Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to asmbPLS
2.1.1. Model Building
2.1.2. Prediction
2.2. asmbPLS Extended to asmbPLS-DA
2.2.1. Data Pre-Processing
2.2.2. Decision Rules
2.2.3. Parameter Tuning and Model Selection
2.2.4. Vote Algorithm
2.2.5. Another Classification Strategy
2.3. Technicalities and Implementations
3. Results and Discussion
3.1. Simulation Strategies
3.2. Simulation Results
3.2.1. Feature Selection
3.2.2. Classification Performance
3.2.3. Computation Efficiency
3.3. Application to TCGA Breast Cancer Data
3.3.1. Binary Outcome (Tissue Type)
3.3.2. Multiclass Outcome (Pathologic Stage)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Lê Cao, K.-A.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef]
- Boulesteix, A.-L.; De Bin, R.; Jiang, X.; Fuchs, M. IPF-LASSO: Integrative-penalized regression with penalty factors for prediction based on multi-omics data. Comput. Math. Methods Med. 2017, 2017, 7691937. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Singh, A.; Shannon, C.P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S.J.; Lê Cao, K.-A. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019, 35, 3055–3062. [Google Scholar] [CrossRef]
- Tenenhaus, A.; Philippe, C.; Guillemot, V.; Le Cao, K.-A.; Grill, J.; Frouin, V. Variable selection for generalized canonical correlation analysis. Biostatistics 2014, 15, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Datta, S. asmbPLS: Adaptive Sparse Multi-block Partial Least Square for Survival Prediction using Multi-Omics Data. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalised distance in statistics. In Proceedings of the National Institute of Science of India; National Institute of Sciences of India: Prayagraj, India, 1936; pp. 49–55. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef]
- Maechler, M.; Stahel, W.; Ruckstuhl, A.; Keller, C.; Halvorsen, K.; Hauser, A.; Buser, C. Package ‘Sfsmisc’; ETH Zürich: Zürich, Switzerland, 2022. [Google Scholar]
- Hastie, T.; Qian, J.; Tay, K. An Introduction to Glmnet; Standford University: Stanford, CA, USA, 2021. [Google Scholar]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed]
- RColorBrewer, S.; Liaw, M.A. Package ‘Randomforest’; University of California: Berkeley, CA, USA, 2018. [Google Scholar]
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. Package ‘mass’. Cran R 2013, 538, 113–120. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 1998, 18, 1–8. [Google Scholar]
- Chu, P.-Y.; Tzeng, Y.-D.T.; Tsui, K.-H.; Chu, C.-Y.; Li, C.-J. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging 2022, 14, 2252. [Google Scholar] [CrossRef]
- Manica, G.; Ribeiro, C.F.; De Oliveira, M.A.; Pereira, I.T.; Chequin, A.; Ramos, E.A.; Klassen, L.; Sebastião, A.P.M.; Alvarenga, L.M.; Zanata, S.M. Down regulation of ADAM33 as a predictive biomarker of aggressive breast cancer. Sci. Rep. 2017, 7, 44414. [Google Scholar] [CrossRef]
- Tavousi, N.; Taqizadeh, Q.; Nasiriyan, E.; Tabaeian, P.; Rezaei, M.; Azadeh, M. ADAMTS5 Modulates Breast Cancer Development as a Diagnostic Biomarker and Potential Tumor Suppressor, Regulating by BAIAP2-AS1, VTI1B, CRNDE, and Hsa-miR-135b-3p: Integrated Systems Biology and Experimental Approach. ResearchSquare 2022. Available online: https://www.researchsquare.com/article/rs-1861409/v1 (accessed on 20 April 2023).
