Whole Genome Resequencing Helps Study Important Traits in Chickens
Abstract
:1. Introduction
2. Overview of Whole Genome Resequencing
2.1. Definition of Whole Genome Resequencing
2.2. Factors Affecting Whole Genome Resequencing
2.2.1. Sequencing Depth and Coverage
2.2.2. Sequencing Platform
2.3. Differences between Whole Genome Resequencing and Whole Genome Sequencing
3. Application of Whole Genome Resequencing in Chickens
3.1. Application in the Qualitative Traits of Chickens
3.1.1. Frizzle Feather
3.1.2. Comb
3.1.3. Feather Color and Other Traits
3.2. Application in the Quantitative Traits of Chickens
3.2.1. Meat Quality
3.2.2. Reproductive Traits
3.2.3. Growth Traits
3.3. Application in Adaptability and Disease Resistance of Chickens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bindari, Y.R.; Gerber, P.F. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 2022, 101, 101612. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Zhou, M.; Zhu, X.; Tan, Y.; Wang, Z.; Gong, J.; Xu, J.; Wen, Y.; Liu, J.; Tu, X.; et al. RNA Sequencing of the Pituitary Gland and Association Analyses Reveal PRKG2 as a Candidate Gene for Growth and Carcass Traits in Chinese Ningdu Yellow Chickens. Front. Vet. Sci. 2022, 9, 892024. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.L.; Park, C.A.; Wu, X.L.; Reecy, J.M. Animal QTLdb: An improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 2013, 41, D871–D879. [Google Scholar] [CrossRef] [PubMed]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95–108. [Google Scholar] [CrossRef]
- Jensen, J.D.; Wong, A.; Aquadro, C.F. Approaches for identifying targets of positive selection. Trends Genet. 2007, 23, 568–577. [Google Scholar] [CrossRef]
- Burt, D.W. Emergence of the chicken as a model organism: Implications for agriculture and biology. Poult. Sci. 2007, 86, 1460–1471. [Google Scholar] [CrossRef]
- Bentley, D.R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 2006, 16, 545–552. [Google Scholar] [CrossRef]
- Bourgeois, Y.X.C.; Warren, B.H. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol. Ecol. 2021, 30, 6036–6071. [Google Scholar] [CrossRef]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, Y.; Wang, S.; Zhang, Q.; Ding, X. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinform. 2019, 20, 556. [Google Scholar] [CrossRef]
- Sanger, F. Sequences, sequences, and sequences. Annu. Rev. Biochem. 1988, 57, 1–28. [Google Scholar] [CrossRef]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Chen, W.; Kalscheuer, V.; Tzschach, A.; Menzel, C.; Ullmann, R.; Schulz, M.H.; Erdogan, F.; Li, N.; Kijas, Z.; Arkesteijn, G.; et al. Mapping translocation breakpoints by next-generation sequencing. Genome Res. 2008, 18, 1143–1149. [Google Scholar] [CrossRef]
- Yang, J.; Ferranti, D.C.; Stern, L.A.; Sanford, C.A.; Huang, J.; Ren, Z.; Qin, L.C.; Hall, A.R. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 2011, 22, 285310. [Google Scholar] [CrossRef]
- Marshall, M.M.; Yang, J.; Hall, A.R. Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam. Scanning 2012, 34, 101–106. [Google Scholar] [CrossRef]
- Korostin, D.; Kulemin, N.; Naumov, V.; Belova, V.; Kwon, D.; Gorbachev, A. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS ONE 2020, 15, e0230301. [Google Scholar] [CrossRef]
- Li, W.; Liu, G.; Zhou, R.; Tang, Z.; Liu, J.; Sun, F. Comparative analysis of the whole genome resequencing data of MGISEQ-2000, HiSeq 2000 and NovaSeq 6000 platforms. J. Chin. Anim. Husb. 2021, 57, 156–162. [Google Scholar]
