House Mice in the Atlantic Region: Genetic Signals of Their Human Transport
Abstract
:1. Introduction
2. Materials and Methods
2.1. New Samples
2.2. Sequence Analysis
3. Results and Discussion
3.1. Clade Occurrence over Broad Geographic Areas
3.2. Geographic Occurrence of Specific Haplotypes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hulme-Beaman, A.; Dobney, K.; Cucchi, T.; Searle, J.B. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 2016, 31, 633–645. [Google Scholar] [PubMed]
- Ravinet, M.; Elgvin, T.O.; Trier, C.; Aliabadian, M.; Gavrilov, A.; Sætre, G.P. Signatures of human-commensalism in the house sparrow genome. Proc. R. Soc. B 2018, 285, 20181246. [Google Scholar]
- Kristensen, B.R. Rethinking domestication pathways in the context of anthrodependency. In More-than-One Health: Human, Animals and the Environment Post-COVID; Braverman, I., Ed.; Routledge: London, UK, 2022; pp. 193–208. [Google Scholar]
- Fawthrop, R.; Cerca, J.; Pacheco, G.; Sætre, G.P.; Scordato, E.S.; Ravinet, M.; Rowe, M. Understanding human-commensalism through an ecological and evolutionary framework. Trends Ecol. Evol. 2024. [Google Scholar] [CrossRef]
- Munshi-South, J.; Garcia, J.A.; Orton, D.; Phifer-Rixey, M. The evolutionary history of wild and domestic brown rats (Rattus norvegicus). Science 2024, 385, 1292–1297. [Google Scholar] [PubMed]
- Puckett, E.E.; Park, J.; Combs, M.; Blum, M.J.; Bryant, J.E.; Caccone, A.; Costa, F.; Deinum, E.E.; Esther, A.; Himsworth, C.G.; et al. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proc. R. Soc. B 2016, 283, 20161762. [Google Scholar] [PubMed]
- Puckett, E.E.; Orton, D.; Munshi-South, J. Commensal rats and humans: Integrating rodent phylogeography and zooarchaeology to highlight connections between human societies. Bioessays 2020, 42, 1900160. [Google Scholar]
- Knapp, M.; Collins, C.J.; Matisoo-Smith, E. Ancient invaders: How paleogenetic tools help to identify and understand biological invasions of the past. Ann. Rev. Ecol. Evol. Syst. 2021, 52, 111–129. [Google Scholar]
- Li, Y.; Fujiwara, K.; Osada, N.; Kawai, Y.; Takada, T.; Kryukov, A.P.; Abe, K.; Yonekawa, H.; Shiroishi, T.; Moriwaki, K.; et al. House mouse Mus musculus dispersal in East Eurasia inferred from 98 newly determined complete mitochondrial genome sequences. Heredity 2021, 126, 132–147. [Google Scholar]
- Allen, M.S.; Kahn, J.G. Advances in East Polynesian zooarchaeology: Special Issue introduction, review (2016–2024), and assessment. Arch. Oceania 2024, 59, 157–175. [Google Scholar]
- Greig, K.; Walter, R. Reflections on the commensal model and future directions in Polynesian interaction studies. Arch. Oceania 2024, 59, 298–307. [Google Scholar]
- Osada, N.; Suzuki, H. Human impacts on the evolution of rats and mice in East Asia. In Phylogeographic History of Plants and Animals Coexisting with Humans in Asia; Osada, N., Kumugai, M., Suzuki, H., Endo, M., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 7–25. [Google Scholar]
- Sage, R.D. Wild mice. In The Mouse in Biomedical Research; Foster, H.L., Small, J.D., Fox, J.G., Eds.; Academic Press: New York, NY, USA, 1981; Volume 1, pp. 39–90. [Google Scholar]
- Boursot, P.; Auffray, J.-C.; Britton-Davidian, J.; Bonhomme, F. The evolution of house mice. Ann. Rev. Ecol. Syst. 1993, 24, 119–152. [Google Scholar] [CrossRef]
- Silver, L.M. Mouse Genetics: Concepts and Applications; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Boursot, P.; Din, W.; Anand, R.; Darviche, D.; Dod, B.V.; von Deimling, F.; Talwar, G.P.; Bonhomme, F. Origin and radiation of the house mouse: Mitochondrial DNA phylogeny. J. Evol. Biol. 1996, 9, 391–415. [Google Scholar] [CrossRef]