- Lo, P.H.Y.; Tanikawa, C.; Katagiri, T.; Nakamura, Y.; Matsuda, K. Identification of novel epigenetically inactivated gene PAMR1 in breast carcinoma. Oncol. Rep. 2015, 33, 267–273. [Google Scholar] [CrossRef]
- Gu, Y.; Qi, X.; Guo, S. Lymphangiogenesis induced by VEGF-C and VEGF-D promotes metastasis and a poor outcome in breast carcinoma: A retrospective study of 61 cases. Clin. Exp. Metastasis 2008, 25, 717–725. [Google Scholar] [CrossRef]
- Kurebayashi, J.; Otsuki, T.; Kunisue, H.; Mikami, Y.; Tanaka, K.; Yamamoto, S.; Sonoo, H. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn. J. Cancer Res. 1999, 90, 977–981. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Y.; Zhang, Z.; Li, Y. Role of miR-10b-5p in the prognosis of breast cancer. PeerJ 2019, 7, e7728. [Google Scholar] [CrossRef]
- Peng, B.; Theng, P.Y.; Le, M.T. Essential functions of miR-125b in cancer. Cell Prolif. 2021, 54, e12913. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-C.; Chen, Y.-F.; Feng, W.; Cai, H.; Mei, Y.; Jiang, Y.-M.; Chen, T.; Xu, K.; Feng, D.-X. Loss of the Opa interacting protein 5 inhibits breast cancer proliferation through miR-139-5p/NOTCH1 pathway. Gene 2017, 603, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, C.; Zhang, J.; Zhang, N.; Li, T.; Fang, J.; Zhang, Y.; Zuo, F.; Tao, Z.; Tang, S. miR-145 inhibits proliferation and migration of breast cancer cells by directly or indirectly regulating TGF-β1 expression. Int. J. Oncol. 2017, 50, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- An, H.J.; Park, M.; Kim, J.; Han, Y.H. miR-5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer. Int. J. Oncol. 2019, 55, 960–972. [Google Scholar] [CrossRef] [PubMed]
- Lulla, A.R.; Slifker, M.J.; Zhou, Y.; Lev, A.; Einarson, M.B.; Dicker, D.T.; El-Deiry, W.S. miR-6883 Family miRNAs Target CDK4/6 to Induce G1 Phase Cell-Cycle Arrest in Colon Cancer CellsmiR-6883 Family Targets CDK4/6 to Suppress Cancer. Cancer Res. 2017, 77, 6902–6913. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-H.; Asmann, Y.W.; Anastasiadis, P.Z. Expression of polarity genes in human cancer. Cancer Inform. 2015, 14, CIN-S18964. [Google Scholar] [CrossRef]
- Han, Y.J.; Ma, S.F.; Yourek, G.; Park, Y.-D.; Garcia, J.G. A transcribed pseudogene of MYLK promotes cell proliferation. FASEB J. 2011, 25, 2305. [Google Scholar] [CrossRef]
- Li, H.; Gao, C.; Liu, L.; Zhuang, J.; Yang, J.; Liu, C.; Zhou, C.; Feng, F.; Sun, C. 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: Based on cox regression and co-expression analysis. Front. Oncol. 2019, 9, 1348. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Hu, T.; Wang, S. Gene expression trend changes in breast cancer populations over two decades: Insights from The Cancer Genome Atlas database. Hereditas 2022, 159, 18. [Google Scholar] [CrossRef]
- Huang, T.; Li, J.; Wang, S.M. Etiological roles of core promoter variation in triple-negative breast cancer. Genes Dis. 2022, 10, 228–238. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, G.-J.; Huang, P.; Chen, S.; Xiao, H.; Zhang, L.; Zou, H. Geiparvarin Inhibits OS Metastasis through Upregulation of ANGPTL4 Expression by Inhibiting miRNA-3912-3p Expression. Evid. Based Complement. Altern. Med. 2022, 2022, 4663684. [Google Scholar] [CrossRef] [PubMed]
- Bergom, C.; Hauser, A.D.; Rymaszewski, A.; Gonyo, P.; Prokop, J.W.; Jennings, B.C.; Lawton, A.J.; Frei, A.; Lorimer, E.L.; Aguilera-Barrantes, I. The tumor-suppressive small GTPase DiRas1 binds the noncanonical guanine nucleotide exchange factor SmgGDS and antagonizes SmgGDS interactions with oncogenic small GTPases. J. Biol. Chem. 2016, 291, 6534–6545. [Google Scholar] [CrossRef]
