Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotyping of RILs for Aflatoxin Production Resistance
2.3. Statistical Analysis
2.4. QTL Analysis
2.5. Conditional QTL Analysis
3. Results
3.1. Variation of Aflatoxin Production Resistance in the RILs
3.2. Correlation Analysis of ATC with HSW and SPII
3.3. QTLs for AP Resistance and HSW in the RILs
3.4. Conditional QTL Mapping
3.5. Phenotypic Effect of Pyramiding the Major QTLs
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO): Production/Yield Quantities of Groundnuts, with Shell in World. 2020. Available online: http://www.fao.org/faostat/en/#data/ (accessed on 1 June 2022).
- Amaike, S.; Keller, N.P. Aspergillus flavus. Annu. Rev. Phytopathol. 2011, 49, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huang, L.; Deng, J.; Tan, C.; Geng, L.; Liao, Y.; Yuan, J.; Wang, S. A cell wall integrity-related MAP kinase kinase kinase AflBck1 is required for growth and virulence in fungus Aspergillus flavus. Mol. Plant-Microbe Interact. 2020, 33, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Niyibituronsa, M.; Onyango, A.N.; Gaidashova, S.; Imathiu, S.M.; Uwizerwa, M.; Wanjuki, I.; Nganga, F.; Muhutu, J.C.; Birungi, J.; Ghimire, S.; et al. Evaluation of mycotoxin content in soybean (Glycine max L.) grown in Rwanda. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13808–13824. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, C.; Marsh, G.M.; Wu, F. Population attributable risk of aflatoxin-related liver cancer: Systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 2125–2136. [Google Scholar] [CrossRef] [Green Version]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens--Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Qin, M.; Liang, J.; Yang, D.; Yang, X.; Cao, P.; Wang, X.; Ma, N.; Zhang, L. Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res. Int. 2021, 140, 109899. [Google Scholar] [CrossRef]
- Nigam, S.N.; Waliyar, F.; Aruna, R.; Reddy, S.V.; Lava Kumar, P.; Craufurd, P.Q.; Diallo, A.T.; Ntare, B.R.; Upadhyaya, H.D. Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci. 2009, 36, 42–49. [Google Scholar] [CrossRef]
- Liang, X.Q.; Holbrook, C.C.; Lynch, R.E.; Guo, B.Z. β-1,3-glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. Phytopathology 2005, 95, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Han, S.; Wang, D.; Haider, M.S.; Guo, J.; Zhao, Q.; Du, P.; Sun, Z.; Qi, F.; Zheng, Z.; et al. Gene Co-expression Network Analysis of the Comparative Transcriptome Identifies Hub Genes Associated With Resistance to Aspergillus flavus L. in Cultivated Peanut (Arachis hypogaea L.). Front. Plant Sci. 2022, 13, 899177. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Dorner, J.W. Biological control of aflatoxin contamination of crops. J. Toxicol. Toxin Rev. 2004, 23, 425–450. [Google Scholar] [CrossRef]
