Social, Genetics and Histopathological Factors Related to Titin (TTN) Gene Mutation and Survival in Women with Ovarian Serous Cystadenocarcinoma: Bioinformatics Analysis
Abstract
:1. Introduction
2. Methods
2.1. Ethical Aspects
2.2. Study Design
2.3. Population and Period of Study
2.4. Inclusion and Exclusion Criteria
2.5. Data Base
2.6. Data Extraction and Variables
2.7. TTN Mutation Analysis
2.8. Statistical Analysis
3. Results
3.1. Mutation of TTN and Histotype of Ovarian Cancer
3.2. Mutation of TTN and the Relationship of Social, Clinical and Histopathological Factors
3.3. Analysis of Titin (TTN) Gene Mutation as Predictive to Social and Clinical Variables of Women with Ovarian Serous Cystadenocarcinoma
3.4. Survival Rates
3.5. TTN Mutations in Ovarian Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of Ovarian Cancer: A Review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, Z.; Namayandeh, S.M.; Beiranvand, R.; Naemi, H.; Bechashk, S.M.; Goodarzi, E. Worldwide Incidence and Mortality of Ovarian Cancer and Human Development Index (HDI): GLOBOCAN Sources and Methods 2018. J. Prev. Med. Hyg. 2021, 62, E174–E184. [Google Scholar] [CrossRef] [PubMed]
- Schoueri, J.H.M.; Kaufman, F.A.A.; de Camargo, C.R.S.; de Sette, C.V.M.; Adami, F.; dos Figueiredo, F.W.S. Time Trend and Regional Variability of Mortality Rate Due to Ovarian Cancer in Brazil: A 15-Year Analysis. J. Public Health 2018, 40, e474–e481. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian Cancer. Nat. Rev. Dis. Primers 2016, 2, 160661. [Google Scholar] [CrossRef] [PubMed]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Subtypes of Ovarian Cancer and Ovarian Cancer Screening. Diagnostics 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Zhao, J.; Wu, J.; Fu, S.; Han, P.; Song, X. The Circular RNA Expression Profile in Ovarian Serous Cystadenocarcinoma Reveals a Complex CircRNA–MiRNA Regulatory Network. BMC Med. Genom. 2021, 14, 276. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, H.S.; Suh, D.H.; Kim, M.-K.; Chung, H.H.; Song, Y.-S. Ovarian Cancer Biomarker Discovery Based on Genomic Approaches. J. Cancer Prev. 2013, 18, 298–312. [Google Scholar] [CrossRef]
- Committee on the State of the Science in Ovarian Cancer Research; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and Medicine. Ovarian Cancers: Evolving Paradigms in Research and Care; National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-38046-1. [Google Scholar]
- Oh, J.-H.; Jang, S.J.; Kim, J.; Sohn, I.; Lee, J.-Y.; Cho, E.J.; Chun, S.-M.; Sung, C.O. Spontaneous Mutations in the Single TTN Gene Represent High Tumor Mutation Burden. NPJ Genom. Med. 2020, 5, 33. [Google Scholar] [CrossRef]
- COSMIC. 2022. Available online: https://cancer.sanger.ac.uk/cosmic/ (accessed on 18 October 2022).
- Jia, P.; Yang, X.; Guo, L.; Liu, B.; Lin, J.; Liang, H.; Sun, J.; Zhang, C.; Ye, K. MSIsensor-pro: Fast, Accurate, and Matched-Normal-Sample-Free Detection of Microsatellite Instability. Genom. Proteom. Bioinform. 2020, 18, 65–71. [Google Scholar] [CrossRef]
- Shou, Y.; Yang, L.; Yang, Y.; Zhu, X.; Li, F.; Xu, J. Determination of Hypoxia Signature to Predict Prognosis and the Tumor Immune Microenvironment in Melanoma. Mol. Omics 2021, 17, 307–316. [Google Scholar] [CrossRef]
- Brasil. Decreto Nº 7508, de 28 de Junho de 2011, Regulamenta a Lei no 8.080, de 19 de Setembro de 1990, Para Dispor Sobre a Organização do Sistema Único de Saúde—SUS, o Planejamento da Saúde, a Assistência à Saúde e a Articulação Interfederativa, e dá Outras Providências. Diário Oficial da República Federativa do Brasil. Brasília, DF, 29/06/2011, p. 1. 2011. Available online: https://planalto.gov.br/ccivil_03/_ato2011-2014/2011/decreto/d7508 (accessed on 25 December 2022).