- Jiang, J. Diaphanous-related formin-3 overexpression inhibits the migration and invasion of triple-negative breast cancer by inhibiting RhoA-GTP expression. Biomed. Pharmacother. 2017, 94, 439–445. [Google Scholar] [CrossRef]
- Suárez-Arroyo, I.J.; Feliz-Mosquea, Y.R.; Pérez-Laspiur, J.; Arju, R.; Giashuddin, S.; Maldonado-Martínez, G.; Cubano, L.A.; Schneider, R.J.; Martínez-Montemayor, M.M. The proteome signature of the inflammatory breast cancer plasma membrane identifies novel molecular markers of disease. Am. J. Cancer Res. 2016, 6, 1720. [Google Scholar]
- Chen, C.-Y.; Yang, C.-Y.; Chen, Y.-C.; Shih, C.-W.; Lo, S.-S.; Lin, C.-H. Decreased expression of stomatin predicts poor prognosis in HER2-positive breast cancer. BMC Cancer 2016, 16, 697. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Zheng, Q.; Li, J. FAM72 serves as a biomarker of poor prognosis in human lung adenocarcinoma. Aging 2021, 13, 8155. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, U.; Alshehri, B.; Khan, A.A.; Bhat, A.A.; Bagga, P.; Wani, N.A.; Mir, M.A. Expression pattern and prognostic significance of chemokines in breast cancer: An integrated bioinformatics analysis. Clin. Breast Cancer 2022, 22, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.; Masood, M.B.E.; Subah, N.U.; Shabbir, M.; Paracha, R.Z.; Rafiq, M. Investigating isoform switching in RHBDF2 and its role in neoplastic growth in breast cancer. PeerJ 2022, 10, e14124. [Google Scholar] [CrossRef]
- Gutierrez-Hartmann, A.; Duval, D.L.; Bradford, A.P. ETS transcription factors in endocrine systems. Trends Endocrinol. Metab. 2007, 18, 150–158. [Google Scholar] [CrossRef]
- Ramasubramanian, A.; Paramasivam, A.; Ramani, P. FASTK family of genes linked to cancer. Bioinformation 2022, 18, 206. [Google Scholar] [CrossRef]
- Lu, Y.-X.; Li, Y.; Fang, D.-D.; Wang, X.-B.; Yang, W.-P.; Chu, Y.-K.; Yang, H. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells. China Biotechnol. 2021, 41, 9–17. [Google Scholar]
- Malagobadan, S.; San Ho, C.; Nagoor, N.H. MicroRNA-6744-5p promotes anoikis in breast cancer and directly targets NAT1 enzyme. Cancer Biol. Med. 2020, 17, 101. [Google Scholar] [CrossRef]
- Shimomura, A.; Shiino, S.; Kawauchi, J.; Takizawa, S.; Sakamoto, H.; Matsuzaki, J.; Ono, M.; Takeshita, F.; Niida, S.; Shimizu, C. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016, 107, 326–334. [Google Scholar] [CrossRef]
- Bocci, M.; Sjölund, J.; Kurzejamska, E.; Lindgren, D.; Marzouka, N.-A.-D.; Bartoschek, M.; Höglund, M.; Pietras, K. Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis 2019, 22, 117–131. [Google Scholar] [CrossRef]
- Uddin, M.N.; Wang, X. Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 2022, 29, 541–561. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tan, S.-H.; Ng, S.; Zhou, J.; Yang, N.-D.; Koo, G.-B.; McMahon, K.-A.; Parton, R.G.; Hill, M.M.; Del Pozo, M.A. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2015, 11, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Isnaldi, E.; Ferraioli, D.; Ferrando, L.; Brohée, S.; Ferrando, F.; Fregatti, P.; Bedognetti, D.; Ballestrero, A.; Zoppoli, G. Schlafen-11 expression is associated with immune signatures and basal-like phenotype in breast cancer. Breast Cancer Res. Treat. 2019, 177, 335–343. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, C.; Buac, D.; Fan, Y.; Zhang, X.; Zuo, J.; Zhang, P.; Zhang, N.; Dong, L.; Dou, Q.P. Organic cadmium complexes as proteasome inhibitors and apoptosis inducers in human breast cancer cells. J. Inorg. Biochem. 2013, 123, 1–10. [Google Scholar] [CrossRef]