- Pandey, M.K.; Kumar, R.; Pandey, A.K.; Soni, P.; Gangurde, S.S.; Sudini, H.K.; Fountain, J.C.; Liao, B.; Desmae, H.; Okori, P.; et al. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins 2019, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.K.; Pothana, A.; Prasad, K.; Shah, D.; Kaur, J.; Bhatnagar, D.; Chen, Z.-Y.; Raruang, Y.; Cary, J.W.; Rajasekaran, K.; et al. Peanuts that keep aflatoxin at bay: A threshold that matters. Plant Biotechnol. J. 2018, 16, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Choudhary, B.; Yadav, S.; Mishra, A.; Mishra, V.K.; Chand, R.; Chen, C.; Pandey, S.P. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. J. Hazard. Mater. 2021, 404, 124155. [Google Scholar] [CrossRef]
- Mehan, V.K.; McDonald, D. Screening for resistance to Aspergillus flavus invasion and aflatoxin production in groundnuts. Int. Crops Res. Inst. Semi-Arid. Tropoics 1980, 2, 1–15. [Google Scholar]
- Sujay, V.; Kusuma, V.P.; Yugandhar, G.; Sujatha, B.; Gowda, M.; Upadhyaya, H.D. Selection of accessions from minicore to improve disease resistance in groundnut. Groundnut 2008, 11, 48. [Google Scholar]
- Sui-Lin, L.I. Breeding of peanut varieties with high yield and high resistance to Aspergillus flavus Link.ex Fr.in Guangdong. Guangdong Agric. Sci. 2006, 8, 20–23. [Google Scholar]
- Liang, X.; Zhou, G.; Hong, Y.; Chen, X.; Liu, H.; Li, S. Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci. 2009, 36, 29–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Zhang, J.; Zhang, L.; Li, C.; Kan, X.; Sun, Q.; Deng, D.; Yin, Z. Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins 2016, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Huai, D.; Huang, L.; Kang, Y.; Ren, X.; Chen, Y.; Zhou, X.; Luo, H.; Liu, N.; Chen, W.; et al. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet. 2019, 20, 32. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Chen, H.; Deng, Y.; Chen, Y.; Zhang, C.; Cai, T.; Ali, N.; Mamadou, G.; Xie, D.; Guo, B.; et al. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Theor. Appl. Genet. 2020, 133, 2239–2257. [Google Scholar] [CrossRef] [PubMed]
- Asis, R.; Barrionuevo, D.L.; Giorda, L.M.; Nores, M.L.; Aldao, M.A. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina. J. Agric. Food Chem. 2005, 53, 9274–9280. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, H.; Yu, B.; Ding, Y.; Kang, Y.; Huang, L.; Zhou, X.; Liu, N.; Chen, W.; Guo, J.; et al. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus infection in peanut. Front. Plant Sci. 2021, 12, 745408. [Google Scholar] [CrossRef] [PubMed]
- Priesterjahn, E.-M.; Geisen, R.; Schmidt-Heydt, M. Influence of light and water activity on growth and mycotoxin formation of selected isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 2020, 8, 2000. [Google Scholar] [CrossRef] [PubMed]