- Narita, Y.; Kuratani, S. Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. J. Exp. Zool. B Mol. Dev. Evol. 2005, 304, 91–106. [Google Scholar] [CrossRef]
- Chen, B.; Xi, S.; El-Senousey, H.K.; Zhou, M.; Cheng, D.; Chen, K.; Wan, L.; Xiong, T.; Liao, M.; Liu, S.; et al. Deletion in KRT75L4 linked to frizzle feather in Xiushui Yellow Chickens. Anim. Genet. 2022, 53, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Wu, P.; Foley, J.; Foley, A.; McDonald, M.L.; Juan, W.T.; Huang, C.J.; Lai, Y.T.; Lo, W.S.; Chen, C.F.; et al. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet. 2012, 8, e1002748. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Boije, H.; Meadows, J.R.; Bed’hom, B.; Gourichon, D.; Vieaud, A.; Tixier-Boichard, M.; Rubin, C.J.; Imsland, F.; Hallbook, F.; et al. Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet. 2009, 5, e1000512. [Google Scholar] [CrossRef] [PubMed]
- Dorshorst, B.; Harun-Or-Rashid, M.; Bagherpoor, A.J.; Rubin, C.J.; Ashwell, C.; Gourichon, D.; Tixier-Boichard, M.; Hallbook, F.; Andersson, L. A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes. PLoS Genet. 2015, 11, e1004947. [Google Scholar] [CrossRef] [PubMed]
- Imsland, F.; Feng, C.; Boije, H.; Bed’hom, B.; Fillon, V.; Dorshorst, B.; Rubin, C.J.; Liu, R.; Gao, Y.; Gu, X.; et al. The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility. PLoS Genet. 2012, 8, e1002775. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Y.; Li, M.; Che, T.; Tian, S.; Chen, B.; Zhou, X.; Zhang, G.; Gaur, U.; Luo, M.; et al. Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genom. 2019, 20, 263. [Google Scholar] [CrossRef]
- Wang, H.; Wen, J.; Li, H.; Zhu, T.; Zhao, X.; Zhang, J.; Zhang, X.; Tang, C.; Qu, L.; Gemingguli, M. Candidate pigmentation genes related to feather color variation in an indigenous chicken breed revealed by whole genome data. Front. Genet. 2022, 13, 985228. [Google Scholar] [CrossRef]
- Huang, X.; Otecko, N.O.; Peng, M.; Weng, Z.; Li, W.; Chen, J.; Zhong, M.; Zhong, F.; Jin, S.; Geng, Z.; et al. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genom. 2020, 21, 316. [Google Scholar] [CrossRef]
- Guo, Y.; Gu, X.; Sheng, Z.; Wang, Y.; Luo, C.; Liu, R.; Qu, H.; Shu, D.; Wen, J.; Crooijmans, R.P.; et al. A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens. PLoS Genet. 2016, 12, e1006071. [Google Scholar] [CrossRef]
- Yang, S.; Shi, Z.; Ou, X.; Liu, G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J. Genet. 2019, 98, 47. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Megens, H.J.; Bosse, M.; Derks, M.F.L.; Dibbits, B.; Laport, K.; Weigend, S.; Groenen, M.A.M.; Crooijmans, R. Parallel Genetic Origin of Foot Feathering in Birds. Mol. Biol. Evol. 2020, 37, 2465–2476. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, D.; Ma, Z.; Xun, W.; Hou, G.; Shi, L. Genome-wide Association Study of Meat Color Traits in Danzhou Chickens. Chin. J. Anim. Sci. 2022, 58, 117–122. [Google Scholar]
- Tan, X.; Liu, R.; Zhao, D.; He, Z.; Li, W.; Zheng, M.; Li, Q.; Wang, Q.; Liu, D.; Feng, F.; et al. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J. Adv. Res. 2023, in press. [CrossRef]
- Cai, D.; Wang, Z.; Zhou, Z.; Lin, D.; Ju, X.; Nie, Q. Integration of transcriptome sequencing and whole genome resequencing reveal candidate genes in egg production of upright and pendulous-comb chickens. Poult. Sci. 2023, 102, 102504. [Google Scholar] [CrossRef]