- Cox, D.G.; Hankinson, S.E.; Hunter, D.J. Polymorphisms of the AURKA (STK15/Aurora Kinase) gene and breast cancer risk (United States). Cancer Causes Control 2006, 17, 81–83. [Google Scholar] [CrossRef]
- Francis, R.E.; Myatt, S.S.; Krol, J.; Hartman, J.; Peck, B.; McGovern, U.B.; Wang, J.; Guest, S.K.; Filipovic, A.; Gojis, O. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int. J. Oncol. 2009, 35, 57–68. [Google Scholar]
- Yi, Y.W.; You, K.; Bae, E.J.; Kwak, S.-J.; Seong, Y.-S.; Bae, I. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int. J. Oncol. 2015, 47, 122–132. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; He, J.; Liu, Z.; Xu, J.; Sofia, F.Y.; Liu, H.; Yang, J. MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption. Biochimie 2014, 106, 24–32. [Google Scholar] [CrossRef] [PubMed]
Decision Rule | Object | Binary | Multiclass | Definition |
---|---|---|---|---|
Fixed Cutoff | -estimates over 0.5 are assigned to 1, while -estimates under 0.5 are assigned to 0. | |||
Max Y | The sample is assigned to the group with the maximum -estimate. | |||
Euclidean Distance (ED) | The sample is assigned to the group with the shortest ED using or . | |||
Mahalanobis Distance (MD) | The sample is assigned to the group with the shortest MD using . | |||
Principal Components Analysis (PCA) + MD | PCA is applied on The sample is assigned to the group with the shortest MD using the first principal components of . |
Outcome | asmbPLS-DA | sPLS-DA | Glmnet | IPF-Lasso | DIABLO | |
---|---|---|---|---|---|---|
50 | binary | 8.972 | 17.547 | 0.186 | 8.677 | 225.285 |
200 | binary | 10.017 | 18.916 | 0.203 | 9.600 | 223.087 |
1000 | binary | 23.956 | 24.712 | 0.270 | 12.513 | 273.367 |
50 | multiclass | 48.966 | 34.843 | 0.861 | - | 231.654 |
200 | multiclass | 59.892 | 40.006 | 0.961 | - | 244.613 |
1000 | multiclass | 108.989 | 45.270 | 1.079 | - | 267.646 |
Block | Feature | Ranking | Reference | ||||
---|---|---|---|---|---|---|---|
ID | Gene | asmbPLS-DA | sPLS-DA | L1-Regularized Logistic Regression | IPF-Lasso | ||
Gene | ENSG00000165197 | VEGFD | 1 | 1 | - | - | [24,25] |
ENSG00000154736 | ADAMTS5 | 2 | 2 | - | - | [22] | |
ENSG00000154263 | ABCA10 | 3 | 3 | - | - | [20] | |
ENSG00000149451 | ADAM33 | 4 | 4 | - | - | [21] | |
ENSG00000149090 | PAMR1 | 5 | 5 | - | [23] | ||
ENSG00000148204 | CRB2 | - | - | 1 | 3 | [32] | |
ENSG00000228868 | MYLKP1 | - | - | 2 | 2 | [33] | |
ENSG00000229246 | LINC00377 | - | - | 3 | - | [34] | |
ENSG00000197891 | SLC22A12 | - | - | 4 | - | - | |
ENSG00000240654 | C1QTNF9 | - | - | 5 | - | [35] | |
ENSG00000257766 | LOC105369946 | - | - | - | 1 | - | |
ENSG00000226005 | LINC02660 | - | - | - | 4 | - | |
ENSG00000236036 | LINC00445 | - | - | - | 5 | [36] | |
miRNA | hsa-miR-139 | 1 | - | - | - | [28] | |
hsa-miR-145 | 2 | - | - | - | [29] | ||
hsa-miR-10b | 3 | - | - | - | [26] | ||
hsa-miR-125b-1 | 4 | - | - | - | [27] | ||
hsa-miR-125b-2 | 5 | - | - | - | [27] | ||
hsa-miR-6883 * | - | - | - | 1 | - | ||
hsa-miR-5191 * | - | - | - | 2 | - | ||
hsa-miR-6717 | - | - | - | 3 | - | ||
hsa-miR-3912 | - | - | - | 4 | [37] | ||
hsa-miR-548o-2 | - | - | - | 5 | - |
Method | Overall Accuracy | Recall for Normal Group | Recall for Tumor Group | Balanced Accuracy |
---|---|---|---|---|
asmbPLS-DA with fixed cutoff | 0.9852 | 0.9579 | 0.9883 | 0.9731 |
asmbPLS-DA with LDA | 0.9916 | 0.9684 | 0.9941 | 0.9813 |
asmbPLS-DA with RF | 0.9926 | 0.9474 | 0.9977 | 0.9725 |
sPLS-DA | 0.9642 | 0.9474 | 0.9660 | 0.9567 |