- cBioPortal. 2022. Available online: https://www.cbioportal.org (accessed on 12 October 2022).
- MSK Data Catalog. 2022. Available online: https://datacatalog.mskcc.org/dataset/10405 (accessed on 13 October 2022).
- OncoKB. 2022. Available online: https://www.oncokb.org/cancerGenes (accessed on 13 October 2022).
- MutationAligner. 2022. Available online: http://www.mutationaligner.org (accessed on 18 October 2022).
- Gardner, A.B.; Sanders, B.E.; Mann, A.K.; Liao, C.-I.; Eskander, R.N.; Kapp, D.S.; Chan, J.K. Relationship Status and Other Demographic Influences on Survival in Patients with Ovarian Cancer. Int. J. Gynecol. Cancer 2020, 30, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, X.; Ren, X.; Zhou, L.; Wang, N.; Kang, H. Disease Burden and Attributable Risk Factors of Ovarian Cancer From 1990 to 2017: Findings From the Global Burden of Disease Study 2017. Front. Public Health 2021, 9, 619581. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Ye, J.; Hu, S.; Wei, Y.; Xu, J. Mutations in the TTN Gene Are a Prognostic Factor for Patients with Lung Squamous Cell Carcinomas. Int. J. Gen. Med. 2022, 15, 19–31. [Google Scholar] [CrossRef]
- Prat, J.; D’Angelo, E.; Espinosa, I. Ovarian Carcinomas: At Least Five Different Diseases with Distinct Histological Features and Molecular Genetics. Hum. Pathol. 2018, 80, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, M.; Novak, L.; Pasquo, A.; Chiaraluce, R.; Turina, P.; Capriotti, E.; Consalvi, V. Analysis and Interpretation of the Impact of Missense Variants in Cancer. Int. J. Mol. Sci. 2021, 22, 5416. [Google Scholar] [CrossRef]
- Harbin, L.M.; Gallion, H.H.; Allison, D.B.; Kolesar, J.M. Next Generation Sequencing and Molecular Biomarkers in Ovarian Cancer-An Opportunity for Targeted Therapy. Diagnostics 2022, 12, 842. [Google Scholar] [CrossRef]
- Radu, M.R.; Prădatu, A.; Duică, F.; Micu, R.; Creţoiu, S.M.; Suciu, N.; Creţoiu, D.; Varlas, V.N.; Rădoi, V.E. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021, 9, 693. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, M.; Yang, H.; Zhu, S.; Cheng, X.; Qing, C. Next-Generation Sequencing-Based Genomic Profiling Analysis Reveals Novel Mutations for Clinical Diagnosis in Chinese Primary Epithelial Ovarian Cancer Patients. J. Ovarian Res. 2019, 12, 19. [Google Scholar] [CrossRef]
- Mehrgou, A.; Akouchekian, M. The Importance of BRCA1 and BRCA2 Genes Mutations in Breast Cancer Development. Med. J. Islam. Repub. Iran. 2016, 30, 369. [Google Scholar]
- Zhang, Y.; Cao, L.; Nguyen, D.; Lu, H. TP53 Mutations in Epithelial Ovarian Cancer. Transl. Cancer Res. 2016, 5, 650–663. [Google Scholar] [CrossRef]
