The ENG/VEGFα Pathway Is Likely Affected by a Nonsense Variant of Endoglin (ENG)/CD105, Causing Hereditary Hemorrhagic Telangiectasia Type 1 (HHT1) in a Chinese Family
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information and Sample Collection
2.2. WES Analysis
2.3. Sanger Verification and Co-Segregation Analysis
2.4. Expression Analysis for ENG in Different Tissues and Different Types of Blood Cells in H. sapiens
2.5. Western Blotting
2.6. Correlation Analysis
3. Results
3.1. Patient Clinical Information and Pedigree Recruitment
3.2. Identifying a Heterozygous Variant for ENG: c.G1169A:p. Trp390Ter of the Proband with HHT1
3.3. Segregation for ENG: c.G1169A in the M666 Pedigree
3.4. Wild-Type ENG Expression in Tissues and EMG Mutant Form in the Proband
3.5. ENG Variant May Affect TGFβ/VEGFα Signaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guttmacher, A.E.; Marchuk, D.A.; White, R.I., Jr. Hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 1995, 333, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Guthrie, K.S.; Latif, M.A.; Weiss, C.R. Genetic counseling and testing for hereditary hemorrhagic telangiectasia. Clin. Genet. 2022, 101, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Parrot, A.; Barral, M.; Amiot, X.; Bachmeyer, C.; Wagner, I.; Eyries, M.; Alamowitch, S.; Ederhy, S.; Epaud, R.; Dupuis-Girod, S.; et al. Hereditary hemorrhagic telangiectasia. Rev. Mal. Respir. 2023, 40, 391–405. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.A.; Grogg, K.M.; Johnson, D.W.; Gallione, C.J.; Baldwin, M.A.; Jackson, C.E.; Helmbold, E.A.; Markel, D.S.; McKinnon, W.C.; Murrell, J.; et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 1994, 8, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.W.; Berg, J.N.; Baldwin, M.A.; Gallione, C.J.; Marondel, I.; Yoon, S.J.; Stenzel, T.T.; Speer, M.; Pericak-Vance, M.A.; Diamond, A.; et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 1996, 13, 189–195. [Google Scholar] [CrossRef]
- Gallione, C.; Aylsworth, A.S.; Beis, J.; Berk, T.; Bernhardt, B.; Clark, R.D.; Clericuzio, C.; Danesino, C.; Drautz, J.; Fahl, J.; et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am. J. Med. Genet. A 2010, 152A, 333–339. [Google Scholar] [CrossRef]
- Wooderchak-Donahue, W.L.; McDonald, J.; O’Fallon, B.; Upton, P.D.; Li, W.; Roman, B.L.; Young, S.; Plant, P.; Fulop, G.T.; Langa, C.; et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 2013, 93, 530–537. [Google Scholar] [CrossRef]
- Ma, L.; Peng, X.; Gong, Q. A GDF2 missense mutation potentially involved in the pathogenesis of hereditary hemorrhagic telangiectasia: A case report. J. Int. Med. Res. 2023, 51, 3000605231159545. [Google Scholar] [CrossRef]
- Rius, C.; Smith, J.D.; Almendro, N.; Langa, C.; Botella, L.M.; Marchuk, D.A.; Vary, C.P.; Bernabeu, C. Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood 1998, 92, 4677–4690. [Google Scholar] [CrossRef]
- Li, T.; Luo, N.; Fu, J.; Du, J.; Liu, Z.; Tan, Q.; Zheng, M.; He, J.; Cheng, J.; Li, D.; et al. Natural Product Cordycepin (CD) Inhibition for NRP1/CD304 Expression and Possibly SARS-CoV-2 Susceptibility Prevention on Cancers. Microorganisms 2023, 11, 2953. [Google Scholar] [CrossRef]
- Sharma, S.; Ehrlich, M.; Zhang, M.; Blobe, G.C.; Henis, Y.I. NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting. Commun. Biol. 2024, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, B.G.; Kim, Y.H.; Lee, S.J.; Lee, Y.J.; Oh, S.P. BMP10 functions independently from BMP9 for the development of a proper arteriovenous network. Angiogenesis 2023, 26, 167–186. [Google Scholar] [CrossRef]