- Singleton, G.R.; Krebs, C.J. The secret world of wild mice. In The Mouse in Biomedical Research, 2nd ed.; Fox, J.G., Davisson, M.T., Quimby, F.W., Barthold, S.W., Newcomer, C.E., Smith, A.L., Eds.; Academic Press: Burlington, MA, USA, 2007; pp. 25–51. [Google Scholar]
- Tchernov, E. Of mice and men. Biological markers for long-term sedentism: A reply. Paléorient 1991, 17, 153–160. [Google Scholar] [CrossRef]
- Weissbrod, L.; Marshall, F.B.; Valla, F.R.; Khalaily, H.; Bar-Oz, G.; Auffray, J.-C.; Vigne, J.-D.; Cucchi, T. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 15,000 y ago. Proc. Natl Acad. Sci. USA 2017, 114, 4099–4104. [Google Scholar] [CrossRef] [PubMed]
- Gross, M. Of mice and men, cats and grains. Curr. Biol. 2020, 30, R783–R786. [Google Scholar] [CrossRef]
- Hussain, S.T.; Baumann, C. The human side of biodiversity: Coevolution of the human niche, palaeo-synanthropy and ecosystem complexity in the deep human past. Phil. Trans. R. Soc. B. 2024, 379, 20230021. [Google Scholar] [CrossRef]
- Cucchi, T.; Auffray, J.-C.; Vigne, J.-D. First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: A zooarchaeological revision of subfossil occurrences. Biol. J. Linn. Soc. 2005, 84, 429–445. [Google Scholar]
- Cucchi, T.; Vigne, J.-D.; Auffray, J.-C. Synanthropy and dispersal in the Near East and Europe: Zooarchaeological review and perspectives. In Evolution of the House Mouse; Macholán, M., Baird, S.J.E., Munclinger, P., Piálek, J., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 65–93. [Google Scholar]
- Berry, R.J.; Jakobson, M.E.; Peters, J. The house mice of the Faroe Islands: A study in microdifferentiation. J. Zool. 1978, 185, 73–92. [Google Scholar] [CrossRef]
- Bonner, W.N. Introduced mammals. In Antarctic Ecology; Laws, R.M., Ed.; Academic Press: London, UK, 1984; Volume 1, pp. 235–278. [Google Scholar]
- Tichy, H.; Zaleska-Rutczynska, Z.; O’Huigin, C.; Figueroa, F.; Klein, J. Origin of the North American house mouse. Folia Biol. 1994, 40, 483–496. [Google Scholar]
- Förster, D.W.; Gündüz, İ.; Nunes, A.C.; Gabriel, S.; Ramalhinho, M.G.; Mathias, M.L.; Britton-Davidian, J.; Searle, J.B. Molecular insights into the colonization and chromosomal diversification of Madeiran house mice. Mol. Ecol. 2009, 18, 4477–4494. [Google Scholar] [CrossRef]
- Jones, E.P.; Jensen, J.-K.; Magnussen, E.; Gregersen, N.; Hansen, H.S.; Searle, J.B. A molecular characterization of the charismatic Faroe house mouse. Biol. J. Linn. Soc. 2011, 102, 471–482. [Google Scholar] [CrossRef]
- Jones, E.P.; Skirnisson, K.; McGovern, T.H.; Gilbert, M.T.P.; Willerslev, E.; Searle, J.B. Fellow travellers: A concordance of colonization patterns between mice and men in the North Atlantic region. BMC Evol. Biol. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.I.; Mathias, M.L.; Searle, J.B. Of mice and the ‘Age of Discovery’: The complex history of colonization of the Azorean archipelago by the house mouse (Mus musculus) as revealed by mitochondrial DNA variation. J. Evol. Biol. 2015, 28, 130–145. [Google Scholar] [CrossRef] [PubMed]
- Prager, E.M.; Sage, R.D.; Gyllensten, U.; Thomas, W.K.; Hübner, R.; Jones, C.S.; Noble, L.; Searle, J.B.; Wilson, A.C. Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Biol. J. Linn. Soc. 1993, 50, 85–122. [Google Scholar] [CrossRef]
