Transcriptional Dysregulations of Seven Non-Differentially Expressed Genes as Biomarkers of Metastatic Colon Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Preprocessing Procedure
2.3. Design of Experiment
2.4. Functional Characterizations
2.5. Screening lncRNAs with Overlapping Dark Biomarkers
2.6. Detection of mCC Dark Biomarkers
3. Results and Discussion
3.1. Characterization of mCC Dark Biomarkers
3.2. Dark Biomarkers Supported by Fewer Training Samples
3.3. Many lncRNAs Overlap with Dark Biomarkers
3.4. The Protein Level of YTHDC2 Is Associated with mCC
3.5. mCC Association with Dark Biomarkers Based on the Protein–Protein Interaction Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Moghadamyeghaneh, Z.; Hanna, M.H.; Hwang, G.; Mills, S.; Pigazzi, A.; Stamos, M.J.; Carmichael, J.C. Outcomes of colon resection in patients with metastatic colon cancer. Am. J. Surg. 2016, 212, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Ladabaum, U.; Dominitz, J.A.; Kahi, C.; Schoen, R.E. Strategies for Colorectal Cancer Screening. Gastroenterology 2020, 158, 418–432. [Google Scholar] [CrossRef]
- Ebner, D.W.; Kisiel, J.B. Stool-Based Tests for Colorectal Cancer Screening: Performance Benchmarks Lead to High Expected Efficacy. Curr. Gastroenterol. Rep. 2020, 22, 32. [Google Scholar] [CrossRef]
- Fitzpatrick-Lewis, D.; Ali, M.U.; Warren, R.; Kenny, M.; Sherifali, D.; Raina, P. Screening for Colorectal Cancer: A Systematic Review and Meta-Analysis. Clin. Colorectal. Cancer 2016, 15, 298–313. [Google Scholar] [CrossRef]
- Randel, K.R.; Schult, A.L.; Botteri, E.; Hoff, G.; Bretthauer, M.; Ursin, G.; Natvig, E.; Berstad, P.; Jorgensen, A.; Sandvei, P.K.; et al. Colorectal Cancer Screening with Repeated Fecal Immunochemical Test versus Sigmoidoscopy: Baseline Results from a Randomized Trial. Gastroenterology 2021, 160, 1085–1096.e5. [Google Scholar] [CrossRef]
- Vukobrat-Bijedic, Z.; Husic-Selimovic, A.; Sofic, A.; Bijedic, N.; Bjelogrlic, I.; Gogov, B.; Mehmedovic, A. Cancer Antigens (CEA and CA 19-9) as Markers of Advanced Stage of Colorectal Carcinoma. Med. Arch. 2013, 67, 397–401. [Google Scholar] [CrossRef]
- Sreedhar, R.; Jajoo, S.; Yeola, M.; Lamture, Y.; Tote, D. Role of Tumour Markers CEA and CA19-9 in Colorectal Cancer. J. Evolution. Med. Dent. Sci. 2020, 9, 3483–3488. [Google Scholar] [CrossRef]
- Owens, N.D.L.; De Domenico, E.; Gilchrist, M.J. An RNA-Seq Protocol for Differential Expression Analysis. Cold Spring Harb. Protoc. 2019, 2019, pdb-prot098368. [Google Scholar] [CrossRef]
- Tao, Z.; Shi, A.; Li, R.; Wang, Y.; Wang, X.; Zhao, J. Microarray bioinformatics in cancer—A review. J. Buon 2017, 22, 838–843. [Google Scholar] [PubMed]
- Hammad, A.; Elshaer, M.; Tang, X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. Math. Biosci. Eng. 2021, 18, 8997–9015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Fan, C.; Hildesjo, C.; Shen, B.; Sun, X.F. Loss of CHGA Protein as a Potential Biomarker for Colon Cancer Diagnosis: A Study on Biomarker Discovery by Machine Learning and Confirmation by Immunohistochemistry in Colorectal Cancer Tissue Microarrays. Cancers 2022, 14, 2664. [Google Scholar] [CrossRef]
