Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms
Abstract
:1. Introduction
2. CAD Genetic Background
3. Role of Single-Nucleotide Polymorphisms in CAD
4. Transforming Growth Factor-β1
5. Transforming Growth Factor-β1 Receptor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabel, E.G. Principles of cardiovascular molecular biology and genetics. In Braunwald’s Heart Disease. A Textbook of Cardiovascular Disease; Bonow, R.O., Mann, D.L., Zipes, D.P., Libby, P., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 57–69. [Google Scholar]
- McPherson, R.; Tybjaerg-Hansen, A. Genetics of Coronary Artery Disease. Circ. Res. 2016, 118, 564–578. [Google Scholar] [CrossRef]
- Hanson, M.A.; Fareed, M.T.; Argenio, S.L.; Agunwamba, A.O.; Hanson, T.R. Coronary artery disease. Prim. Care 2013, 40, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gertler, M.M.; Garn, S.M.; White, P.D. Young candidates for coronary heart disease. J. Am. Med. Assoc. 1951, 147, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Murabito, J.M.; Pencina, M.J.; Nam, B.H.; D’Agostino, R.B., Sr.; Wang, T.J.; Lloyd-Jones, D.; Wilson, P.W.F.; O’Donnell, C.J. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA 2005, 294, 3117–3123. [Google Scholar] [CrossRef] [PubMed]
- Marenberg, M.E.; Risch, N.; Berkman, L.F.; Floderus, B.; de Faire, U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med. 1994, 330, 1041–1046. [Google Scholar] [CrossRef]
- Muller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 1938, 95, 75–84, 95. [Google Scholar] [CrossRef]
- Zdravkovic, S.; Wienke, A.; Pedersen, N.L.; Marenberg, M.E.; Yashin, A.I.; De Faire, U. Heritability of death from coronary heart disease: A 36-year follow-up of 20 966 Swedish twins. J. Intern. Med. 2002, 252, 247–254. [Google Scholar] [CrossRef]
- Palomaki, G.E.; Melillo, S.; Bradley, L.A. Association between 9p21 genomic markers and heart disease: A meta-analysis. JAMA 2010, 303, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Jarinova, O.; Stewart, A.F.; Roberts, R.; Wells, G.; Lau, P.; Naing, T.; Buerki, C.; McLean, B.W.; Cook, R.C.; Parker, J.S.; et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1671–1677. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Han, X.; Wittfeldt, A.; Sun, J.; Liu, C.; Wang, X.; Gan, L.-M.; Cao, H.; Liang, Z. Long noncoding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. 2016, 13, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.S.; Schmidt, A.F.; Tragante, V.; McCubrey, R.O.; Holmes, M.V.; Howe, L.J.; Direk, K.; Åkerblom, A.; Leander, K.; Virani, S.S.; et al. Association of Chromosome 9p21 with Subsequent Coronary Heart Disease Events. Circ. Genom. Precis. Med. 2019, 12, e002471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futuyma, D.J. Evolution, 4th ed.; Sinauer Associates, Inc., Publishers: Sunderland, MA, USA, 2017. [Google Scholar]
- McPherson, R. A gene-centric approach to elucidating cardiovascular risk. Circ. Cardiovasc. Genet. 2009, 2, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, C.M.; Knight, J. Introduction to genetic association studies. Cold Spring Harb. Protoc. 2012, 2012, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samani, N.J.; Erdmann, J.; Hall, A.S.; Hengstenberg, C.; Mangino, M.; Mayer, B.; Dixon, R.J.; Meitinger, T.; Braund, P.; Wichmann, H.-E.; et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007, 357, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Helgadottir, A.; Thorleifsson, G.; Manolescu, A.; Gretarsdottir, S.; Blondal, T.; Jonasdottir, A.; Jonasdottir, A.; Sigurdsson, A.; Baker, A.; Palsson, A.; et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 2007, 316, 1491–1493. [Google Scholar] [CrossRef]