- Prager, E.M.; Tichy, H.; Sage, R.D. Mitochondrial DNA sequence variation in the eastern house mouse, Mus musculus: Comparison with other house mice and report of a 75-bp tandem repeat. Genetics 1996, 143, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Prager, E.M.; Orrego, C.; Sage, R.D. Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen. Genetics 1998, 150, 835–861. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, O.; Hardouin, E.A.; Hambleton, E.; Monteith, J.; Randall, C.; Richards, M.B.; Edwards, C.J.; Stewart, J.R. Ancient mitochondrial DNA connects house mice in the British Isles to trade across Europe over three millennia. BMC Ecol. Evol. 2021, 21, 9. [Google Scholar] [CrossRef]
- Veale, A.J.; King, C.M.; Johnson, W.; Shepherd, L. The introduction and diversity of commensal rodents in 19th century Australasia. Biol. Invasions 2022, 24, 1299–1310. [Google Scholar] [CrossRef]
- Hardouin, E.A.; Chapuis, J.L.; Stevens, M.I.; Van Vuuren, J.B.; Quillfeldt, P.; Scavetta, R.J.; Teschke, M.; Tautz, D. House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evol. Biol. 2010, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Guénet, J.L.; Bonhomme, F. Wild mice: An ever-increasing contribution to a popular mammalian model. Trends Genet. 2003, 19, 24–31. [Google Scholar] [CrossRef]
- Berry, R.J.; Scriven, P.N. The house mouse: A model and motor for evolutionary understanding. Biol. J. Linn. Soc. 2005, 84, 335–347. [Google Scholar] [CrossRef]
- Boell, L.; Tautz, D. Micro-evolutionary divergence patterns of mandible shapes in wild house mouse (Mus musculus) populations. BMC Evol. Biol. 2011, 11, 306. [Google Scholar] [CrossRef]
- Phifer-Rixey, M.; Bonhomme, F.; Boursot, P.; Churchill, G.A.; Piálek, J.; Tucker, P.K.; Nachman, M.W. Adaptive evolution and effective population size in wild house mice. Mol. Biol. Evol. 2012, 29, 2949–2955. [Google Scholar] [CrossRef] [PubMed]
- Phifer-Rixey, M.; Nachman, M.W. The natural history of model organisms: Insights into mammalian biology from the wild house mouse Mus musculus. eLife 2015, 4, e05959. [Google Scholar] [CrossRef] [PubMed]
- Ferris, K.G.; Chavez, A.S.; Suzuki, T.A.; Beckman, E.J.; Phifer-Rixey, M.; Bi, K.; Nachman, M.W. The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genet. 2021, 17, e1009495. [Google Scholar] [CrossRef] [PubMed]
- Wilches, R.; Beluch, W.H.; McConnell, E.; Tautz, D.; Chan, Y.F. Independent evolution toward larger body size in the distinctive Faroe Island mice. G3 2021, 11, jkaa051. [Google Scholar] [CrossRef]
- Harr, B.; Karakoc, E.; Neme, R.; Teschke, M.; Pfeifle, C.; Pezer, Ž.; Babiker, H.; Linnenbrink, M.; Montero, I.; Scavetta, R.; et al. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Sci. Data 2016, 3, 160075. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kawai, Y.; Takada, T.; Shiroishi, T.; Saitou, N.; Suzuki, H.; Osada, N. Insights into Mus musculus population structure across Eurasia revealed by whole-genome analysis. Genome Biol. Evol. 2022, 14, evac068. [Google Scholar] [CrossRef] [PubMed]
- Agwamba, K.D.; Nachman, M.W. The demographic history of house mice (Mus musculus domesticus) in eastern North America. G3 2023, 13, jkac332. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Kubo, S.; Endo, T.; Takada, T.; Shiroishi, T.; Suzuki, H.; Osada, N. Inference of selective forces on house mouse genomes during secondary contact in East Asia. Genome Res. 2024, 34, 366–375. [Google Scholar] [CrossRef]
- Bibb, M.J.; Van Etten, R.A.; Wright, C.T.; Walberg, M.W.; Clayton, D.A. Sequence and gene organization of mouse mitochondrial DNA. Cell 1981, 26, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 97/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Crandall, K.A. Phylogeny estimation and hypothesis testing using maximum likelihood. Ann. Rev. Ecol. Syst. 1997, 28, 437–466. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Butel, P. The Atlantic; Routledge: New York, NY, USA, 1999. [Google Scholar]