- Qin, D.; Guo, Q.; Wei, R.; Liu, S.; Zhu, S.; Zhang, S.; Min, L. Predict Colon Cancer by Pairing Plasma miRNAs: Establishment of a Normalizer-Free, Cross-Platform Model. Front. Oncol. 2021, 11, 561763. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, M.; Zhu, H.; Xu, J. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene 2017, 604, 33–40. [Google Scholar] [CrossRef]
- Brady, O.A.; Jeong, E.; Martina, J.A.; Pirooznia, M.; Tunc, I.; Puertollano, R. The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. eLife 2018, 7, e40856. [Google Scholar] [CrossRef]
- Pisonero-Vaquero, S.; Soldati, C.; Cesana, M.; Ballabio, A.; Medina, D.L. TFEB Modulates p21/WAF1/CIP1 during the DNA Damage Response. Cells 2020, 9, 1186. [Google Scholar] [CrossRef]
- Yao, H.; Shao, Q.; Shao, Y. Transcription Factor CTCFL Promotes Cell Proliferation, Migration, and Invasion in Gastric Cancer via Activating DPPA2. Comput. Math. Methods Med. 2021, 2021, 9097931. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, X.; Leng, F.; Li, W. Blood-based multi-tissue gene expression inference with Bayesian ridge regression. Bioinformatics 2020, 36, 3788–3794. [Google Scholar] [CrossRef]
- Wang, Y.; Hicks, S.C.; Hansen, K.D. Addressing the mean-correlation relationship in co-expression analysis. PLoS Comput. Biol. 2022, 18, e1009954. [Google Scholar] [CrossRef] [PubMed]
- Zaborowski, A.B.; Walther, D. Determinants of correlated expression of transcription factors and their target genes. Nucleic Acids Res. 2020, 48, 11347–11369. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Wang, Y.; Qiao, Y.; Wang, Y.; Pan, X.; Hu, Z.; Ran, Y.; Fu, X.; Fan, Y.; Huang, L.; et al. Pan-cancer identification of the relationship of metabolism-related differentially expressed transcription regulation with non-differentially expressed target genes via a gated recurrent unit network. Comput. Biol. Med. 2022, 148, 105883. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Fu, M.; Chi, L.; Lin, L.; Cheng, J.; Xue, W.; Long, C.; Jiang, W.; Dong, X.; Sui, J.; et al. Prognostic and predictive value of a pathomics signature in gastric cancer. Nat. Commun. 2022, 13, 6903. [Google Scholar] [CrossRef]
- Marisa, L.; de Reynies, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; et al. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 2013, 10, e1001453. [Google Scholar] [CrossRef]
- Laibe, S.; Lagarde, A.; Ferrari, A.; Monges, G.; Birnbaum, D.; Olschwang, S.; Project, C.O.L. A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III. OMICS 2012, 16, 560–565. [Google Scholar] [CrossRef]
- Birnbaum, D.J.; Laibe, S.; Ferrari, A.; Lagarde, A.; Fabre, A.J.; Monges, G.; Birnbaum, D.; Olschwang, S.; Project, C.O.L. Expression Profiles in Stage II Colon Cancer According to APC Gene Status. Transl. Oncol. 2012, 5, 72–76. [Google Scholar] [CrossRef]
- Hu, H.; Miao, Y.R.; Jia, L.H.; Yu, Q.Y.; Zhang, Q.; Guo, A.Y. AnimalTFDB 3.0: A comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019, 47, D33–D38. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- White, J. PubMed 2.0. Med. Ref. Serv. Q 2020, 39, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Guraya, S.Y. Pattern, Stage, and Time of Recurrent Colorectal Cancer After Curative Surgery. Clin. Colorectal Cancer 2019, 18, e223–e228. [Google Scholar] [CrossRef]