- McPherson, R.; Pertsemlidis, A.; Kavaslar, N.; Stewart, A.; Roberts, R.; Cox, D.R.; Hinds, D.A.; Pennacchio, L.A.; Tybjaerg-Hansen, A.; Folsom, A.R.; et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316, 1488–1491. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Willeit, J.; Kronenberg, F.; Xu, Q.; Kiechl, S. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: A population-based, prospective study. J. Am. Coll. Cardiol. 2008, 52, 378–384. [Google Scholar] [CrossRef]
- Helgadottir, A.; Thorleifsson, G.; Magnusson, K.P.; Grétarsdottir, S.; Steinthorsdottir, V.; Manolescu, A.; Jones, G.T.; E Rinkel, G.J.; Blankensteijn, J.D.; Ronkainen, A.; et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 2008, 40, 217–224. [Google Scholar] [CrossRef]
- Smith, J.G.; Melander, O.; Lovkvist, H.; Hedblad, B.; Engstrom, G.; Nilsson, P.; Carlson, J.; Berglund, G.; Norrving, B.; Lindgren, A.; et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: A large-scale genetic association study. Circ. Cardiovasc. Genet. 2009, 2, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.A.; Manolio, T.A. How to interpret a genome-wide association study. JAMA 2008, 299, 1335–1344. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.R.; Moxon, J.V.; Biros, E.; Krishna, S.M.; Golledge, J. Meta-analysis of the association between transforming growth factor-beta polymorphisms and complications of coronary heart disease. PLoS ONE 2012, 7, e37878. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Gong, T.; Yao, M.; Dai, H.; Ren, H.G.; Wang, H. Contribution of the polymorphism rs1800469 of transforming growth factor β in the development of myocardial infarction: Meta-analysis of 5460 cases and 8413 controls (MOOSE-compliant article). Medicine 2019, 98, e15946. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Boer, J.M.; Barsova, R.M.; Favorova, O.; Goel, A.; Müller, M.; Feskens, E.J.; on behalf of PROCARDIS CARDIoGRAM Consortium. TGFB1 genetic polymorphisms and coronary heart disease risk: A meta-analysis. BMC Med. Genet. 2012, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Won, H.H.; Natarajan, P.; Dobbyn, A.; Jordan, D.M.; Roussos, P.; Lage, K.; Raychaudhuri, S.; Stahl, E.; Do, R. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genet. 2015, 11, e1005622. [Google Scholar] [CrossRef] [PubMed]
- Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Ingelsson, E.; Saleheen, D.; Erdmann, J.; Goldstein, B.A. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 2013, 45, 25–33. [Google Scholar] [CrossRef]
- Musunuru, K.; Strong, A.; Frank-Kamenetsky, M.; Lee, N.E.; Ahfeldt, T.; Sachs, K.V.; Li, X.; Li, H.; Kuperwasser, N.; Ruda, V.M.; et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010, 466, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016, 375, 2349–2358. [Google Scholar] [CrossRef] [Green Version]
- Marigorta, U.M.; Navarro, A. High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. 2013, 9, e1003566. [Google Scholar] [CrossRef] [Green Version]
- Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 2011, 43, 339–344. [Google Scholar] [CrossRef]
- Howson, J.M.M.; Zhao, W.; Barnes, D.R.; Ho, W.K.; Young, R.; Paul, D.S.; Waite, L.L.; Freitag, D.F.; Fauman, E.B.; Salfati, E.L.; et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 2017, 49, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017, 49, 1385–1391. [Google Scholar] [CrossRef]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Musunuru, K.; Kathiresan, S. Genetics of Common, Complex Coronary Artery Disease. Cell 2019, 177, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.C.; Boerwinkle, E.; Mosley, T.H.; Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 2006, 354, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Majeed, F.; Penumetcha, R.; Flack, J.M.; Brook, R.D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: A 2 × 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 2015, 65, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Do, R.; Project, N.E.S.; Stitziel, N.O.; Won, H.H.; Jørgensen, A.B.; Duga, S.; Merlini, P.A.; Kiezun, A.; Farrall, M.; Goel, A.; et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2015, 518, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Christiansen, M.K.; Larsen, S.B.; Nyegaard, M.; Neergaard-Petersen, S.; Ajjan, R.; Würtz, M.; Grove, E.L.; Hvas, A.