- Mixon, A.C.; Rogers, K.M. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron. J. 1973, 65, 560–562. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, J.; Zhao, J.; Chen, W.; Qiu, X.; Huang, L.; Luo, H.; Zhou, X.; Jiang, H.; Huang, J. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron. Sin. 2019, 45, 1200–1207. [Google Scholar]
- Luo, H.; Guo, J.; Ren, X.; Chen, W.; Huang, L.; Zhou, X.; Chen, Y.; Liu, N.; Xiong, F.; Lei, Y.; et al. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor. Appl. Genet. 2018, 131, 267–282. [Google Scholar] [CrossRef]
- Huang, L.; He, H.; Chen, W.; Ren, X.; Chen, Y.; Zhou, X.; Xia, Y.; Wang, X.; Jiang, X.; Liao, B.; et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor. Appl. Genet. 2015, 128, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ren, X.; Zheng, Y.; Zhou, X.; Huang, L.; Yan, L.; Jiao, Y.; Chen, W.; Huang, S.; Wan, L.; et al. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol. Breed. 2017, 37, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, X.; Miao, H.; Chu, Y.; Cui, F.; Yang, W.; Wang, C.; Shen, Y.; Xu, T.; Zhao, L.; et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol. 2019, 19, 537. [Google Scholar] [CrossRef]
- Ding, Y.; Qiu, X.; Luo, H.; Huang, L.; Guo, J.; Yu, B.; Sudini, H.; Pandey, M.; Kang, Y.; Liu, N.; et al. Comprehensive evaluation of Chinese peanut mini-mini core collection and QTL mapping for aflatoxin resistance. BMC Plant Biol. 2022, 22, 207. [Google Scholar] [CrossRef]
- Korani, W.A.; Chu, Y.; Holbrook, C.; Clevenger, J.; Ozias-Akins, P. Genotypic regulation of aflatoxin accumulation but not Aspergillus fungal growth upon post-harvest infection of peanut (Arachis hypogaea L.) seeds. Toxins 2017, 9, 218. [Google Scholar] [CrossRef]
Env | Parents | RILs | CV | ||
---|---|---|---|---|---|
Zhonghua 16 | J 11 | Range | Mean ± SD | ||
2017 | 159.01 ± 21.00 | 73.64 ± 11.55 ** | 6.16–277.92 | 98.04 ± 53.95 | 0.55 |
2018 | 158.98 ± 4.43 | 65.91 ± 8.90 ** | 34.82–336.77 | 134.33 ± 69.62 | 0.52 |
2019 | 164.07 ± 21.09 | 74.76 ± 12.85 ** | 26.52–340.29 | 112.16 ± 58.88 | 0.52 |
Source | df | Mean Square | F-Value | p-Value | H2 |
---|---|---|---|---|---|
Genotypes | 184 | 11,832.21 | 5.05 | <0.001 | 0.692 |
Environments | 2 | 161,839.88 | 69.13 | <0.001 | |
Genotypes × Environments | 361 | 3649.54 | 1.56 | <0.001 | |
Error | 1048 | 2341.05 |
Line | 2017ATC (μg/g) | 2018ATC (μg/g) | 2019ATC (μg/g) | 2017HSW (g) | 2018HSW (g) | 2017PSII | 2018PSII | 2019PSII |
---|---|---|---|---|---|---|---|---|
QT 1026 | 37.19 | 61.73 | 67.91 | 57.36 | 58.81 | 0.8866 | 0.7849 | 0.7094 |
QT 1029 | 53.30 | 40.32 | 67.67 | 54.96 | 55.78 | 0.9163 | 0.7802 | 0.6336 |
QT 1041 | 26.17 | 47.91 | 39.11 | 46.37 | 54.27 | 0.9889 | 0.6795 | 0.5491 |
QT 1044 | 76.83 | 63.22 | 62.99 | 58.84 | 53.70 | 0.7778 | 0.6784 | 0.6167 |
QT 1059 | 37.27 | 56.98 | 67.15 | 70.17 | 74.50 | 0.4727 | 0.5300 | 0.4866 |
QT 1068 | 71.53 | 38.88 | 52.74 | 51.88 | 0.3847 | 0.7384 | 0.3492 | |