- Ma, L.; Cao, J.; Liu, L.; Du, Q.; Li, Z.; Zou, D.; Bajic, V.B.; Zhang, Z. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019, 47, D128–D134. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, L.; Wang, Y.; Fan, Y.; Liu, S.; Yu, Q.; Huang, L.; Zhou, F. Computational pan-cancer characterization of model-based quantitative transcription regulations dysregulated in regional lymph node metastasis. Comput. Biol. Med. 2021, 135, 104571. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, C.; Jin, L.; Li, C.; Wang, L. The Prognostic Value of m6A RNA Methylation Regulators in Colon Adenocarcinoma. Med. Sci. Monit. 2019, 25, 9435–9445. [Google Scholar] [CrossRef]
- Tanabe, A.; Tanikawa, K.; Tsunetomi, M.; Takai, K.; Ikeda, H.; Konno, J.; Torigoe, T.; Maeda, H.; Kutomi, G.; Okita, K.; et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated. Cancer Lett. 2016, 376, 34–42. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Tao, K.; Wang, G. Circular RNA circLRCH3 Inhibits Proliferation, Migration, and Invasion of Colorectal Cancer Cells Through miRNA-223/LPP Axis. OncoTargets Ther. 2022, 15, 541–554. [Google Scholar] [CrossRef]
- Kim, S.T.; Sohn, I.; Do, I.G.; Jang, J.; Kim, S.H.; Jung, I.H.; Park, J.O.; Park, Y.S.; Talasaz, A.; Lee, J.; et al. Transcriptome analysis of CD133-positive stem cells and prognostic value of survivin in colorectal cancer. Cancer Genom. Proteom. 2014, 11, 259–266. [Google Scholar] [CrossRef]
- Burgos, J.R.; Iresjo, B.M.; Smedh, U. MCG101-induced cancer anorexia-cachexia features altered expression of hypothalamic Nucb2 and Cartpt and increased plasma levels of cocaine- and amphetamine-regulated transcript peptides. Oncol. Rep. 2016, 35, 2425–2430. [Google Scholar] [CrossRef]
- Tanaka, T.; Goto, K.; Iino, M. Sec8 modulates TGF-β induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell. Signal. 2017, 29, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Rattei, T.; Tischler, P.; Gotz, S.; Jehl, M.A.; Hoser, J.; Arnold, R.; Conesa, A.; Mewes, H.W. SIMAP—A comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters. Nucleic Acids Res. 2010, 38, D223–D226. [Google Scholar] [CrossRef] [PubMed]
- Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bairoch, A. UniProtKB/Swiss-Prot. Methods Mol. Biol. 2007, 406, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, H.; Mandava, A.; Aevermann, B.D.; Kollmann, T.R.; Scheuermann, R.H.; Qiu, X.; Qian, Y. FastMix: A versatile data integration pipeline for cell type-specific biomarker inference. Bioinformatics 2022, 38, 4735–4744. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, Z.; Zhu, M.; Li, S.; Dong, S.; Gong, L.; Li, X.; Zhang, S.; Jia, T.; Kong, X.; et al. Single Nucleotide Polymorphisms of EXOC1, BCL2, CCAT2, and CARD8 Genes and Susceptibility to Cervical Cancer in the Northern Chinese Han Population. Front. Oncol. 2022, 12, 878529. [Google Scholar] [CrossRef]
- Wijesiriwardhana, P.; Musolf, A.M.; Bailey-Wilson, J.E.; Wetthasinghe, T.K.; Dissanayake, V.H.W. Genome-wide linkage search for cancer susceptibility loci in a cohort of non BRCA1/2 families in Sri Lanka. BMC Res. Notes 2022, 15, 190. [Google Scholar] [CrossRef]
- Nie, L.; Wu, H.J.; Hsu, J.M.; Chang, S.S.; Labaff, A.M.; Li, C.W.; Wang, Y.; Hsu, J.L.; Hung, M.C. Long non-coding RNAs: Versatile master regulators of gene expression and crucial players in cancer. Am. J. Transl. Res. 2012, 4, 127–150. [Google Scholar]