- Dong, X.; Li, J.; Zhang, Y.; Han, D.; Hua, G.; Wang, J.; Deng, X.; Wu, C. Genomic Analysis Reveals Pleiotropic Alleles at EDN3 and BMP7 Involved in Chicken Comb Color and Egg Production. Front. Genet. 2019, 10, 612. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, F.; Liu, L.; Zheng, C.W.; Wang, D.H.; Hou, Z.C.; Ning, Z.H. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities. PLoS ONE 2015, 10, e0125890. [Google Scholar] [CrossRef]
- Ren, T.; Li, W.; Liu, D.; Liang, K.; Wang, X.; Li, H.; Jiang, R.; Tian, Y.; Kang, X.; Li, Z. Two insertion/deletion variants in the promoter region of the QPCTL gene are significantly associated with body weight and carcass traits in chickens. Anim. Genet. 2019, 50, 279–282. [Google Scholar] [CrossRef]
- Liu, D.; Han, R.; Wang, X.; Li, W.; Tang, S.; Li, W.; Wang, Y.; Jiang, R.; Yan, F.; Wang, C.; et al. A novel 86-bp indel of the motilin receptor gene is significantly associated with growth and carcass traits in Gushi-Anka F(2) reciprocal cross chickens. Br. Poult. Sci. 2019, 60, 649–658. [Google Scholar] [CrossRef]
- An, B.; Xia, J.; Chang, T.; Wang, X.; Xu, L.; Zhang, L.; Gao, X.; Chen, Y.; Li, J.; Gao, H. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Anim. Genet. 2019, 50, 386–390. [Google Scholar] [CrossRef]
- Wu, Z.; Derks, M.F.L.; Dibbits, B.; Megens, H.J.; Groenen, M.A.M.; Crooijmans, R. A Novel Loss-of-Function Variant in Transmembrane Protein 263 (TMEM263) of Autosomal Dwarfism in Chicken. Front. Genet. 2018, 9, 193. [Google Scholar] [CrossRef]
- Shi, S.; Shao, D.; Yang, L.; Liang, Q.; Han, W.; Xue, Q.; Qu, L.; Leng, L.; Li, Y.; Zhao, X.; et al. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res. 2023, 47, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, B. Genomic Resequencing Reveals Genetic Diversity and Evolutionary Selection Patterns in Chickens. Ph.D. Thesis, Sichuan Agricultural University, Yaan, China, 2018. [Google Scholar]
- Khatri, B.; Hayden, A.M.; Anthony, N.B.; Kong, B.C. Whole Genome Resequencing of Arkansas Progressor and Regressor Line Chickens to Identify SNPs Associated with Tumor Regression. Genes 2018, 9, 512. [Google Scholar] [CrossRef] [PubMed]
- Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014, 20, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Parveen, A.; Tarrant, K.J.; Licknack, T.; Kong, B.C.; Anthony, N.B.; Rhoads, D.D. Whole genome resequencing identifies the CPQ gene as a determinant of ascites syndrome in broilers. PLoS ONE 2018, 13, e0189544. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, Y.Q.; Wang, M.S.; Wang, Z.B.; Zhang, Q.; Shao, Y.; Jiang, R.S.; Wang, S.; Ma, C.D.; Murphy, R.W.; et al. A parallel mechanism underlying frizzle in domestic chickens. J. Mol. Cell Biol. 2018, 10, 589–591. [Google Scholar] [CrossRef]
- Noorai, R.E.; Shankar, V.; Freese, N.H.; Gregorski, C.M.; Chapman, S.C. Discovery of genomic variations by whole-genome resequencing of the North American Araucana chicken. PLoS ONE 2019, 14, e0225834. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Wang, J.; Cui, H.; Chu, H.; Bi, H.; Zhao, G.; Wen, J. Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken. Genes 2020, 11, 497. [Google Scholar] [CrossRef]
- Kong, H.R.; Anthony, N.B.; Rowland, K.C.; Khatri, B.; Kong, B.C. Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens. Asian-Australas. J. Anim. Sci. 2018, 31, 13–18. [Google Scholar] [CrossRef]