- Zheng, B.; Geng, L.; Zeng, L.; Liu, F.; Huang, Q. AKT2 Contributes to Increase Ovarian Cancer Cell Migration and Invasion through the AKT2-PKM2-STAT3/NF-ΚB Axis. Cell Signal 2018, 45, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E. PARP Inhibition in Breast Cancer: Progress Made and Future Hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Elias, K.M. Synthetic Lethality in Ovarian Cancer. Mol. Cancer Ther. 2021, 20, 2117–2128. [Google Scholar] [CrossRef]
- Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov. 2020, 10, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Gjoerup, O.; Brown, C.A.; Ross, J.S.; Huang, R.S.P.; Schrock, A.; Creeden, J.; Fabrizio, D.; Tolba, K. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors. AAPS J. 2020, 22, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, Z.; Zhang, W.; Zhang, W.; Buzdin, A.; Mu, X.; Yan, Q.; Zhao, X.; Chang, H.H.; Duhon, M.; et al. FDA-Approved and Emerging Next Generation Predictive Biomarkers for Immune Checkpoint Inhibitors in Cancer Patients. Front. Oncol. 2021, 11, 683419. [Google Scholar] [CrossRef] [PubMed]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of Somatic Mutation in Human Cancer Genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Wang, J.; Xuan, L.; Liu, X. LncRNA TTN-AS1 Acts as Sponge for MiR-15b-5p to Regulate FBXW7 Expression in Ovarian Cancer. Biofactors 2020, 46, 600–607. [Google Scholar] [CrossRef]
- Shi, R.; Liao, C.; Zhang, Q. Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021, 10, 678. [Google Scholar] [CrossRef]
- Yang, L.; West, C.M. Hypoxia Gene Expression Signatures as Predictive Biomarkers for Personalising Radiotherapy. Br. J. Radiol. 2019, 92, 20180036. [Google Scholar] [CrossRef]
- Ali, H.R.; Jackson, H.W.; Zanotelli, V.R.T.; Danenberg, E.; Fischer, J.R.; Bardwell, H.; Provenzano, E.; Rueda, O.M.; Chin, S.-F.; Alon, S.; et al. Imaging Mass Cytometry and Multiplatform Genomics Define the Phenogenomic Landscape of Breast Cancer. Nat. Cancer 2020, 1, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.A.; Lee, H.; Kim, D.G.; Kim, H.; Ha, S.Y.; Choi, Y.-L.; Jang, K.-T.; Kim, K.-M. PD-L1 Expression Is Significantly Associated with Tumor Mutation Burden and Microsatellite Instability Score. Cancers 2021, 13, 4659. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, Y.; Wang, C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front. Oncol. 2021, 11, 672677. [Google Scholar] [CrossRef]
- Brianese, R.C. Investigação da dinâmica mutacional em tumores triplo-negativos da mama através do sequenciamento de DNA tumoral circulante. MDHealth 2019, 102. [Google Scholar]
- Disis, M.L.; Bernhard, H.; Jaffee, E.M. Use of Tumour-Responsive T Cells as Cancer Treatment. Lancet 2009, 373, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.J.W.; Sun, P.D. T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Front. Immunol. 2022, 13, 833017. [Google Scholar] [CrossRef]