-M.; Jensen, H.K.; Kristensen, S.D. Coronary artery disease-associated genetic variants and biomarkers of inflammation. PLoS ONE 2017, 12, e0180365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, T.; Zhang, B.; Wang, Z.; Joehanes, R.; Zhu, J.; Johnson, A.D.; Ying, S.; Munson, P.J.; Raghavachari, N.; Wang, R.; et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1427–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaan, B.D.; Quadros, A.S.; Sarmento-Leite, R.; De Lucca, G., Jr.; Bender, A.; Bertoluci, M. ‘Correction’: Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease. Cardiovasc. Diabetol. 2007, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, D.J. TGF-beta and atherosclerosis in man. Cardiovasc. Res. 2007, 74, 213–222. [Google Scholar] [CrossRef]
- Pardali, E.; Goumans, M.J.; ten Dijke, P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol. 2010, 20, 556–567. [Google Scholar] [CrossRef]
- Huang, F.; Li, L.; Shen, C.; Wang, H.; Chen, J.; Chen, W.; Chen, X. Association between TGFBR2 gene polymorphisms and congenital heart defects in Han Chinese population. Nutr. Hosp. 2014, 31, 710–715. [Google Scholar] [CrossRef]
- Heldin, C.H.; Miyazono, K.; ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390, 465–471. [Google Scholar] [CrossRef]
- Lijnen, P.J.; Petrov, V.V.; Fagard, R.H. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol. Genet. Metab. 2000, 71, 418–435. [Google Scholar] [CrossRef]
- Bujak, M.; Frangogiannis, N.G. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 2007, 74, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Dewald, O.; Ren, G.; Duerr, G.D.; Zoerlein, M.; Klemm, C.; Gersch, C.; Tincey, S.; Michael, L.H.; Entman, M.L.; Frangogiannis, N.G. Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 2004, 164, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Seoane, J.; Gomis, R.R. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb. Perspect. Biol. 2017, 9, a022277. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Xiao, X.; Liu, W.L.; Song, Y.; Liu, T.J.J.; Li, Y.J.; Zacksenhaus, E.; Hao, X.J.; Ben-David, Y. Coactosin-like protein CLP/Cotl1 suppresses breast cancer growth through activation of IL-24/PERP and inhibition of non-canonical TGFβ signaling. Oncogene 2018, 37, 323–331. [Google Scholar] [CrossRef]
- Suthanthiran, M.; Li, B.; Song, J.O.; Ding, R.; Sharma, V.K.; Schwartz, J.E.; August, P. Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc. Natl. Acad. Sci. USA 2000, 97, 3479–3484. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Wang, Y.; You, B.; Meng, Q.; Zhang, S.; Li, X.; Ge, Z. Transforming Growth Factor β1 (TGF-β1) Appears to Promote Coronary Artery Disease by Upregulating Sphingosine Kinase 1 (SPHK1) and Further Upregulating Its Downstream TIMP-1. Med. Sci. Monit. 2018, 24, 7322–7328. [Google Scholar] [CrossRef] [PubMed]
- Ser, Ö.S.; Çetinkal, G.; Kiliçarslan, O.; Dalgıç, Y.; Batit, S.; Keskin, K.; Özkara, G.; Aslan, E.I.; Aydoğan, H.Y.; Yıldız, A.; et al. The comparison of serum TGF-beta levels and associated polymorphisms in patients with coronary artery ectasia and normal coronary artery. Egypt. Heart J. 2021, 73, 32. [Google Scholar] [CrossRef] [PubMed]
- Barsova, R.M.; Titov, B.V.; Matveeva, N.A.; Favorov, A.V.; Sukhinina, T.S.; Shahnovich, R.M.; Ia, R.M.; Favorova, O.O. Contribution of the TGFB1 Gene to Myocardial Infarction Susceptibility. Acta Nat. 2012, 4, 74–79. [Google Scholar] [CrossRef]