- Boschiero, C.; Moreira, G.C.M.; Gheyas, A.A.; Godoy, T.F.; Gasparin, G.; Mariani, P.; Paduan, M.; Cesar, A.S.M.; Ledur, M.C.; Coutinho, L.L. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genom. 2018, 19, 83. [Google Scholar] [CrossRef]
- Wang, Q.; Li, D.; Guo, A.; Li, M.; Li, L.; Zhou, J.; Mishra, S.K.; Li, G.; Duan, Y.; Li, Q. Whole-genome resequencing of Dulong Chicken reveal signatures of selection. Br. Poult. Sci. 2020, 61, 624–631. [Google Scholar] [CrossRef]
- Wang, M.S.; Thakur, M.; Peng, M.S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.J.; Wang, S.; Peters, J.; Otecko, N.O.; et al. 863 genomes reveal the origin and domestication of chicken. Cell Res. 2020, 30, 693–701. [Google Scholar] [CrossRef]
- Wang, M.S.; Li, Y.; Peng, M.S.; Zhong, L.; Wang, Z.J.; Li, Q.Y.; Tu, X.L.; Dong, Y.; Zhu, C.L.; Wang, L.; et al. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Mol. Biol. Evol. 2015, 32, 1880–1889. [Google Scholar] [CrossRef]
- Weng, Z.; Xu, Y.; Zhong, M.; Li, W.; Chen, J.; Zhong, F.; Du, B.; Zhang, B.; Huang, X. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data. Br. Poult. Sci. 2022, 63, 307–315. [Google Scholar] [CrossRef]
- Ren, P.; Deng, F.; Chen, S.; Ran, J.; Li, J.; Yin, L.; Wang, Y.; Yin, H.; Zhu, Q.; Liu, Y. Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F(1) chicken population. Mol. Genet. Genom. 2021, 296, 331–339. [Google Scholar] [CrossRef]
Taxa | Traits | Genes | References |
---|---|---|---|
Qualitative traits | Frizzle feather | KRT75L4, KRT75 | Chen et al. (2022) [21], Ng et al. (2018) [22] |
Comb | SOX5, EOMES, MNR2 | Wright et al. (2009) [23], Dorshorst et al. (2015) [24], Imsland et al. (2012) [25] | |
Feather color | PDSS2, EDN3, MCIR, TUBB1, TUBB3, EGR1, RAB17, MLPH, SOX5, GRM5, BCDO2 | Li et al., (2019) [26], Wang et al., (2022) [27], Huang et al., (2020) [28] | |
Muffs and beard | HOXB8 | Guo et al., (2016) [29] | |
Feathered-leg | FGF3, FGF8, PITX1, TBX5 | Yang et al., (2019) [30], Bortoluzzi et al., (2020) [31] | |
Quantitative traits | Meat quality | CPNE4, NKD1, ACSS3, ACAA2, MYH1, SOX6 | Jiang et al., (2022) [32], Tan et al., (2023) [33] |
Reproductive traits | KIF18A, LIN28, CAMK1D, CLSTN2, MAST2, PIK3C2G, TBC1D1, STK3, ADGRB3, PPARGC1A, BMPT, CACNA1H | Li et al., (2019) [26], Cai et al., (2023) [34], Dong et al., (2019) [35], Zhang et al., (2015) [36] | |
Growth traits | QPCTL, MLNR, FAM19A5, TMEM263, GH1, BMP2 | Ren et al., (2019) [37], Liu et al., (2019) [38], An et al., (2019) [39], Wu et al., (2018) [40] | |
Threshold traits | Adaptability and disease resistance | SLC33A1, TSHR, IFNA, IFNB, IL11RA, IL22RA1, IFNLR1, TRIF, MYH1F, TGFBR2, TGFBR3, NOTCH1, NCOA1, ABCA12, ACP6, ARSB, ARSD, AN010, BANK1, BCR, ARRB1, BMX, FAM208B, LAMB4, IFT140, PIK3C2G, CPQ | Shi et al., (2023) [41], Chen et al., (2018) [42], Khatri et al., (2018) [43], Popovic et al., (2014) [44], Dey et al., (2018) [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Liu, J.; Rao, Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes 2023, 14, 1198. https://doi.org/10.3390/genes14061198
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes. 2023; 14(6):1198. https://doi.org/10.3390/genes14061198
Chicago/Turabian StyleXiong, Xinwei, Jianxiang Liu, and Yousheng Rao. 2023. "Whole Genome Resequencing Helps Study Important Traits in Chickens" Genes 14, no. 6: 1198. https://doi.org/10.3390/genes14061198
APA StyleXiong, X., Liu, J., & Rao, Y. (2023). Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes, 14(6), 1198. https://doi.org/10.3390/genes14061198