- Lawera, A.; Tong, Z.; Thorikay, M.; Redgrave, R.E.; Cai, J.; van Dinther, M.; Morrell, N.W.; Afink, G.B.; Charnock-Jones, D.S.; Arthur, H.M.; et al. Role of soluble endoglin in BMP9 signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 17800–17808. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, L.A.; Sanz-Rodriguez, F.; Blanco, F.J.; Bernabeu, C.; Botella, L.M. Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-β signaling pathway. Clin. Med. Res. 2006, 4, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Bellon, T.; Corbi, A.; Lastres, P.; Cales, C.; Cebrian, M.; Vera, S.; Cheifetz, S.; Massague, J.; Letarte, M.; Bernabeu, C. Identification and expression of two forms of the human transforming growth factor-β-binding protein endoglin with distinct cytoplasmic regions. Eur. J. Immunol. 1993, 23, 2340–2345. [Google Scholar] [CrossRef] [PubMed]
- Shovlin, C.L.; Guttmacher, A.E.; Buscarini, E.; Faughnan, M.E.; Hyland, R.H.; Westermann, C.J.; Kjeldsen, A.D.; Plauchu, H. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am. J. Med. Genet. 2000, 91, 66–67. [Google Scholar] [CrossRef]
- Garg, N.; Khunger, M.; Gupta, A.; Kumar, N. Optimal management of hereditary hemorrhagic telangiectasia. J. Blood Med. 2014, 5, 191–206. [Google Scholar] [PubMed]
- Aguilera, C.; Padro-Miquel, A.; Esteve-Garcia, A.; Cerda, P.; Torres-Iglesias, R.; Llecha, N.; Riera-Mestre, A. Improving Hereditary Hemorrhagic Telangiectasia Molecular Diagnosis: A Referral Center Experience. Genes 2023, 14, 772. [Google Scholar] [CrossRef]
- Alkhalid, Y.; Darji, Z.; Shenkar, R.; Clancy, M.; Dyamenahalli, U.; Awad, I.A.; The Multidisciplinary Faculty of the HHTCoEaUoCM. Multidisciplinary coordinated care of hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu disease). Vasc. Med. 2023, 28, 153–165. [Google Scholar] [CrossRef]
- Giordano, P.; Lenato, G.M.; Suppressa, P.; Lastella, P.; Dicuonzo, F.; Chiumarulo, L.; Sangerardi, M.; Piccarreta, P.; Valerio, R.; Scardapane, A.; et al. Hereditary hemorrhagic telangiectasia: Arteriovenous malformations in children. J. Pediatr. 2013, 163, 179–186.e171–173. [Google Scholar] [CrossRef]
- Pahl, K.S.; Choudhury, A.; Wusik, K.; Hammill, A.; White, A.; Henderson, K.; Pollak, J.; Kasthuri, R.S. Applicability of the Curacao Criteria for the Diagnosis of Hereditary Hemorrhagic Telangiectasia in the Pediatric Population. J. Pediatr. 2018, 197, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.R.; Eng, C.M. Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. N. Engl. J. Med. 2018, 379, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Fu, J.; Mobasher-Jannat, A.; Jadidi, K.; Li, Y.; Chen, R.; Imani, S.; Cheng, J. Novel pathogenic CERKL variant in Iranian familial with inherited retinal dystrophies: Genotype-phenotype correlation. 3 Biotech 2023, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, L.; Lu, G. Relationship between microdeletion on Y chromosome and patients with idiopathic azoospermia and severe oligozoospermia in the Chinese. Chin. Med. J. 2002, 115, 72–75. [Google Scholar] [PubMed]
- Wang, F.; Wang, H.; Tuan, H.F.; Nguyen, D.H.; Sun, V.; Keser, V.; Bowne, S.J.; Sullivan, L.S.; Luo, H.; Zhao, L.; et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: Identification of a novel genotype-phenotype correlation and clinical refinements. Hum. Genet. 2014, 133, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Xu, M.; Chen, X.; Sheng, X.; Yuan, Z.; Liu, Y.; Li, H.; Sun, Z.; Li, H.; Yang, L.; et al. CEP78 is mutated in a distinct type of Usher syndrome. J. Med. Genet. 2017, 54, 190–195. [Google Scholar] [CrossRef]