- Buisseret, D. (Ed.) The Oxford Companion to World Exploration; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Kupperman, K.O. The Atlantic in World History; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Bonhomme, F.; Orth, A.; Cucchi, T.; Rajabi-Maham, H.; Catalan, J.; Boursot, P.; Auffray, J.-C.; Britton-Davidian, J. Genetic differentiation of the house mouse around the Mediterranean basin: Matrilineal footprints of early and late colonization. Proc. R. Soc. B 2011, 278, 1034–1043. [Google Scholar] [CrossRef]
- Dytham, C. Choosing and Using Statistics: A Biologist’s Guide; Blackwell: Oxford, UK, 1999. [Google Scholar]
- Jones, E.P.; Jóhannesdóttir, F.; Gündüz, İ.; Richards, M.B.; Searle, J.B. The expansion of the house mouse into north-western Europe. J. Zool. 2011, 283, 257–268. [Google Scholar] [CrossRef]
- Gyllensten, U.; Wilson, A.C. Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genet. Res. 1987, 49, 25–29. [Google Scholar] [CrossRef]
- Jaarola, M.; Tegelström, H.; Fredga, K. Colonization history in Fennoscandian rodents. Biol. J. Linn. Soc. 1999, 68, 113–127. [Google Scholar] [CrossRef]
- Jones, E.P.; van der Kooji, J.; Solheim, R.; Searle, J.B. Norwegian house mice (Mus musculus musculus/domesticus): Distributions, routes of colonization and patterns of hybridization. Mol. Ecol. 2010, 19, 5252–5264. [Google Scholar] [CrossRef] [PubMed]
- Rando, J.C.; Pieper, H.; Alcover, J.A. Radiocarbon evidence for the presence of mice on Madeira Island (North Atlantic) one millennium ago. Proc. R. Soc. B 2014, 281, 20133126. [Google Scholar] [CrossRef] [PubMed]
- Raposeiro, P.M.; Hernández, A.; Pla-Rabes, S.; Gonçalves, V.; Bao, R.; Sáez, A.; Shanahan, T.; Benavente, M.; de Boer, E.J.; Richter, N.; et al. Climate change facilitated the early colonization of the Azores Archipelago during medieval times. Proc. Natl. Acad. Sci. USA 2021, 118, e2108236118. [Google Scholar] [CrossRef]
- Taylor, A. Colonial America: A Very Short Introduction; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Roberts, D.F. The demography of Tristan da Cunha. Pop. Stud. 1971, 25, 465–479. [Google Scholar] [CrossRef]
- Beintema, A.J. The Remotest Island: Solving the Riddle of the Flightless Moorhen of Tristan da Cunha; New Generation Publishing: London, UK, 2022. [Google Scholar]
- Christopher, A.J. Colonial Africa; Routledge: London, UK, 1984. [Google Scholar]
- van der Linden, M. The Acquisition of Africa (1870–1914): The Nature of International Law; Brill: Boston, MA, USA, 2016. [Google Scholar]
- Linnenbrink, M.; Wang, J.; Hardouin, E.A.; Künzel, S.; Metzler, D.; Baines, J.F. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 2013, 22, 1904–1916. [Google Scholar] [CrossRef]
- Gray, M.M.; Wegmann, D.; Haasl, R.J.; White, M.A.; Gabriel, S.I.; Searle, J.B.; Cuthbert, R.J.; Ryan, P.G.; Payseur, B.A. Demographic history of a recent invasion of house mice on the isolated Island of Gough. Mol. Ecol. 2014, 23, 1923–1939. [Google Scholar] [CrossRef] [PubMed]
- Lippens, C.; Estoup, A.; Hima, M.K.; Loiseau, A.; Tatard, C.; Dalecky, A.; Bâ, K.; Kane, M.; Diallo, M.; Sow, A.; et al. Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: A legacy of colonial and contemporary times. Heredity 2017, 119, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.P.; Hughes, J.J.; Didion, J.P.; Jolley, W.J.; Campbell, K.J.; Threadgill, D.W.; Bonhomme, F.; Searle, J.B.; de Villena, F.P.M. Population structure and inbreeding in wild house mice (Mus musculus) at different geographic scales. Heredity 2022, 129, 183–194. [Google Scholar] [CrossRef]
