Genetic Diversity and Population Structure of Brown Croaker (Miichthys miiuy) in Korea and China Inferred from mtDNA Control Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and mtDNA Analysis
2.3. Data Analysis
3. Results
3.1. Genetic Diversity
3.2. Demographic History
3.3. Population Structure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, I.S.; Choi, Y.; Lee, C.H.; Lee, Y.J.; Kim, B.J.; Kim, J.H. Illustrated Book of Korean Fishes; Kyohak Publishing: Seoul, Republic of Korea, 2005. (In Korean) [Google Scholar]
- Zhang, Q.Y.; Hong, W.S. Status and prospects of artificial propagation and breeding technique of marine fish in China in the 1990s. Mod. Fish. Info. 2000, 15, 3–6. (In Chinese) [Google Scholar]
- Yamada, U.; Shirai, S.; Irie, T.; Tokimura, M.; Deng, S.; Zheng, Y.; Li, C.; Kim, Y.U.; Kim, Y.S. Names and Illustrations of Fishes from the East China Sea and the Yellow Sea; Overseas Fishery Cooperation Foundation: Tokyo, Japan, 1995; p. 288. [Google Scholar]
- Lee, S.H.; Chung, S.; Kim, Y.H.; Yoo, J.T. Maturity and Spawning of Brown croaker Miichthys miiuy in the South-western Water of Korea. Korean J. Ichthyol. 2017, 29, 109–116. [Google Scholar]
- Kim, Y.S.; Han, K.H.; Kang, C.B.; Kim, J.B. Commercial Fishes of the Coastal and Offshore Waters in Korea; Hanguel: Busan, Republic of Korea, 2004. (In Korean) [Google Scholar]
- Li, M.Y.; Zheng, Z.M.; Zhu, J.Q. Bloodstock culture and artificial propagation of Miichthys miiuy (Basilewsky). J. Fish. Sci. China 2005, 24, 32–34. [Google Scholar]
- Yamada, U.; Tokimura, M.; Horikawa, H.; Nakabo, T. Fishes and Fisheries of the East China and Yellow Seas; Tokai University Press: Kanakawa, Japan, 2007; p. 1262. [Google Scholar]
- Shan, X.J.; Cao, L.; Huang, W.; Do, S.Z. Feeding, morphological changes and allometric growth during starvation in miiuy croaker larvae. Environ. Biol. Fish. 2009, 86, 121–130. [Google Scholar] [CrossRef]
- Cheng, J.H.; Liu, M.; Van Nguyen, Q.; Sasaki, K.; Hoshino, K.; Sakai, T.; Santos, M.; Yang, C.H.; Chen, M.H.; Yeh, H.M.; et al. Miichthys miiuy. IUCN Red List Threatened Species; Technical Report T49186498A49224912; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2020; Volume 2020. [Google Scholar] [CrossRef]
- Chikuni, S. The Fish Resources of the Northwest Pacific; FAO: Rome, Italy, 1985; Volume 266. [Google Scholar]
- Peng, Z.L.; Liu, M.H.; Fu, R.B.; Luo, H.Z.; Xia, F.F.; Xu, Z.J. Comparative studies on the molecular genetic diversities between the Zhoushan wild Miichthys miiuy and their early filial generation by AFLP markers. J. Shanghai Ocean. Univ. 2010, 19, 172–177. [Google Scholar]
- Lian, Q.P.; Zhong, J.H.; Lou, B. Histological studies on the development of digestive system in larval and juvenile Miichthys miiuy. J. Shanghai Ocean. Univ. 2007, 16, 212–218. [Google Scholar]
- Tudela, S.; Marin, G.J.; Pla, C. Genetic structure of the European anchovy, Engraulis encrasicolus, in the north-west Mediterranean. J. Exp. Mar. Biol. Ecol. 1999, 234, 95–109. [Google Scholar] [CrossRef]
- Romo, O.V.; Suzuki, M.; Nakajima, S.M.; Taniguchi, N. Genetic evaluation of inter individual relatedness for broodstock management of the rare species barfin flounder Verasper moseri using microsatellite DNA markers. Fish Sci. 2006, 72, 33–39. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Xu, D.; Lou, B.; Guo, Y.; Sun, X.; Guo, B. Genetic population structure of miiuy croaker (Miichthys miiuy) in the Yellow and East China Seas base on mitochondrial COI sequences. Biochem. Syst. Ecol. 2014, 54, 240–246. [Google Scholar] [CrossRef]
- Cheng, Y.; Jin, X.; Shi, G.; Wang, R.; Xu, T. Genetic diversity and population structure of miiuy croaker populations in East China Sea revealed by the mitochondrial DNA control region sequence. Biochem. Syst. Ecol. 2011, 39, 718–724. [Google Scholar] [CrossRef]