L1-regularized logistic regression | 0.9895 | 0.9263 | 0.9965 | 0.9614 |
IPF-Lasso | 0.9905 | 0.9263 | 0.9977 | 0.9620 |
Block | Feature | Ranking | Reference | |||
---|---|---|---|---|---|---|
ID | Gene | asmbPLS-DA | sPLS-DA | L1-Regularized Multinomial Logistic Regression | ||
Gene | ENSG00000176490 | DIRAS1 | 1 | 1 | - | [38] |
ENSG00000148175 | STOM | 2 | - | - | [41] | |
ENSG00000169446 | MMGT1 | 3 | - | - | [40] | |
ENSG00000139734 | DIAPH3 | 4 | - | - | [39] | |
ENSG00000188610 | FAM72B * | 5 | - | - | - | |
ENSG00000129667 | RHBDF2 | - | 2 | - | [44] | |
ENSG00000276409 | CCL14 | - | 3 | - | [43] | |
ENSG00000157554 | ERG * | - | 4 | - | - | |
ENSG00000138399 | FASTKD1 * | - | 5 | - | - | |
ENSG00000250115 | AK3P2 | - | - | 1 | - | |
ENSG00000189372 | - | - | - | 2 | - | |
ENSG00000218233 | NEPNP | - | - | 3 | - | |
ENSG00000267583 | ZNF24TR | 4 | - | |||
ENSG00000260017 | - | 5 | - | |||
miRNA | hsa-miR-6503 | 1 | - | - | - | |
hsa-miR-5047 | 2 | - | - | [47] | ||
hsa-miR-6744 | 3 | - | - | [48] | ||
hsa-miR-4439 | 4 | - | - | - | ||
hsa-miR-4634 | 5 | - | - | [49] | ||
hsa-miR-548ag-1 | - | - | 1 | - |
Method | Overall Accuracy | Recall for Stage I Group | Recall for Stage II Group | Recall for Stage III + Stage IV Group | Balanced Accuracy |
---|---|---|---|---|---|
asmbPLS-DA with Max Y | 0.4708 | 0.2283 | 0.6334 | 0.2489 | 0.3702 |
asmbPLS-DA with LDA | 0.5650 | 0.1811 | 0.8432 | 0.1674 | 0.3972 |
asmbPLS-DA with RF | 0.5733 | 0.0079 | 0.9552 | 0.0498 | 0.3376 |
sPLS-DA | 0.5292 | 0.0000 | 0.8554 | 0.1086 | 0.3213 |
L1-regularized multinomial logistic regression | 0.5805 | 0.0000 | 0.9898 | 0.0045 | 0.3314 |
Block | Feature | Ranking | Reference | |||
---|---|---|---|---|---|---|
ID | Gene | asmbPLS-DA | sPLS-DA | L1-Regularized Multinomial Logistic Regression | ||
Gene | ENSG00000176490 | DIRAS1 | 1 | 2 | - | [38] |
ENSG00000169446 | MMGT1 | 2 | - | - | [40] | |
ENSG00000148175 | STOM | 3 | - | - | [41] | |
ENSG00000188610 | FAM72B * | 4 | - | - | - | |
ENSG00000139734 | DIAPH3 | 5 | - | - | [39] | |
ENSG00000129667 | RHBDF2 | - | 1 | - | [44] | |
ENSG00000176435 | CLEC14A | - | 3 | - | [50] | |
ENSG00000157554 | ERG * | - | 4 | - | - | |
ENSG00000169744 | LDB2 | - | 5 | - | [51] | |
ENSG00000250115 | AK3P2 | - | - | 1 | - | |
ENSG00000213539 | YBX1P6 | - | - | 2 | - | |
ENSG00000189372 | - | - | - | 3 | - | |
ENSG00000265684 | RN7SL378P | - | - | 4 | - | |
ENSG00000272226 | - | - | - | 5 | - | |
miRNA | hsa-miR-6503 | 1 | - | - | - | |
hsa-miR-4439 | 2 | - | - | - | ||
hsa-miR-6744 | 3 | - | 2 | [48] | ||
hsa-miR-548ag-1 | 4 | - | 1 | - | ||
hsa-miR-5047 | 5 | - | - | [47] | ||
Protein | AGID02152 | FOXM1 | 1 | - | - | [56] |
AGID00255 | SLFN11 | 2 | - | 4 | [53] | |
AGID00391 | AURKA | 3 | - | - | [55] | |
AGID00293 | CDK1 | 4 | - | - | [54] | |
AGID00016 | CAV1 | 5 | - | - | [52] | |
AGID00098 | MAPK11 | - | - | 1 | [58] | |
AGID00062 | RPS6 | - | - | 2 | [57] | |
AGID00295 | H2BC3 | - | - | 3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Datta, S. Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data. Genes 2023, 14, 961. https://doi.org/10.3390/genes14050961
Zhang R, Datta S. Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data. Genes. 2023; 14(5):961. https://doi.org/10.3390/genes14050961
Chicago/Turabian StyleZhang, Runzhi, and Susmita Datta. 2023. "Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data" Genes 14, no. 5: 961. https://doi.org/10.3390/genes14050961
APA StyleZhang, R., & Datta, S. (2023). Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data. Genes, 14(5), 961. https://doi.org/10.3390/genes14050961