- Lockhart, J.; Schwartz, S.B. Early Latin America: A History of Colonial Spanish America and Brazil; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Burkholder, M.A.; Johnson, L.L. Colonial Latin America, 10th ed.; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Garcia, A.C. New ports of the New World: Angra, Funchal, Port Royal and Bridgetown. Int. J. Marit. Hist. 2017, 29, 155–174. [Google Scholar] [CrossRef]
- Adler, G.H.; Levins, R. The island syndrome in rodent populations. Quart. Rev. Biol. 1994, 69, 473–490. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.C.; Ringler, D.; Trombini, A.; Le Corre, M. The island syndrome and population dynamics of introduced rats. Oecologia 2011, 167, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.I.; Stevens, M.I.; Mathias, M.D.; Searle, J.B. Of mice and ‘convicts’: Origin of the Australian house mouse, Mus musculus. PLoS ONE 2011, 6, e28622. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.W.; Alexander, A.; Hauber, M.E.; Murphy, E.C.; Clout, M.N. Does genetic variation among invasive house mice in New Zealand affect eradication success? N. Z. J. Ecol. 2013, 37, 18–25. [Google Scholar]
- King, C.M. How genetics, history and geography limit potential explanations of invasions by house mice Mus musculus in New Zealand. Biol. Invasions 2016, 18, 1533–1550. [Google Scholar] [CrossRef]
- King, C.; Alexander, A.; Chubb, T.; Cursons, R.; MacKay, J.; McCormick, H.; Murphy, E.; Veale, A.; Zhang, H. What can the geographic distribution of mtDNA haplotypes tell us about the invasion of New Zealand by house mice Mus musculus? Biol. Invasions 2016, 18, 1551–1565. [Google Scholar] [CrossRef]
- Veale, A.J.; Russell, J.C.; King, C.M. The genomic ancestry, landscape genetics and invasion history of introduced mice in New Zealand. R. Soc. Open Sci. 2018, 5, 170879. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.J.; Koenders, A.; Burnham, Q.; Lohr, M.T. Mus musculus populations in Western Australia lack VKORC1 mutations conferring resistance to first generation anticoagulant rodenticides: Implications for conservation and biosecurity. PLoS ONE 2020, 15, e0236234. [Google Scholar] [CrossRef]
- King, C.; Veale, A. New light on the introduction of ship-borne commensal rats and mice in Aotearoa New Zealand, 1790s–1830s. Int. Rev. Envir. Hist. 2022, 8, 75–102. [Google Scholar] [CrossRef]
- Clifford, M. The Falkland Islands and their dependencies. Geog. J. 1955, 121, 405–415. [Google Scholar] [CrossRef]
- Gustafson, L.S. The Sovereignty Dispute over the Falkland (Malvinas) Islands; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Wace, N.M.; Holdgate, M.W. Man and Nature in the Tristan da Cunha Islands; IUCN monograph no. 6; International Union for Conservation of Nature and Natural Resources: Morges, Switzerland, 1976. [Google Scholar]
- Ljung, K.; Björck, S.; Hammarlund, D.; Barnekow, L. Late Holocene multi-proxy records of environmental change on the South Atlantic island Tristan da Cunha. Palaeogeog. Palaeoclimat. Palaeoecol. 2006, 241, 539–560. [Google Scholar] [CrossRef]
- Logan, F.D. The Vikings in History, 3rd ed.; Routledge: New York, NY, USA, 2002. [Google Scholar]
- Macgregor, L. The Norse Settlement of Shetland and Faroe, c. 800–c. 1500: A Comparative Study. Ph.D. Thesis, University of St Andrews, St Andrews, UK, 1987. [Google Scholar]
