%) |
Age, years, Me (Q1; Q3) | 38 (32; 49) |
Duration of illness, years, Me (Q1; Q3) | 13 (7; 22) |
Gene | SNP | Effect Allele | Other Allele | OR | Lower 95% | Upper 95% | p-Value |
---|---|---|---|---|---|---|---|
GRIN2A | rs11644461 | T | C | 0.739 | 0.576 | 0.950 | 0.018 |
GRIN2A | rs8057394 | G | C | 1.361 | 1.051 | 1.763 | 0.019 |
GRIN2B | rs7313149 | T | C | 0.742 | 0.560 | 0.984 | 0.038 |
Gene | SNP | Effect Allele | Other Allele | OR | Lower 95% | Upper 95% | p-Value |
---|---|---|---|---|---|---|---|
SLC17A7 | rs62126236 | T | C | 0.778 | 0.613 | 0.988 | 0.039 |
Gene | SNP | Effect Allele | Other Allele | Estimate | SE | t Value | p-Value |
---|---|---|---|---|---|---|---|
Association between PANSS N1-7 and genetic variants | |||||||
GRIN2A | rs9788936 | T | C | −0.159 | 0.061 | −2.592 | 0.010 |
GRIN2A | rs11646587 | G | A | 0.123 | 0.059 | 2.106 | 0.036 |
GRM8 | rs2299472 | C | A | −0.114 | 0.053 | −2.122 | 0.034 |
SLC17A7 | rs62126236 | T | C | −0.115 | 0.057 | −2.018 | 0.044 |
Association between PANSS P1-7 and genetic variants | |||||||
GRIN2A | rs9788936 | T | C | −0.151 | 0.062 | −2.454 | 0.014 |
GRIN2B | rs7313149 | T | C | −0.133 | 0.059 | −2.248 | 0.025 |
Association between PANSS G1-16 and genetic variants | |||||||
GRIN2A | rs8057394 | T | C | 0.139 | 0.055 | 2.536 | 0.011 |
GRIN2A | rs9788936 | T | C | −0.155 | 0.062 | −2.505 | 0.012 |
SLC1A2 | rs12361171 | T | A | 0.113 | 0.051 | 2.209 | 0.027 |
Association between PANSS total and genetic variants | |||||||
GRIN2A | rs9788936 | T | C | −0.196 | 0.061 | −3.190 | 0.001 |
GRIN2A | rs8057394 | T | C | 0.138 | 0.054 | 2.534 | 0.011 |
GRIN2B | rs7313149 | T | C | −0.140 | 0.058 | −2.408 | 0.016 |
SLC1A2 | rs12361171 | T | A | 0.104 | 0.051 | 2.058 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poltavskaya, E.G.; Kornetova, E.G.; Freidin, M.B.; Pozhidaev, I.V.; Paderina, D.Z.; Bocharova, A.V.; Semke, A.V.; Bokhan, N.A.; Ivanova, S.A.; Fedorenko, O.Y. The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia. Genes 2023, 14, 575. https://doi.org/10.3390/genes14030575
Poltavskaya EG, Kornetova EG, Freidin MB, Pozhidaev IV, Paderina DZ, Bocharova AV, Semke AV, Bokhan NA, Ivanova SA, Fedorenko OY. The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia. Genes. 2023; 14(3):575. https://doi.org/10.3390/genes14030575
Chicago/Turabian StylePoltavskaya, Evgeniya G., Elena G. Kornetova, Maxim B. Freidin, Ivan V. Pozhidaev, Diana Z. Paderina, Anna V. Bocharova, Arkadiy V. Semke, Nikolay A. Bokhan, Svetlana A. Ivanova, and Olga Y. Fedorenko. 2023. "The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia" Genes 14, no. 3: 575. https://doi.org/10.3390/genes14030575
APA StylePoltavskaya, E. G., Kornetova, E. G., Freidin, M. B., Pozhidaev, I. V., Paderina, D. Z., Bocharova, A. V., Semke, A. V., Bokhan, N. A., Ivanova, S. A., & Fedorenko, O. Y. (2023). The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia. Genes, 14(3), 575. https://doi.org/10.3390/genes14030575