- Xiang, Q.; Cao, Y.; Xu, H.; Guo, Y.; Yang, Z.; Xu, L.; Yuan, L.; Deng, H. Identification of novel pathogenic ABCA4 variants in a Han Chinese family with Stargardt disease. Biosci. Rep. 2019, 39, e18004. [Google Scholar] [CrossRef] [PubMed]
- Koenekoop, R.K.; Wang, H.; Majewski, J.; Wang, X.; Lopez, I.; Ren, H.; Chen, Y.; Li, Y.; Fishman, G.A.; Genead, M.; et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat. Genet. 2012, 44, 1035–1039. [Google Scholar] [CrossRef]
- Cheng, J.; Li, T.; Tan, Q.; Fu, J.; Zhang, L.; Yang, L.; Zhou, B.; Yang, L.; Fu, S.; Linehan, A.G.; et al. Novel, pathogenic insertion variant of GSDME associates with autosomal dominant hearing loss in a large Chinese pedigree. J. Cell. Mol. Med. 2024, 28, e18004. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjostedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, 2507. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liao, L.; Balaji, K.S.; Wei, C.; Kim, J.; Peng, J. Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2021, 40, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, X.; Zhang, L.; He, J.; Chen, X.; Liu, S.; Fu, J.; Fu, S.; Chen, H.; Fu, J.; et al. COVID-19 disease and malignant cancers: The impact for the furin gene expression in susceptibility to SARS-CoV-2. Int. J. Biol. Sci. 2021, 17, 3954–3967. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.T. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 2017, 19, 1105–1117. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Fontalba, A.; Fernandez, L.A.; Garcia-Alegria, E.; Albinana, V.; Garrido-Martin, E.M.; Blanco, F.J.; Zarrabeitia, R.; Perez-Molino, A.; Bernabeu-Herrero, M.E.; Ojeda, M.L.; et al. Mutation study of Spanish patients with hereditary hemorrhagic telangiectasia. BMC Med. Genet. 2008, 9, 75. [Google Scholar] [CrossRef]
- Gallione, C.J.; Klaus, D.J.; Yeh, E.Y.; Stenzel, T.T.; Xue, Y.; Anthony, K.B.; McAllister, K.A.; Baldwin, M.A.; Berg, J.N.; Lux, A.; et al. Mutation and expression analysis of the endoglin gene in hereditary hemorrhagic telangiectasia reveals null alleles. Hum. Mutat. 1998, 11, 286–294. [Google Scholar] [CrossRef]
- Lebrin, F.; Mummery, C.L. Endoglin-mediated vascular remodeling: Mechanisms underlying hereditary hemorrhagic telangiectasia. Trends Cardiovasc. Med. 2008, 18, 25–32. [Google Scholar] [CrossRef]
- Pece, N.; Vera, S.; Cymerman, U.; White, R.I., Jr.; Wrana, J.L.; Letarte, M. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. J. Clin. Investig. 1997, 100, 2568–2579. [Google Scholar] [CrossRef]
- Soukarieh, O.; Tillet, E.; Proust, C.; Dupont, C.; Jaspard-Vinassa, B.; Soubrier, F.; Goyenvalle, A.; Eyries, M.; Tregouet, D.A. uAUG creating variants in the 5’UTR of ENG causing Hereditary Hemorrhagic Telangiectasia. NPJ Genom. Med. 2023, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Lee, Y.C.; Rogers, J.T.; Perkett, E.A.; Moyers, J.P.; Rodriguez, R.M.; Light, R.W. Vascular endothelial growth factor level correlates with transforming growth factor-β isoform levels in pleural effusions. Chest 2000, 118, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, A.; Liso, A.; D’Ovidio, F.; Mestice, A.; Pasculli, G.; Gallitelli, M.; Rizzi, R.; Specchia, G.; Sabba, C. Vascular endothelial growth factor serum levels are elevated in patients with hereditary hemorrhagic telangiectasia. Acta Haematol. 2003, 110, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Sadick, H.; Riedel, F.; Naim, R.; Goessler, U.; Hormann, K.; Hafner, M.; Lux, A. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica 2005, 90, 818–828. [Google Scholar] [PubMed]