- Ebenesersdóttir, S.S.; Sandoval-Velasco, M.; Gunnarsdóttir, E.D.; Jagadeesan, A.; Guðmundsdóttir, V.B.; Thordardóttir, E.L.; Einarsdóttir, M.S.; Moore, K.H.S.; Sigurðsson, A.; Magnúsdóttir, D.N.; et al. Ancient genomes from Iceland reveal the making of a human population. Science 2018, 360, 1028–1032. [Google Scholar] [CrossRef]
- Plomp, K.A.; Gestsdóttir, H.; Dobney, K.; Price, N.; Collard, M. The composition of the founding population of Iceland: A new perspective from 3D analyses of basicranial shape. PLoS ONE 2021, 16, e0246059. [Google Scholar] [CrossRef] [PubMed]
- Jóhannesson, G.T. The History of Iceland; Greenwood: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Jahan, N.A.; Lindsey, L.L.; Larsen, P.A. The role of peridomestic rodents as reservoirs for zoonotic foodborne pathogens. Vector-Borne Zoonotic Dis. 2021, 21, 133–148. [Google Scholar] [CrossRef]
- Li, J.; Huang, E.; Wu, Y.; Zhu, C.; Li, W.; Ai, L.; Xie, Q.; Tian, Z.; Zhong, W.; Sun, G.; et al. Population structure, dispersion patterns and genetic diversity of two major invasive and commensal zoonotic disease hosts (Rattus norvegicus and Rattus tanezumi) from the southeastern coast of China. Front. Genet. 2024, 14, 1174584. [Google Scholar] [CrossRef] [PubMed]
- Searle, J.B.; Jones, C.S.; Gündüz, İ.; Scascitelli, M.; Jones, E.P.; Herman, J.S.; Rambau, R.V.; Noble, L.R.; Berry, R.J.; Giménez, M.D.; et al. Of mice and (Viking?) men: Phylogeography of British and Irish house mice. Proc. R. Soc. B 2009, 276, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Martínková, N.; Searle, J.B. Amplification success rate of DNA from museum skin collections: A case study of stoats from 18 museums. Mol. Ecol. Notes 2006, 6, 1014–1017. [Google Scholar] [CrossRef]
- Belheouane, M.; Vallier, M.; Čepić, A.; Chung, C.J.; Ibrahim, S.; Baines, J.F. Assessing similarities and disparities in the skin microbiota between wild and laboratory populations of house mice. ISME J. 2020, 14, 2367–2380. [Google Scholar] [CrossRef]
- Gündüz, İ.; Auffray, J.-C.; Britton-Davidian, J.; Catalan, J.; Ganem, G.; Ramalhinho, M.G.; Mathias, M.L.; Searle, J.B. Molecular studies on the colonization of the Madeiran archipelago by house mice. Mol. Ecol. 2001, 10, 2023–2029. [Google Scholar] [CrossRef]
- Gündüz, İ.; Tez, C.; Malikov, V.; Vaziri, A.; Polyakov, A.V.; Searle, J.B. Mitochondrial DNA and chromosomal studies of wild mice (Mus) from Turkey and Iran. Heredity 2000, 84, 458–467. [Google Scholar] [CrossRef]
- Hauffe, H.C.; Panithanarak, T.; Dallas, J.F.; Piálek, J.; Gündüz, İ.; Searle, J.B. The tobacco mouse and its relatives: A “tail” of coat colors, chromosomes, hybridization and speciation. Cytogenet. Genome Res. 2004, 105, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Ihle, S.; Ravaoarimanana, I.; Thomas, M.; Tautz, D. An analysis of signatures of selective sweeps in natural populations of the house mouse. Mol. Biol. Evol. 2006, 23, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.P.; Searle, J.B. Differing Y chromosome versus mitochondrial DNA ancestry, phylogeography, and introgression in the house mouse. Biol. J. Linn. Soc. 2015, 115, 348–361. [Google Scholar] [CrossRef]
- Nachman, M.W.; Boyer, S.N.; Searle, J.B.; Aquadro, C.F. Mitochondrial DNA variation and the evolution of Robertsonian chromosomal races of house mice, Mus domesticus. Genetics 1994, 136, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Rajabi-Maham, H.A.; Orth, A.; Bonhomme, F. Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe. Mol. Ecol. 2008, 17, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; Ledevin, R.; Pisanu, B.; Chapuis, J.L.; Quillfeldt, P.; Hardouin, E.A. Divergent in shape and convergent in function: Adaptive evolution of the mandible in Sub-Antarctic mice. Evolution 2018, 72, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.D.; Prager, E.M.; Tichy, H.; Wilson, A.C. Mitochondrial DNA variation in house mice, Mus domesticus (Rutty). Biol. J. Linn. Soc. 1990, 41, 105–123. [Google Scholar] [CrossRef]