- Chen, S.; Shen, X. Long noncoding RNAs: Functions and mechanisms in colon cancer. Mol. Cancer 2020, 19, 167. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, W.; Mu, M.; Hu, S.; Niu, C. Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. J. Exp. Clin. Cancer Res. 2020, 39, 196. [Google Scholar] [CrossRef]
- De Almeida, R. Beyond Genome Wide Association Studies in Celiac Disease by Exploring the Non-Coding Genome. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2015. [Google Scholar]
- Wang, W.-J.; Li, H.-T.; Yu, J.-P.; Han, X.-P.; Xu, Z.-P.; Li, Y.-M.; Jiao, Z.-Y.; Liu, H.-B. A competing endogenous RNA network reveals novel potential lncRNA, miRNA, and mRNA biomarkers in the prognosis of human colon adenocarcinoma. J. Surg. Res. 2019, 235, 22–33. [Google Scholar] [CrossRef]
- Xu, D.; Shao, J.; Song, H.; Wang, J. The YTH Domain Family of N6-Methyladenosine “Readers” in the Diagnosis and Prognosis of Colonic Adenocarcinoma. BioMed Res. Int. 2020, 2020, 9502560. [Google Scholar] [CrossRef]
- Meyer, K.D.; Jaffrey, S.R. Rethinking m(6)A Readers, Writers, and Erasers. Annu. Rev. Cell Dev. Biol. 2017, 33, 319–342. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Wu, A.; Peng, Y.; Shu, G.; Yin, G. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer 2019, 18, 176. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N.; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, S.; Li, B.; Han, X.; Meng, B.; Zou, Y.; Chang, S. The N6-methyladenosine reader protein YTHDC2 promotes gastric cancer progression via enhancing YAP mRNA translation. Transl. Oncol. 2022, 16, 101308. [Google Scholar] [CrossRef] [PubMed]
- Keicher, C.; Gambaryan, S.; Schulze, E.; Marcus, K.; Meyer, H.E.; Butt, E. Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase. Biochem. Biophys. Res. Commun. 2004, 324, 308–316. [Google Scholar] [CrossRef]
- Chen, N.; Han, X.; Bai, X.; Yin, B.; Wang, Y. LASP1 induces colorectal cancer proliferation and invasiveness through Hippo signaling and Nanog mediated EMT. Am. J. Transl. Res. 2020, 12, 6490–6500. [Google Scholar]
- Akrida, I.; Bravou, V.; Papadaki, H. The deadly cross-talk between Hippo pathway and epithelial–mesenchymal transition (EMT) in cancer. Mol. Biol. Rep. 2022, 49, 10065–10076. [Google Scholar] [CrossRef]
- Sabouni, E.; Nejad, M.M.; Mojtabavi, S.; Khoshdooz, S.; Mojtabavi, M.; Nadafzadeh, N.; Nikpanjeh, N.; Mirzaei, S.; Hashemi, M.; Aref, A.R.; et al. Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed. Pharmacother. 2023, 160, 114395. [Google Scholar] [CrossRef]
- Altarejos, J.Y.; Goebel, N.; Conkright, M.D.; Inoue, H.; Xie, J.; Arias, C.M.; Sawchenko, P.E.; Montminy, M. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 2008, 14, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, W.; Zhang, X.; Lin, S.; Chen, Z. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-kappaB signal pathway. Int. J. Oncol. 2016, 48, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Narayanankutty, A. PI3K/Akt/mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Curr. Drug Targets 2019, 20, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.C.; Ho, Y.M.; Rudduck, C.; Chin, K.; Kuo, W.L.; Lie, D.K.; Chua, C.L.; Tan, P.H.; Eu, K.W.; Seow-Choen, F.; et al. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer. Oncogene 2009, 28, 4189–4200. [Google Scholar] [CrossRef]
- Ariake, K.; Ohtsuka, H.; Motoi, F.; Douchi, D.; Oikawa, M.; Rikiyama, T.; Fukase, K.; Katayose, Y.; Egawa, S.; Unno, M. GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation. Cancer Lett. 2012, 325, 99–107. [Google Scholar] [CrossRef]