QT 1088 | 42.04 | 68.60 | 85.92 | 58.09 | 58.61 | 0.5134 | 0.8018 | 0.5640 |
QT 1089 | 29.11 | 34.82 | 73.43 | 63.12 | 70.90 | 0.9147 | 0.9814 | 0.8778 |
QT 1105 | 37.65 | 73.31 | 76.81 | 58.19 | 57.30 | 0.9037 | 0.8651 | 0.7982 |
QT 1120 | 41.41 | 77.67 | 75.75 | 41.70 | 48.61 | 0.8105 | 0.7684 | 0.6917 |
QT 1126 | 54.04 | 66.12 | 78.08 | 46.88 | 51.59 | 0.9423 | 0.6647 | 0.6291 |
QT 1137 | 51.24 | 77.02 | 46.87 | 49.46 | 52.97 | 0.6303 | 0.6592 | 0.4447 |
QT 1141 | 49.38 | 75.10 | 38.99 | 41.88 | 46.68 | 0.7683 | 0.7592 | 0.4219 |
QT 1142 | 32.75 | 66.52 | 77.88 | 50.52 | 48.42 | 0.9356 | 0.7575 | 0.8360 |
QT 1166 | 63.48 | 45.20 | 56.68 | 45.19 | 48.44 | 0.8136 | 0.7474 | 0.6883 |
Zhonghua 16 | 164.07 | 159.01 | 158.98 | 79.27 | 77.90 | 0.8704 | 0.9115 | 0.9300 |
J 11 | 74.76 | 73.64 | 65.91 | 32.49 | 33.67 | 0.5597 | 0.5383 | 0.5104 |
Trait | QTL | LG | Env | CI (cM) | Marker Interval | LOD | PVE(%) | Add |
---|---|---|---|---|---|---|---|---|
ATC | qAFTA05.1 | A05 | 2017 | 27.41–35.52 | c05b050–c05b062 | 4.44 | 7.95 | 12.77 |
2018 | 25.19–38.08 | c05b046–c05b066 | 6.35 | 11.42 | 18.09 | |||
2019 | 22.02–35.80 | c05b041–c05b063 | 3.29 | 5.99 | 10.64 | |||
qAFTA05.2 | A05 | 2017 | 57.49–59.07 | c05b093–c05b098 | 3.12 | 5.49 | 11.06 | |
qAFTA05.3 | A05 | 2017 | 63.71–70.01 | c05b109–c05b115 | 3.11 | 5.83 | 11.07 | |
qAFTA08 | A08 | 2019 | 25.15–25.91 | c08b048–c08b050 | 2.82 | 4.99 | −9.79 | |
qAFTB05.1 | B05 | 2019 | 8.30–8.55 | c15b022–c15b023 | 2.73 | 5.2 | −9.91 | |
qAFTB05.2 | B05 | 2019 | 11.05–26.25 | c15b031–c15b068 | 5.37 | 9.9 | −13.79 | |
qAFTB06.1 | B06 | 2017 | 39.06–39.56 | c16b081–c16b083 | 2.65 | 4.83 | 9.95 | |
qAFTB06.2 | B06 | 2018 | 39.81–44.65 | c16b084–c16b101 | 4.54 | 7.52 | 14.86 | |
qAFTB06.3 | B06 | 2017 | 46.04–56.26 | c16b105–c16b137 | 4.64 | 8.23 | 12.91 | |
2018 | 46.04–57.03 | c16b105–c16b139 | 6.58 | 10.63 | 17.6 | |||
qAFTB09.1 | B09 | 2018 | 39.57–41.65 | c19b079–c19b086 | 2.86 | 4.61 | 11.58 | |
qAFTB09.2 | B09 | 2018 | 47.11–49.96 | c19b104–c19b112 | 3.63 | 5.8 | 12.93 | |
HSW | qHSWA05 | A05 | 2017 | 47.7–68.86 | c05b075–c05b114 | 17.43 | 28.34 | 5.61 |
2018 | 47.7–68.86 | c05b075–c05b114 | 20.69 | 29.02 | 5.75 | |||
qHSWA08 | A08 | 2017 | 47.94–53.69 | c08b101–c08b121 | 3.86 | 5.2 | 2.38 | |
2018 | 41.34–57.53 | c08b086–c08b125 | 8.39 | 9.88 | 3.36 | |||
qHSWA10.1 | A10 | 2018 | 5.22–9.68 | c10b006–c10b011 | 3.58 | 3.99 | 2.11 | |
qHSWA10.2 | A10 | 2017 | 18.53–27.98 | c10b021–c10b051 | 3.84 | 5.16 | 2.37 | |
qHSWB01 | B01 | 2018 | 43.54–49.48 | c11b077–c11b095 | 3.16 | 3.49 | 1.97 | |
qHSWB06 | B06 | 2017 | 16.51–20.17 | c16b019–c16b024 | 3.55 | 4.76 | 2.29 | |
2018 | 19.31–39.81 | c16b023–c16b084 | 8.76 | 10.46 | 3.42 |
Condition | QTL | Marker Interval | Unconditional QTL PVE (%) | Conditional QTL PVE (%) |
---|---|---|---|---|
ATC|HSW | qAFTA05.1 | c05b040–c05b069 | 13.96 | 12.86 |
qAFTA05.3 | c05b091–c05b115 | 9.19 | ||