- Brusentsov, D.A.; Nikulina, S.Y.; Shesternya, P.A.; Chernova, A.A. Association of RS1800470 polymorphic variants of the transforming growth factor β1 (TGF-β1) gene with the severity of coronary atherosclerosis. Rus. J. Cardiol. 2018, 23, 43–47. [Google Scholar] [CrossRef]
- Gichkun, O.E.; Shevchenko, O.P.; Kurabekova, R.M.; Mozheiko, N.P.; Shevchenko, A.O. The rs1800470 Polymorphism of the TGFB1 Gene Is Associated with Myocardial Fibrosis in Heart Transplant Recipients. Acta Nat. 2021, 13, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Z.H.; Vittinghoff, E.; Musone, S.L.; Lin, F.; Whiteman, D.; Pawlikowska, L.; Kwok, P.Y.; Olgin, J.E.; Aouizerat, B.E. Association of TGFBR2 polymorphism with risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm 2009, 6, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Stadtlober, N.P.; Flauzino, T.; Santos, L.F.D.R.F.; Iriyoda, T.M.V.; Costa, N.T.; Lozovoy, M.A.B.; Reiche, E.M.V.; Simão, A.N.C. TGFB1 +869 T > C (rs1800470) variant is independently associated with susceptibility, laboratory activity, and TGF-β1 in patients with systemic lupus erythematosus. Autoimmunity 2021, 54, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Paradowska-Gorycka, A.; Roszak, M.; Stypinska, B.; Lutkowska, A.; Walczyk, M.; Olesinska, M.; Wajda, A.; Piotrowski, P.; Puszczewicz, M.; Majewski, D.; et al. IL-6 and TGF-β gene polymorphisms, their serum levels, as well as HLA profile, in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 2019, 37, 963–975. [Google Scholar]
- Tao, H.M.; Chen, G.Z.; Cheng, G.P.; Shan, X.Y. The haplotype of the TGFβ1 gene associated with cerebral infarction in Chinese. Can. J. Neurol. Sci. 2012, 39, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, M.; Fragoso, J.M.; Alvarez-León, E.; Escobedo-de-la-Peña, J.; Valladares, A.; Juárez-Cedillo, T.; Pérez-Méndez, O.; Vargas-Alarcón, G. The TGF-B1 and IL-10 gene polymorphisms are associated with risk of developing silent myocardial ischemia in the diabetic patients. Immunol. Lett. 2013, 156, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, D.; Safranow, K.; Pawlik, A. TGF-β1 and TGFβR2 Gene Polymorphisms in Patients with Unstable Angina. Biomedicines 2023, 11, 155. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, M.; Tang, L.; Zhu, H.; Lu, Y.; Xu, B.; Jiang, J.; Chen, X. Polymorphisms of TGFβ-1 and TGFBR2 in relation to coronary artery disease in a Chinese population. Clin. Biochem. 2016, 49, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, J.M.; Zuñiga-Ramos, J.; Arellano-González, M.; Alvarez-León, E.; Villegas-Torres, B.E.; Cruz-Lagunas, A.; Delgadillo-Rodriguez, H.; Peña-Duque, M.A.; Martínez-Ríos, M.A.; Vargas-Alarcón, G. The T29C (rs1800470) polymorphism of the transforming growth factor-β1 (TGF-β1) gene is associated with restenosis after coronary stenting in Mexican patients. Exp. Mol. Pathol. 2015, 98, 13–17. [Google Scholar] [CrossRef]
- Rao, M.; Guo, D.; Jaber, B.L.; Tighiouart, H.; Pereira, B.J.; Balakrishnan, V.S. Transforming growth factor-beta 1 gene polymorphisms and cardiovascular disease in hemodialysis patients. Kidney Int. 2004, 66, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolova, P.N.; Ivanova, M.I.; Mihailova, S.M.; Myhailova, A.P.; Baltadjieva, D.N.; Simeonov, P.L.; Paskalev, E.K.; Naumova, E.J. Cytokine gene polymorphism in kidney transplantation--impact of TGF-beta 1, TNF-alpha and IL-6 on graft outcome. Transpl. Immunol. 2008, 18, 344–348. [Google Scholar] [CrossRef]
- Cambien, F.; Ricard, S.; Troesch, A.; Mallet, C.; Générénaz, L.; Evans, A.; Arveiler, D.; Luc, G.; Ruidavets, J.-B.; Poirier, O. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l’Infarctus du Myocarde (ECTIM) Study. Hypertension 1996, 28, 881–887. [Google Scholar] [CrossRef]