- Storz, J.F.; Baze, M.; Waite, J.L.; Hoffmann, F.G.; Opazo, J.C.; Hayes, J.P. Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 2007, 177, 481–500. [Google Scholar] [CrossRef]
- Suzuki, H.; Nunome, M.; Kinoshita, G.; Aplin, K.P.; Vogel, P.; Kryukov, A.P.; Jin, M.L.; Han, S.H.; Maryanto, I.; Tsuchiya, K.; et al. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 2013, 111, 375–390. [Google Scholar] [CrossRef]
(a) | |||||
Number of haplotypes per clade | |||||
B | C | D | E | F | |
Source areas | |||||
Northern Europe | 0 | 76 | 49 | 62 | 36 |
Southern Europe | 31 | 40 | 23 | 1 | 2 |
Source/colonized areas | |||||
Scandinavia | 0 | 2 | 29 | 5 | 7 |
Macaronesia | 10 | 18 | 62 | 1 | 9 |
Colonized areas | |||||
North Atlantic | 0 | 0 | 6 | 5 | 4 |
North America | 1 | 4 | 1 | 14 | 2 |
Latin America | 11 | 4 | 4 | 2 | 6 |
Caribbean | 0 | 2 | 0 | 1 | 1 |
South Atlantic | 0 | 3 | 7 | 6 | 7 |
Sub-Saharan Africa | 0 | 14 | 1 | 14 | 3 |
(b) | |||||
Number of individuals per clade | |||||
B | C | D | E | F | |
Source areas | |||||
Northern Europe | 0 | 274 | 288 | 334 | 185 |
Southern Europe | 84 | 135 | 39 | 1 | 7 |
Source/colonized areas | |||||
Scandinavia | 0 | 2 | 135 | 23 | 47 |
Macaronesia | 47 | 135 | 272 | 1 | 56 |
Colonized areas | |||||
North Atlantic | 0 | 0 | 60 | 20 | 54 |
North America | 1 | 32 | 5 | 100 | 3 |
Latin America | 38 | 7 | 7 | 11 | 17 |
Caribbean | 0 | 15 | 0 | 5 | 4 |
South Atlantic | 0 | 33 | 22 | 86 | 9 |
Sub-Saharan Africa | 0 | 28 | 2 | 57 | 4 |
(a) | ||||
Comparisons Among Potential Source Areas (p-Values) | ||||
Southern Europe | Scandinavia | Macaronesia | ||
Northern Europe | 1.75 × 10−22 | 1.17 × 10−8 | 2.64 × 10−18 | |
Southern Europe | 7.53 × 10−13 | 6.12 × 10−9 | ||
Scandinavia | 0.000816 | |||
Comparisons of Colonized Areas and Potential Source Areas (p-Values) | ||||
Northern Europe | Southern Europe | Scandinavia | Macaronesia | |
Scandinavia | 1.17 × 10−8 | 7.53 × 10−13 | - | 0.000816 |
Macaronesia | 2.64 × 10−18 | 6.12 × 10−9 | 0.000816 | - |
North Atlantic | 0.0288 | 1.00 × 10−10 | 0.0260 | 0.106 |
North America | 0.000418 | 6.59 × 10−15 | 1.96 × 10−7 | 8.91 × 10−16 |
Latin America | 5.19 × 10−21 | 6.01 × 10−5 | 6.53 × 10−7 | 1.52 × 10−6 |
South Atlantic | 0.112 | 3.62 × 10−11 | 0.0150 | 1.12 × 10−6 |
Sub-Saharan Africa | 0.0288 | 8.38 × 10−12 | 9.44 × 10−9 | 6.19 × 10−14 |
(b) | ||||
Comparisons Among Potential Source Areas (p-Values) | ||||
Southern Europe | Scandinavia | Macaronesia | ||
Northern Europe | 3.19 × 10−109 | 2.87 × 10−33 | 6.67 × 10−71 | |
Southern Europe | 1.40 × 10−66 | 6.86 × 10−35 | ||
Scandinavia | 3.66 × 10−29 | |||
Comparisons of Colonized Areas and Potential Source Areas (p-Values) | ||||
Northern Europe | Southern Europe | Scandinavia | Macaronesia | |
Scandinavia | 2.87 × 10−33 | 1.40 × 10−66 | - | 3.66 × 10−29 |
Macaronesia | 6.67 × 10−71 | 6.86 × 10−35 | 3.66 × 10−29 | - |
North Atlantic | 1.57 × 10−19 | 1.86 × 10−55 | 0.000354 | 1.83 × 10−36 |
North America | 1.72 × 10−22 | 5.02 × 10−54 | 8.91 × 10−50 | 2.34 × 10−94 |
Latin America | 1.97 × 10−115 | 1.18 × 10−19 | 8.72 × 10−31 | 3.21 × 10−37 |
Caribbean | 0.000209 | 6.53 × 10−5 | 3.59 × 10−28 | 1.29 × 10−9 |