- Zheng, Q.-X.; Wang, J.; Gu, X.; Huang, C.-H.; Chen, C.; Hong, M.; Chen, Z. TTN-AS1 as a Potential Diagnostic and Prognostic Biomarker for Multiple Cancers. Biomed. Pharmacother. 2021, 135, 111169. [Google Scholar] [CrossRef]
- Noor, A.M.; Holmberg, L.; Gillett, C.; Grigoriadis, A. Big Data: The Challenge for Small Research Groups in the Era of Cancer Genomics. Br. J. Cancer 2015, 113, 1405–1412. [Google Scholar] [CrossRef]
- Abba, M.C.; Canzoneri, R.; Gurruchaga, A.; Lee, J.; Tatineni, P.; Kil, H.; Lacunza, E.; Aldaz, C.M. LINC00885 a Novel Oncogenic Long Non-Coding RNA Associated with Early Stage Breast Cancer Progression. Int. J. Mol. Sci. 2020, 21, 7407. [Google Scholar] [CrossRef]
- Brlek, P.; Kafka, A.; Bukovac, A.; Pećina-Šlaus, N. Integrative CBioPortal Analysis Revealed Molecular Mechanisms That Regulate EGFR-PI3K-AKT-MTOR Pathway in Diffuse Gliomas of the Brain. Cancers 2021, 13, 3247. [Google Scholar] [CrossRef]
Variables | No TTN Gene Mutation (n = 475) | Mutation for TTN Gene (n = 110) | Total | U or χ2 | p Value |
---|---|---|---|---|---|
Age of Diagnosis | 57 (16) | 58 (19) | 57 (17) | 17,445 | 0.419 |
Race/skin color | 5282 | 0.152 | |||
American Indian or alaska native | 1 (0.3) | 2 (2.20) | 3 (0.7) | ||
Asian | 12 (3.3) | 5 (5.4) | 17 (3.7) | ||
Black or African american | 23 (6.4) | 7 (7.6) | 30 (6.6) | ||
White | 326 (90.1) | 78 (84.8) | 404 (89) | ||
Genetic factors | |||||
Aneuploidy Score | 13 (11) | 12.5 (11) | 13 (11) | 21,694 | 0.274 |
Buffa Hypoxia Score | 11 (21) | 15 (17) | 13 (18) | 5694 | 0.004 |
Fraction Genome Altered | 0.55 (0.22) | 0.54 (0.25) | 0.55 (0.23) | 24,760 | 0.849 |
MSI MANTIS Score | 0.28 (0.03) | 0.29 (0.03) | 0.28 (0.03) | 17,691 | 0.985 |
MSI sensor Score | 0.97 (0.85) | 0.80 (1.15) | 0.90 (0.89) | 18,559 | 0.010 |
Mutation Count | 68 (37) | 83.5 (62) | 69 (48) | 10,564 | <0.0001 |
Regnum Hypoxia Score | 8 (10) | 8 (8) | 8 (10) | 7002 | 0.448 |
Winter Hypoxia Score | 10 (22) | 12 (23) | 12 (22) | 61.39 | 0.030 |
TMB nonsynonymous | 2.2 (1.3) | 2.8 (2.1) | 2.4 (1.6) | 106.49 | <0.0001 |
Grade (G) histologic neoplasm | 4963 | 0.420 | |||
G1 | 5 (1.3) | 0 (0.0) | 5 (1.0) | ||
G2 | 47 (12.2) | 18 (19.1) | 65 (13.5) | ||
G3 | 325 (84.2) | 75 (79.8) | 400 (83.3) | ||
G4 | 1 (0.3) | 0 (0.0) | 1 (0.2) | ||
GB | 2 (0.5) | 0 (0.0) | 2 (0.4) | ||
GX | 6 (1.6) | 1 (1.1) | 7 (1.5) | ||
Death | 245 | 52 | 297 | 0.006 | 0.937 |
Time overall survival | 34 (39) | 31 (35) | 33 (40) | 22,653 | 0.082 a |
Variables | OR | 95%CI | p | aOR | 95%CI | p |
---|---|---|---|---|---|---|
Diagnosis Age | 0.994 | 0.975, 1.014 | 0.554 | |||
Race/skin color | 0.251 | |||||
Asian | 0.208 | 0.015, 2.854 | 0.240 | |||
Black or African american | 0.152 | 0.012, 1.940 | 0.147 | |||
White | 0.12 | 0.011, 1.336 | 0.085 | |||
Genetic factors | ||||||
Aneuploidy Score | 0.983 | 0.954, 1.013 | 0.268 | |||