- Koch, W.; Hoppmann, P.; Mueller, J.C.; Schömig, A.; Kastrati, A. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1114–1119. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhan, L.; Chen, S.; Xu, E. Association of transforming growth factor-β1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: A case-control study. Lipids Health Dis. 2011, 10, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.M.; Shim, K.S.; Yoon, K.L.; Han, M.Y.; Cha, S.H.; Kim, S.K.; Jung, J.H. Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease. Korean J. Pediatr. 2012, 55, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.P.; Zhang, H.Y. Association of single nucleotide polymorphism in TGFBR2 gene with Kawasaki disease and coronary artery lesions. Chin. J. Contemp. Pediatr. 2013, 15, 767–770. [Google Scholar]
- Lin, H.Y.; Wang, X.F.; Ng-Eaton, E.; Weinberg, R.A.; Lodish, H.F. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992, 68, 775–785. [Google Scholar] [CrossRef]
- Mizuguchi, T.; Collod-Beroud, G.; Akiyama, T.; Abifadel, M.; Harada, N.; Morisaki, T.; Allard, D.; Varret, M.; Claustres, M.; Morisaki, H.; et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat. Genet. 2004, 36, 855–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baas, A.F.; Medic, J.; van’t Slot, R.; de Kovel, C.G.; Zhernakova, A.; Geelkerken, R.H.; E Kranendonk, S.; van Sterkenburg, S.M.; E Grobbee, D.; Boll, A.P.; et al. Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur. J. Hum. Genet. 2010, 18, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, N.M.; Upton, M.; Rojas, A.; Washington, M.K.; Lin, L.; Chytil, A.; Sozmen, E.G.; Madison, B.B.; Pozzi, A.; Moon, R.T.; et al. Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res. 2006, 66, 9837–9844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, P.N.; Arteaga-Solis, E.; Baldock, C.; Collod-Béroud, G.; Booms, P.; De Paepe, A.; Dietz, H.C.; Guo, G.; A Handford, P.; Judge, D.P.; et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 2006, 43, 769–787. [Google Scholar] [CrossRef] [Green Version]
ID Number | Alias Name | Allele/Altered Allele | Gene Region | Reference(s) | |
---|---|---|---|---|---|
TGFB1 | rs1800468 | −800G/A | G/A | Promotor | [24,26,71,73] |
rs1800469 | −509C/T | C/T | Promotor | [24,26,63,64,65,66,71,72,73] | |
rs1800471 | 913G/C | G/C | Coding region | [24,26,72,73] | |
rs1800472 | 11929 C/T | C/T | Coding region | [24,26,72,73] | |
rs1800470 | +29T/C | T/C | Coding region | [24,59,60,63,64,65,66,67] | |
rs1800820 | −988C/A | C/A | 5′ region | [71,73] | |
rs1982073 | +10T/C, 868 T/C | T/C | Signal peptide region | [26,72,73] | |
TGFBR2 | rs6785358 | −3779A/G | A/G | 5′ upstream promoter region | [48,66,67] |
rs9838682 | none | A/G | Introgenic | [61,66] | |
rs1495592 | none | C/T | Intron variant | [74,75] | |
rs6550004 | none | A/C | Intron variant | [74] | |
rs795430 | none | C/T | Introgenic | [74] | |
rs764522 | −1444C/G | C/G | 5′ upstream promoter region | [48,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, D.; Bochniak, O.; Luterek-Puszyńska, K.; Puszyński, M.; Pawlik, A. Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms. Genes 2023, 14, 1425. https://doi.org/10.3390/genes14071425
Malinowski D, Bochniak O, Luterek-Puszyńska K, Puszyński M, Pawlik A. Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms. Genes. 2023; 14(7):1425. https://doi.org/10.3390/genes14071425
Chicago/Turabian StyleMalinowski, Damian, Oliwia Bochniak, Katarzyna Luterek-Puszyńska, Michał Puszyński, and Andrzej Pawlik. 2023. "Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms" Genes 14, no. 7: 1425. https://doi.org/10.3390/genes14071425
APA StyleMalinowski, D., Bochniak, O., Luterek-Puszyńska, K., Puszyński, M., & Pawlik, A. (2023). Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms. Genes, 14(7), 1425. https://doi.org/10.3390/genes14071425