South Atlantic | 7.62 × 10−10 | 3.72 × 10−46 | 8.75 × 10−36 | 3.48 × 10−73 |
Sub-Saharan Africa | 6.90 × 10−12 | 1.66 × 10−43 | 6.40 × 10−40 | 1.36 × 10−78 |
Proportion of all multi-location haplotypes found in at least one country/island system in one of the four geographic source areas that are also found in each of the areas named in the rows of the table | ||||
Northern Europe (N = 37) | Southern Europe (N = 25) | Scandinavia (N = 18) | Macaronesia (N = 25) | |
Northern Europe | 0.49 | 0.56 | 0.78 | 0.52 |
Southern Europe | 0.38 | 0.28 | 0.33 | 0.48 |
Scandinavia | 0.35 | 0.24 | 0.22 | 0.36 |
Macaronesia | 0.35 | 0.48 | 0.50 | 0.20 |
North Atlantic | 0.14 | 0.08 | 0.28 | 0.20 |
North America | 0.19 | 0.08 | 0.17 | 0.04 |
Latin America | 0.19 | 0.12 | 0.22 | 0.28 |
Caribbean | 0.11 | 0.12 | 0.11 | 0.08 |
South Atlantic | 0.11 | 0.08 | 0.06 | 0.24 |
Sub-Saharan Africa | 0.22 | 0.16 | 0.17 | 0.16 |
(a) | |||||||||||||||
Haplotype | dom2 | dom650 | dom651 | dom652 | dom162 | dom180 | dom802 | ||||||||
Clade | E | F | F | F | E | E | C | ||||||||
Northern Europe | DE(7), FR(11), GB(18), NL(1) | DE(1) | DE(1) | ||||||||||||
Southern Europe | PT(1) | ||||||||||||||
Scandinavia | DK(1), NO(6) | ||||||||||||||
Macaronesia | AP(1) | AP(13) | AP(21) | AP(8) | |||||||||||
North America | CA(18), US(44) | ||||||||||||||
Latin America | AR(1), BO(9) | BR(1) | |||||||||||||
South Atlantic | FK(29),XG(50) | FK(1) | FK(3) | FK(1) | TA(30) | ||||||||||
Sub-Saharan Africa | CM(33), SN(1), ZA(3) | CM(2) | CM(1) | ||||||||||||
(b) | |||||||||||||||
Haplotype | dom25 | dom26 | dom27 | dom32 | dom33 | dom42 | dom163 | dom6 | |||||||
Clade | D | D | D | D | D | D | D | F | |||||||
Northern Europe | DE(57), FR(2), GB(1) | DE(11), FR(2) | DE(8), FR(1) | DE(1) | DE(2) | DE(38), FR(1), GB(2), IE(1) | DE(2), NL(1) | FR(14), GB(12), IE(17) | |||||||
Southern Europe | ES(2) | ES(6) | |||||||||||||
Scandinavia | DK(14), NO(24), SE(16) | NO(3), SE(15) | NO(1) | SE(2) | NO(5) | SE(4) | NO(20) | ||||||||
Macaronesia | XM(25) | AP(5), XM(17) | XM(8) | XM(5) | XM(2) | XM(2) | |||||||||
North Atlantic | FO(43), GL(2) | FO(1) | FO(7) | IS(40) | |||||||||||
Latin America | BR(3), HN(1) | AR(4) | |||||||||||||
Caribbean | GP(4) | ||||||||||||||
Sub-Saharan Africa | SN(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, S.I.; Hughes, J.J.; Herman, J.S.; Baines, J.F.; Giménez, M.D.; Gray, M.M.; Hardouin, E.A.; Payseur, B.A.; Ryan, P.G.; Sánchez-Chardi, A.; et al. House Mice in the Atlantic Region: Genetic Signals of Their Human Transport. Genes 2024, 15, 1645. https://doi.org/10.3390/genes15121645
Gabriel SI, Hughes JJ, Herman JS, Baines JF, Giménez MD, Gray MM, Hardouin EA, Payseur BA, Ryan PG, Sánchez-Chardi A, et al. House Mice in the Atlantic Region: Genetic Signals of Their Human Transport. Genes. 2024; 15(12):1645. https://doi.org/10.3390/genes15121645
Chicago/Turabian StyleGabriel, Sofia I., Jonathan J. Hughes, Jeremy S. Herman, John F. Baines, Mabel D. Giménez, Melissa M. Gray, Emilie A. Hardouin, Bret A. Payseur, Peter G. Ryan, Alejandro Sánchez-Chardi, and et al. 2024. "House Mice in the Atlantic Region: Genetic Signals of Their Human Transport" Genes 15, no. 12: 1645. https://doi.org/10.3390/genes15121645
APA StyleGabriel, S. I., Hughes, J. J., Herman, J. S., Baines, J. F., Giménez, M. D., Gray, M. M., Hardouin, E. A., Payseur, B. A., Ryan, P. G., Sánchez-Chardi, A., Ulrich, R. G., Mathias, M. d. L., & Searle, J. B. (2024). House Mice in the Atlantic Region: Genetic Signals of Their Human Transport. Genes, 15(12), 1645. https://doi.org/10.3390/genes15121645