qAFTA08 | c08b049–c08b050 | 4.99 | 4.42 | |
qAFTB05.1 | c15b018–c15b024 | 7.65 | ||
qAFTB05.2 | c15b031–c15b063 | 5.88 | 10.15 | |
qAFTB06.3 | c16b111–c16b114 | 5.15 | ||
qAFTB09.1 | c19b080–c19b090 | 4.05 | 6.42 | |
qAFTB09.2 | c19b111–c19b112 | 4.11 | 6.97 | |
ATC|PSII | qAFTA05.1 | c05b040–c05b069 | 13.96 | 7.72 |
qAFTA05.3 | c05b091–c05b115 | 9.19 | 7.47 | |
qAFTA08 | c08b049–c08b050 | 4.99 | ||
qAFTB05.2 | c15b031–c15b063 | 5.88 | ||
qAFTB06.3 | c16b111–c16b114 | 5.15 | 14.83 | |
qAFTB09.1 | c19b080–c19b090 | 4.05 | 4.52 | |
qAFTB09.2 | c19b111–c19b112 | 4.11 | 4.75 | |
PSII|HSW | qPSIIA08 | c08b096–c08b137 | 9.58 | |
qPSIIB01 | c11b115–c11b116 | 4.99 | ||
qPSIIB03.1 | c13b066–c13b069 | 4.94 | 6.05 | |
qPSIIB03.2 | c13b090–c13b092 | 5.77 | 6.02 | |
qPSIIB10 | c20b046–c20b064 | 9.48 | 10.31 |
Trait | Genotype | 2017 | 2018 | 2019 |
---|---|---|---|---|
ATC (μg/g) | AABBcc | 135.61 ± 64.80 a | 184.50 ± 81.90 a | 145.34 ± 81.26 a |
AABBCC | 115.56 ± 62.33 b | 157.81 ± 67.57 b | 113.65 ± 57.45 bc | |
AAbbcc | 114.62 ± 50.09 bc | 141.69 ± 61.60 bc | 140.12 ± 63.22 a | |
aaBBcc | 97.25 ± 46.33 cd | 147.00 ± 72.43 b | 115.88 ± 56.94 bc | |
AAbbCC | 95.83 ± 48.95 cd | 114.76 ± 63.41 cd | 116.32 ± 54.68 bc | |
aaBBCC | 91.55 ± 48.41 de | 115.78 ± 52.82 cd | 94.70 ± 47.70 c | |
aabbcc | 76.21 ± 33.91 ef | 97.94 ± 54.73 d | 117.51 ± 52.53 bc | |
aabbCC | 70.96 ± 38.22 f | 111.09 ± 59.90 cd | 94.81 ± 48.12 c | |
HSW (g) | DDEEFF | 68.85 ± 10.56 a | 73.55 ± 7.43 a | - |
DDEEff | 64.06 ± 8.39 ab | 66.67 ± 8.81 b | - | |
DDeeFF | 59.82 ± 7.71 bc | 66.02 ± 7.69 b | - | |
DDeeff | 57.41 ± 6.39 c | 59.86 ± 6.71 c | - | |
ddEEFF | 58.57 ± 5.58 bc | 60.00 ± 6.41 c | - | |
ddEEff | 51.41 ± 7.22 d | 55.21 ± 8.46 c | - | |
ddeeFF | 51.70 ± 8.77 d | 55.80 ± 5.92 c | - | |
ddeeff | 46.66 ± 6.46 d | 49.21 ± 2.33 d | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, G.; Liu, N.; Yu, B.; Jiang, Y.; Luo, H.; Huang, L.; Zhou, X.; Yan, L.; Kang, Y.; Huai, D.; et al. Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut. Genes 2023, 14, 625. https://doi.org/10.3390/genes14030625
Jin G, Liu N, Yu B, Jiang Y, Luo H, Huang L, Zhou X, Yan L, Kang Y, Huai D, et al. Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut. Genes. 2023; 14(3):625. https://doi.org/10.3390/genes14030625
Chicago/Turabian StyleJin, Gaorui, Nian Liu, Bolun Yu, Yifei Jiang, Huaiyong Luo, Li Huang, Xiaojing Zhou, Liying Yan, Yanping Kang, Dongxin Huai, and et al. 2023. "Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut" Genes 14, no. 3: 625. https://doi.org/10.3390/genes14030625
APA StyleJin, G., Liu, N., Yu, B., Jiang, Y., Luo, H., Huang, L., Zhou, X., Yan, L., Kang, Y., Huai, D., Ding, Y., Chen, Y., Wang, X., Jiang, H., Lei, Y., Shen, J., & Liao, B. (2023). Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut. Genes, 14(3), 625. https://doi.org/10.3390/genes14030625