- Liu, Z.J.; Cordes, J.F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 2004, 238, 1–37. [Google Scholar] [CrossRef]
- Avise, J.C. Mitochondrial DNA and evolutionary genetics of higher animals. Philos. Trans. R. Soc. London. B Biol. Sci. 1998, 312, 25–342. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Yu, Z.N.; Kong, X.Y.; Guo, T.H.; Jiang, Y.Y.; Zhuang, Z.M.; Jin, X.S. Mitochondrial DNA sequence variation of Japanese anchovy Engraulis japonicus from the Yellow Sea and East China Sea. Fish Sci. 2005, 71, 299–307. [Google Scholar] [CrossRef]
- Bronstein, O.; Kroh, A.; Haring, E. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids. BMC Evol. Biol. 2018, 18, 80. [Google Scholar] [CrossRef]
- Kocher, T.D.; Thomas, W.K.; Meyer, A.; Edwards, S.V.; Paabo, S.; Villablanca, F.X.; Wilson, A.C. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 1989, 86, 6196–6200. [Google Scholar] [CrossRef]
- Meyer, A.; Kocher, T.D.; Basasibwaki, P.; Wilson, A.C. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 1990, 347, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Teacher, A.G.F.; Griffiths, D.J. Hapstar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 2011, 11, 151–153. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.A.; Wilson, R.R. Amphi-Panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of Wshes. Mol. Phylogenet. Evol. 1999, 13, 208–213. [Google Scholar] [CrossRef]
- Sato, A.; Takezaki, N.; Tichy, H.; Figueroa, F.; Mayer, W.E.; Klein, J. Origin and speciation of Haplochromine Wshes in East African crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol. Biol. Evol. 2003, 20, 1448–1462. [Google Scholar] [CrossRef]
- Zhu, D.; Jamieson, B.G.M.; Hugall, A.; Moritz, C. Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow Wshes (Melanotaeniidae). Mol. Biol. Evol. 1994, 11, 672–683. [Google Scholar] [CrossRef]
- Sturmbauer, C.; Baric, S.; Salzburger, W.; Rüber, L.; Verheyen, E. Lake level Xuctuations synchronize genetic divergences of cichlid Wshes in African lakes. Mol. Biol. Evol. 2001, 18, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.C.; Douglas, M.R.; Osinov, A.; Wilson, C.C.; Bernatchez, L. Holarctic phylogeography of arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 2001, 55, 573–586. [Google Scholar] [CrossRef]
- Martin, A.P.; Palumbi, S.R. Body size, metabolic rate, generation time and the molecular clock. Proc. Natl. Acad. Sci. USA 1993, 90, 4087–4091. [Google Scholar] [CrossRef]
- Savolainen, O.; Kuittinen, H. Small population processes. In Forest Conservation Genetics: Principles and Practice; Young, A., Boshier, D., Boyle, T., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 91–100. [Google Scholar]
- Hurt, C.; Hedrick, P. Conservation genetics in aquatic species: General approaches and case studies in fishes. Aquat. Sci. 2004, 66, 402–413. [Google Scholar] [CrossRef]
- Stepien, C.A. Phylogeographical structure of the Dover sole Microstomus pacificus: The larval retention hypothesis and genetic divergence along the deep continental slope of the northeastern Pacific Ocean. Mol. Ecol. 1999, 8, 923–939. [Google Scholar] [CrossRef]
- Xiao, Y.S.; Takahashi, M.; Yanagimoto, T.; Zhang, Y.; Gao, T.X.; Yabe, M.; Sakurai, Y. Genetic variation and population structure of willowy flounder Tanakius kitaharai collected from Aomori, Ibaraki and Niigata in Northern Japan. Afr. J. Biotechnol. 2008, 7, 3836–3844. [Google Scholar]
- Xiao, Y.; Zhang, Y.; Yanagimoto, T.; Li, J.; Xiao, Z.; Gao, T.; Xu, S.; Ma, D. Population genetic structure of the point-head flounder, Cleisthenes herzensteini, in the Northwestern Pacific. Genetica 2011, 139, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Imbrie, J.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; McIntyre, A.; Mix, A.C.; et al. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 1992, 7, 701–738. [Google Scholar] [CrossRef]