Buffa Hypoxia Score | 1.035 | 1.012, 1.058 | 0.003 | 1.028 | 0.989, 1.068 | 0.165 |
Fraction Genome Altered | 1.088 | 0.348, 3.404 | 0.885 | |||
MSI MANTIS Score | 7.484 | 0.022, 2.501 | 0.497 | |||
MSI sensor Score | 1.206 | 1.042, 1.396 | 0.012 | 1.089 | 0.751, 1.580 | 0.651 |
Mutation Count | 1.010 | 1.005, 1.014 | <0.0001 | |||
Regnum Hypoxia Score | 1.029 | 0.991, 1.068 | 0.131 | 0.988 | 0.934, 1.044 | 0.658 |
Winter Hypoxia Score | 1.025 | 1.007, 1.045 | 0.008 | 1.007 | 0.976, 1.039 | 0.671 |
TMB nonsynonymous | 1.522 | 1.351, 1.715 | <0.0001 | 1.616 | 1.346, 1.941 | <0.0001 |
Grade (G) histologic neoplasm (Reference: GX) | 0.716 | |||||
G1 | 0 | 0 | 0.999 | |||
G2 | 2.298 | 0.258, 20.442 | 0.456 | |||
G3 | 1.385 | 0.164, 11.673 | 0.765 | |||
G4 | 0 | 0 | 1.000 | |||
GB | 0 | 0 | 0.999 | |||
Dead | 0.982 | 0.629, 1.533 | 0.937 | |||
Time overall survival | 0.993 | 0.986, 1.001 | 0.077 | 0.993 | 0.982, 1.004 | 0.211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, F.d.C.; Figueiredo, E.R.L.; Araújo, E.N.D.; Andrade, E.M.D.; Carneiro, C.D.L.; Almeida, G.M.D.; Dias, H.A.A.L.; Teixeira, L.I.B.; Almeida, M.T.; Farias, M.F.D.; et al. Social, Genetics and Histopathological Factors Related to Titin (TTN) Gene Mutation and Survival in Women with Ovarian Serous Cystadenocarcinoma: Bioinformatics Analysis. Genes 2023, 14, 1092. https://doi.org/10.3390/genes14051092
Gomes FdC, Figueiredo ERL, Araújo END, Andrade EMD, Carneiro CDL, Almeida GMD, Dias HAAL, Teixeira LIB, Almeida MT, Farias MFD, et al. Social, Genetics and Histopathological Factors Related to Titin (TTN) Gene Mutation and Survival in Women with Ovarian Serous Cystadenocarcinoma: Bioinformatics Analysis. Genes. 2023; 14(5):1092. https://doi.org/10.3390/genes14051092
Chicago/Turabian StyleGomes, Fabiana de Campos, Eric Renato Lima Figueiredo, Ediane Nunes De Araújo, Edila Monteiro De Andrade, Carlos Diego Lisbôa Carneiro, Gabriel Mácola De Almeida, Helana Augusta Andrade Leal Dias, Lucélia Inoue Bispo Teixeira, Manuela Trindade Almeida, Mariusa Fernandes De Farias, and et al. 2023. "Social, Genetics and Histopathological Factors Related to Titin (TTN) Gene Mutation and Survival in Women with Ovarian Serous Cystadenocarcinoma: Bioinformatics Analysis" Genes 14, no. 5: 1092. https://doi.org/10.3390/genes14051092
APA StyleGomes, F. d. C., Figueiredo, E. R. L., Araújo, E. N. D., Andrade, E. M. D., Carneiro, C. D. L., Almeida, G. M. D., Dias, H. A. A. L., Teixeira, L. I. B., Almeida, M. T., Farias, M. F. D., Linhares, N. A., Fonseca, N. L. D., Pereira, Y. D. S., & Melo-Neto, J. S. d. (2023). Social, Genetics and Histopathological Factors Related to Titin (TTN) Gene Mutation and Survival in Women with Ovarian Serous Cystadenocarcinoma: Bioinformatics Analysis. Genes, 14(5), 1092. https://doi.org/10.3390/genes14051092