Notation | Accession | Samples | Features | Summary | Literature |
---|---|---|---|---|---|
Train | GSE39582 | 585 | 54,675 | 499 P vs. 61 M | [26] |
Test1 | GSE37892 | 130 | 54,675 | 93 P vs. 37 M | [27] |
Test2 | GSE26906 | 90 | 54,675 | 69 P vs. 21 M | [28] |
Dark Biomarker | Gene | Location | Annotation |
---|---|---|---|
206339_at | CARTPT | Chr5q13.2 | CART prepropeptide |
213077_at | YTHDC2 | Chr5q22.2 | YTH domain containing 2 |
213212_x_at | GOLGA6L4///GOLGA6L5P///GOLGA6L9///LOC102724093 | Chr15q25.2 | golgin A6 family-like 4/// golgin A6 family-like 5, pseudogene/// putative golgin subfamily A member 6-like protein 4-like/// golgin A6 family-like 9 |
222127_s_at | EXOC1 | Chr4q12 | exocyst complex component 1 |
241879_at | LPP | Chr3q27.3-Chr3q28 | LIM domain containing preferred translocation partner in lipoma |
1552315_at | GIMAP1 | Chr7q36.1 | GTPase, IMAP family member 1 |
201334_s_at | ARHGEF12 | Chr11q23.3 | Rho guanine nucleotide exchange factor (GEF) 12 |
Train | Percentage of Primary CC Samples in GSE39582 | |||
---|---|---|---|---|
60% | 50% | 40% | 20% | |
Dark biomarkers | 1552315_at | 206339_at | 209539_at | 213911_s_at |
201334_s_at | 209539_at | 222127_s_at | 218963_s_at | |
206339_at | 222127_s_at | 241879_at | 222127_s_at | |
213077_at | 241879_at | 225575_at | ||
213212_x_at | ||||
222127_s_at | ||||
241879_at |
DB | Gene | Chr | Start | End | S | Sense | Antisense |
---|---|---|---|---|---|---|---|
241879_at | LPP | chr3 | 188153284 | 188890671 | + | 10 | 5 |
222127_s_at | EXOC1 | chr4 | 55853648 | 55905086 | + | 0 | 1 |
1552315_at | GIMAP1 | chr7 | 150716606 | 150724284 | + | 1 | 0 |
213212_x_at | GOLGA6L4 | chr15 | 84235773 | 84245358 | + | 1 | 1 |
213212_x_at | GOLGA6L5P | chr15 | 84507885 | 84516814 | - | 0 | 1 |
213212_x_at | GOLGA6L9 | chr15 | 82429816 | 82439153 | + | 1 | 1 |
213212_x_at | LOC102724093 | chr15 | 84350122 | 84359422 | + | 1 | 0 |
206339_at | CARTPT | chr5 | 71719275 | 71721048 | + | 0 | 0 |
213077_at | YTHDC2 | chr5 | 113513694 | 113595285 | + | 0 | 0 |
201334_s_at | ARHGEF12 | chr11 | 120336413 | 120489937 | + | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Li, X.; Chen, S.; Zhang, G.; Li, K.; Wang, Y.; Duan, M.; Zhou, F.; Liu, H. Transcriptional Dysregulations of Seven Non-Differentially Expressed Genes as Biomarkers of Metastatic Colon Cancer. Genes 2023, 14, 1138. https://doi.org/10.3390/genes14061138
Lv X, Li X, Chen S, Zhang G, Li K, Wang Y, Duan M, Zhou F, Liu H. Transcriptional Dysregulations of Seven Non-Differentially Expressed Genes as Biomarkers of Metastatic Colon Cancer. Genes. 2023; 14(6):1138. https://doi.org/10.3390/genes14061138
Chicago/Turabian StyleLv, Xiaoying, Xue Li, Shihong Chen, Gongyou Zhang, Kewei Li, Yueying Wang, Meiyu Duan, Fengfeng Zhou, and Hongmei Liu. 2023. "Transcriptional Dysregulations of Seven Non-Differentially Expressed Genes as Biomarkers of Metastatic Colon Cancer" Genes 14, no. 6: 1138. https://doi.org/10.3390/genes14061138
APA StyleLv, X., Li, X., Chen, S., Zhang, G., Li, K., Wang, Y., Duan, M., Zhou, F., & Liu, H. (2023). Transcriptional Dysregulations of Seven Non-Differentially Expressed Genes as Biomarkers of Metastatic Colon Cancer. Genes, 14(6), 1138. https://doi.org/10.3390/genes14061138