- Wang, P.X. Response of Western Pacific marginal seas to glacial cycles: Aleoceangraphic and sedimentological features. Mar. Geol. 1999, 156, 5–39. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Gao, T.; Yanagimoto, T.; Yabe, M.; Sakurai, Y. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fishes. 2009, 85, 303–314. [Google Scholar] [CrossRef]
- Gwak, W.S.; Roy, A.; Nakayama, K. Contrasting Genetic Structures Among Populations of Two Hexagrammid Fish Species in the Northwestern Pacific. Ocean Sci. J. 2021, 56, 275–286. [Google Scholar] [CrossRef]
- Gwak, W.S.; Roy, A. Genetic diversity and population structure of Pacific herring Clupea pallasii in the Northeast Asia inferred from mtDNA marker. Ecol. Genet. Genom 2021, 18, 100076. [Google Scholar] [CrossRef]
- Beheregaray, L.B.; Sunnucks, P. Fine-sclae genetic structure, estuarine colonization and incipient speciation in marine silverside fish Odontesthes argentinensis. Mol. Ecol. 2001, 10, 2849–2866. [Google Scholar] [CrossRef]
- Ming, L.; Tianxiang, G.; Yasunori, S.; Ning, J.; Linlin, Z.; Xiao, D.; Qun, J.; Zhichuang, L. Mitochondrial DNA control region diversity and population structure of Pacific herring (Clupea pallasii) in the Yellow Sea and the Sea of Japan. Chin. J. Oceanol. Limnol. 2011, 29, 317–325. [Google Scholar] [CrossRef]
- Song, N.; Zhang, X.M.; Sun, X.F.; Yanagimoto, T.; Gao, T.X. Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific. J. Fish. Biol. 2010, 77, 388–402. [Google Scholar] [CrossRef]
- Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Palumbi, S.R. Genetic divergence, Reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 1994, 25, 547–572. [Google Scholar] [CrossRef]
- Yamada, H.R.; Yamada, U. Descriptive morphology of juvenile stages of two sciaenids, Miichthys miiuy and Pennahia macrocephalus, from the East China Sea. Ichthyol. Res. 1999, 46, 93–99. [Google Scholar] [CrossRef]
- Hamilton, S.L.; James, R.; Warner, R.R. Postsettlement survival linked to larval life in a marine fish. Proc. Natl. Acad. Sci. USA 2008, 105, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Gao, T.; Ying, Y.; Yanagimoto, T.; Han, Z. Is the Kuroshio Current a strong barrier for the dispersal of the gizzard shad (Konosirus punctatus) in the East China Sea? Mar. Freshw. Res. 2017, 68, 810–820. [Google Scholar] [CrossRef]
- Wei, Q.S.; Yu, Z.G.; Ran, X.B.; Zang, J.Y. Characteristics of the Western Coastal Current of the Yellow Sea and its impacts on material transportation. Adv. Earth Sci. 2011, 26, 145–156. [Google Scholar]
- Liu, Z.L.; Hu, D.X. Preliminary study on the Huanghai Sea coastal current and its relationship with local wind in summer. Acta Oceanol. Sin. 2009, 31, 1–7. [Google Scholar] [CrossRef]
- Zhiqiang, H.; Wei, Z.; Wenbin, Z.; Cungen, Y.; Bonian, S.; Tianxiang, G. A barrier to gene flow in the Asian paddle crab, Charybdis japonica, in the Yellow Sea. ICES J. Mar. Sci. 2015, 72, 1440–1448. [Google Scholar] [CrossRef]
- Xu, D.Y.; Zhao, B.R. Existential proof and numerical study of a mesoscale anticyclonic eddy in the Qingdao-Shidao offshore. Acta Oceanol. Sin. 1999, 21, 18–26. [Google Scholar]
- Hyde, J.R.; Russell, D.V. Population genetic structure in the redefined vermilion rockfish Sebastes miniatus) indicates limited larval dispersal and reveals natural management units. Can. J. Fish. Aquat. Sci. 2009, 66, 1569–1581. [Google Scholar] [CrossRef]
- Gwak, W.S.; Nakayama, K. Genetic variation and population structure of the Pacific cod Gadus macrocephalus in Korean waters revealed by mtDNA and msDNA markers. Fish. Sci. 2011, 77, 945–952. [Google Scholar] [CrossRef]