- Virk, Z.M.; Richardson, T.L.; Al-Samkari, H. Antithrombotic therapy for atrial fibrillation in hereditary hemorrhagic telangiectasia. J. Thromb. Thrombolysis 2023, 56, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Virk, Z.M.; Zhang, E.; Rodriguez-Lopez, J.; Witkin, A.; Wong, A.K.; Luther, J.; Lin, A.E.; Ning, M.; Grabowski, E.; Holbrook, E.H.; et al. Safety, tolerability, and effectiveness of anticoagulation and antiplatelet therapy in hereditary hemorrhagic telangiectasia. J. Thromb. Haemost. 2023, 21, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Llorente, L.; Gallardo-Vara, E.; Rossi, E.; Smadja, D.M.; Botella, L.M.; Bernabeu, C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin. Ther. Targets 2017, 21, 933–947. [Google Scholar] [CrossRef]
- Zarrabeitia, R.; Ojeda-Fernandez, L.; Recio, L.; Bernabeu, C.; Parra, J.A.; Albinana, V.; Botella, L.M. Bazedoxifene, a new orphan drug for the treatment of bleeding in hereditary haemorrhagic telangiectasia. Thromb. Haemost. 2016, 115, 1167–1177. [Google Scholar] [CrossRef]
- Yunus, H.; Amin, S.; Haq, F.U.; Ali, W.; Hamid, T.; Ali, W.; Ullah, B.; Bai, P. Case report: Diagnosis of hereditary hemorrhagic telangiectasia (Osler Weber Rendu Syndrome) in a 23-year-old male presented with anemia and thrombocytopenia and its response to bevacizumab. Front. Med. 2022, 9, 1001695. [Google Scholar] [CrossRef]
- Khan, A.R.; Waqar, S.; Wazir, M.H.; Arif, A. A Rare Case of Hereditary Hemorrhagic Telangiectasia: A Case Report. Cureus 2022, 14, e24517. [Google Scholar] [CrossRef]
- Chen, C.; Si, S.; He, Q.; Xu, H.; Lu, M.; Xie, Y.; Wang, Y.; Chen, R. Isolation and characterization of antibiotic NC0604, a new analogue of bleomycin. J. Antibiot. 2008, 61, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Horbach, S.E.R.; Rigter, I.M.; Smitt, J.H.S.; Reekers, J.A.; Spuls, P.I.; van der Horst, C. Intralesional Bleomycin Injections for Vascular Malformations: A Systematic Review and Meta-Analysis. Plast Reconstr. Surg. 2016, 137, 244–256. [Google Scholar] [CrossRef] [PubMed]
- van der Vleuten, C.J.; Kater, A.; Wijnen, M.H.; Schultze Kool, L.J.; Rovers, M.M. Effectiveness of sclerotherapy, surgery, and laser therapy in patients with venous malformations: A systematic review. Cardiovasc. Intervent. Radiol. 2014, 37, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Liu, R.; Cheng, G.; Wu, P.; Yu, F.; Qing, L.; Zeng, L.; Pang, X.; Pan, D.; Xiao, Y.; et al. The rare complication of vascular malformations of the limb after sclerotherapy: A report of 3 cases and brief literature review. BMC Pediatr. 2023, 23, 202. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, K.M.; Kumar, A.; Ashour, A.E.; Al-Rikabi, A.C.; AlOmrani, A.H.; Ahamed, S.S. Vascular sclerosing effects of bleomycin on cutaneous veins: A pharmacopathologic study on experimental animals. An. Bras. Dermatol. 2017, 92, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Z.; Liang, L.M.; Cheng, P.P.; Xiong, L.; Wang, M.; Song, L.J.; Yu, F.; He, X.L.; Xiong, L.; Wang, X.R.; et al. VEGF/Src signaling mediated pleural barrier damage and increased permeability contributes to subpleural pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 320, L990–L1004. [Google Scholar] [CrossRef] [PubMed]
- Yeom, S.; Comi, A.M. Updates on Sturge-Weber Syndrome. Stroke 2022, 53, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Espino, L.F.; Ivars, M.; Antonanzas, J.; Baselga, E. Sturge-Weber Syndrome: A Review of Pathophysiology, Genetics, Clinical Features, and Current Management Approache. Appl Clin. Genet. 2023, 16, 63–81. [Google Scholar] [CrossRef]