Country | Sampling Sites (Abbreviation) | Collection Date | N | Nh | S | h (SD) | π (SD) |
---|---|---|---|---|---|---|---|
Korea | Mokpo (MMM) | 2016, Aug., Sep., Oct. | 50 | 38 | 45 | 0.988 ± 0.008 | 0.012 ± 0.006 |
Gyeongnyeolbiyeoldo (MMB) | 2017, Jun. | 45 | 39 | 46 | 0.976 ± 0.013 | 0.016 ± 0.008 | |
China | Lianyungang (MMC) | 2008, Nov. 7 | 20 | 16 | 36 | 0.973 ± 0.025 | 0.017 ± 0.009 |
Pooled | 115 | 87 | 79 | 0.987 ± 0.004 | 0.015 ± 0.008 |
Location | Haplotypes | ||||||||||||
MMM01 | MMM03 | MMM04 | MMM06 | MMM07 | MMM08 | MMM09 | MMM10 | MMM11 | MMM12 | MMM13 | MMM15 | MMM17 | |
MMM | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 6 | 1 |
MMB | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 5 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 8 | 1 |
MMM18 | MMM19 | MMM20 | MMM21 | MMM22 | MMM23 | MMM24 | MMM26 | MMM27 | MMM30 | MMM31 | MMM33 | MMM34 | |
MMM | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
MMB | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 2 | 1 | 1 | 2 | 2 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 |
MMM36 | MMM37 | MMM39 | MMM40 | MMM41 | MMM43 | MMM44 | MMM45 | MMM46 | MMM47 | MMM48 | MMM50 | MMB02 | |
MMM | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
MMB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
MMB03 | MMB05 | MMB06 | MMB07 | MMB08 | MMB09 | MMB10 | MMB11 | MMB15 | MMB17 | MMB18 | MMB19 | MMB20 | |
MMM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MMB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
MMB25 | MMB26 | MMB27 | MMB28 | MMB29 | MMB31 | MMB32 | MMB33 | MMB34 | MMB35 | MMB36 | MMB37 | MMB38 | |
MMM | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MMB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
MMB39 | MMB40 | MMB41 | MMB42 | MMB43 | MMB44 | MMB45 | MMC01 | MMC02 | MMC03 | MMC04 | MMC08 | MMC09 | |
MMM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MMB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
MMC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 1 | 1 |
Total | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 |
MMC11 | MMC13 | MMC15 | MMC16 | MMC19 | MMC20 | MMC24 | MMC37 | MMC39 | |||||
MMM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
MMB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
MMC | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | ||||
Total | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
Neutrality Test | Mismatch Distribution | ||||
---|---|---|---|---|---|
Location | Tajima’s D | Fu’s Fs | SSD | Hri | τ |
MMM | −1.853 * | −25.499 * | 0.001 | 0.013 | 5.277 |
MMB | −1.994 * | −22.012 * | 0.006 | 0.015 | 5.804 |
MMC | −1.524 | −5.487 * | 0.008 | 0.029 | 5.619 |
Pooled | −2.016 * | −24.935 * | 0.001 | 0.009 | 5.468 |
Location | MMM | MMB | MMC |
---|---|---|---|
MMM | 0.086 | 0.000 | |
MMB | 0.010 | 0.000 | |
MMC | 0.163 * | 0.142 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwak, W.-S.; Roy, A. Genetic Diversity and Population Structure of Brown Croaker (Miichthys miiuy) in Korea and China Inferred from mtDNA Control Region. Genes 2023, 14, 1692. https://doi.org/10.3390/genes14091692
Gwak W-S, Roy A. Genetic Diversity and Population Structure of Brown Croaker (Miichthys miiuy) in Korea and China Inferred from mtDNA Control Region. Genes. 2023; 14(9):1692. https://doi.org/10.3390/genes14091692
Chicago/Turabian StyleGwak, Woo-Seok, and Animesh Roy. 2023. "Genetic Diversity and Population Structure of Brown Croaker (Miichthys miiuy) in Korea and China Inferred from mtDNA Control Region" Genes 14, no. 9: 1692. https://doi.org/10.3390/genes14091692
APA StyleGwak, W.-S., & Roy, A. (2023). Genetic Diversity and Population Structure of Brown Croaker (Miichthys miiuy) in Korea and China Inferred from mtDNA Control Region. Genes, 14(9), 1692. https://doi.org/10.3390/genes14091692