- Sebold, A.J.; Day, A.M.; Ewen, J.; Adamek, J.; Byars, A.; Cohen, B.; Kossoff, E.H.; Mizuno, T.; Ryan, M.; Sievers, J.; et al. Sirolimus Treatment in Sturge-Weber Syndrome. Pediatr. Neurol. 2021, 115, 29–40. [Google Scholar] [CrossRef]
- Sun, B.; Han, T.; Wang, Y.; Gao, Q.; Cui, J.; Shen, W. Sirolimus as a Potential Treatment for Sturge-Weber Syndrome. J. Craniofac. Surg. 2021, 32, 257–260. [Google Scholar] [CrossRef]
- Giacaman, A.; Salinas Sanz, J.A.; Navarro Noguera, S.; Lastra Rodriguez, J.; Montis Palos, M.C.; Martin-Santiago, A. Facial hemihypertrophy in a girl with sturge-weber syndrome: Treatment with oral sirolimus. Pediatr. Dermatol. 2021, 38, 469–471. [Google Scholar] [CrossRef] [PubMed]
Contents | Value | Unit | Ranges |
---|---|---|---|
Total bilirubin (TBIL) | 43.2↑ | μmol/L | 5.0–28.0 |
Direct bilirubin (DBIL) | 15.7↑ | μmol/L | <8.8 |
Indirect bilirubin (IBIL) | 27.50↑ | μmol/L | <20 |
Total bile acid (TBA) | 5.5 | μmol/L | <15 |
Contents | Value | Unit | Ranges |
---|---|---|---|
Prothrombin time (PT) | 14.4 | S | 10~15 |
International normalized ratio (INR) | 1.21 | 0.8~1.3 | |
Prothrombin time ratio (PT-Ratio) | 1.2 | ||
Prothrombin time activity level (PT%) | 76.5 | % | 70~130 |
Partial activated thromboplastin time (APTT) | 27.2 | S | 22~40 |
Thrombin time (TT) | 14.6 | Sec | 14~21 |
Fibrinogen (FIB) | 4.14↑ | g/L | 2~4 |
D-dimer (D-Dimer) | 250.22 | µg/L | 0~500 |
Fibrin degradation product (FDP) | 1.31 | mg/L | 0~5 |
Criterion | Description | Symptoms for the Proband (M66) |
---|---|---|
i. Epistaxis | Spontaneous and recurrent | The patient had recurrent spontaneous epistaxis starting at the age of about 26 years |
ii. Telangiectasias | Multiple mucocutaneous telangiectasias at characteristic sites (e.g., fingers, tongue, lips, buccal mucosa) | The patient had mucosal telangiectasia in multiple parts of the tongue, lip, finger, and cheek |
iii. Visceral lesions | Visceral AVMs ‡ in the lungs, liver, gastrointestinal tract, brain, and/or spine | The patient claimed that eating slightly hot food would lead to stomach bleeding, suggesting microvascular malformation, and abdominal color ultrasound indicated hepatic vascular malformation |
iv. Family history | History of a first-degree relative who has been diagnosed with HHT according to the aforementioned criteria | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Fu, J.; Guo, K.; Maghsoudloo, M.; Cheng, J.; Fu, J. The ENG/VEGFα Pathway Is Likely Affected by a Nonsense Variant of Endoglin (ENG)/CD105, Causing Hereditary Hemorrhagic Telangiectasia Type 1 (HHT1) in a Chinese Family. Genes 2024, 15, 304. https://doi.org/10.3390/genes15030304
Liu K, Fu J, Guo K, Maghsoudloo M, Cheng J, Fu J. The ENG/VEGFα Pathway Is Likely Affected by a Nonsense Variant of Endoglin (ENG)/CD105, Causing Hereditary Hemorrhagic Telangiectasia Type 1 (HHT1) in a Chinese Family. Genes. 2024; 15(3):304. https://doi.org/10.3390/genes15030304
Chicago/Turabian StyleLiu, Kemeng, Jiewen Fu, Kan Guo, Mazaher Maghsoudloo, Jingliang Cheng, and Junjiang Fu. 2024. "The ENG/VEGFα Pathway Is Likely Affected by a Nonsense Variant of Endoglin (ENG)/CD105, Causing Hereditary Hemorrhagic Telangiectasia Type 1 (HHT1) in a Chinese Family" Genes 15, no. 3: 304. https://doi.org/10.3390/genes15030304
APA StyleLiu, K., Fu, J., Guo, K., Maghsoudloo, M., Cheng, J., & Fu, J. (2024). The ENG/VEGFα Pathway Is Likely Affected by a Nonsense Variant of Endoglin (ENG)/CD105, Causing Hereditary Hemorrhagic Telangiectasia Type 1 (HHT1) in a Chinese Family. Genes, 15(3), 304. https://doi.org/10.3390/genes15030304