Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Samples
2.2. Bone Cleaning and Pulverisation
2.3. Bone Decalcification and DNA Extraction
2.4. DNA Quantification
2.5. DNA Typing
2.6. Data Analysis
2.7. Exclusion Database
3. Results
3.1. Evaluation of the Extraction Method
3.2. DNA Quantification of the Bone Samples
3.3. Genetic Typing of the Challenging Bone Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Optimisation of the Extraction Protocol with Maxwell Technology
Appendix A.1.1. Assessment of the DNA Recovery from the Home-Made Extraction Buffer (Standard Volumes)
Liquid Medium | h-m EB | Water | h-m EB | Water |
---|---|---|---|---|
Number of tests | 3 | 3 | 3 | 3 |
Volume | 400 µL | 400 µL | 400 µL | 400 µL |
K562 DNA (final concentration) | 25 pg/µL | 25 pg/µL | 150 pg/µL | 150 pg/µL |
LB | 200 µL | 200 µL | 200 µL | 200 µL |
Total volume | 600 µL | 600 µL | 600 µL | 600 µL |
% recovery (average ± st. dev.) | 91.7 ± 4 | 92.7 ± 6 | 94.5 ±5 | 92.2 ± 2 |
p-value | 0.372 | 0.153 |
Appendix A.1.2. Assessment of the DNA Recovery from Increased Volumes
Liquid Medium | h-m EB | h-m EB | h-m EB | h-m EB |
---|---|---|---|---|
Number of tests | 3 | 3 | 3 | 3 |
Volume | 400 µL | 800 µL | 400 µL | 800 µL |
K562 DNA (final concentration) | 25 pg/µL | 25 pg/µL | 150 pg/µL | 150 pg/µL |
LB | 200 µL | 400 µL | 200 µL | 400 µL |
Total volume | 600 µL | 1.200 µL | 600 µL | 1.200 µL |
% recovery (average ± st. dev.) | 94.3 ± 4 | 72.4 ± 3 | 93.9 ± 7 | 71.2 ± 4 |
p-value | 5.8 × 10−7 | 9.2 × 10−5 |
Appendix A.1.3. Assessment of Bacterial Contamination
Liquid Medium | h-m EB | h-m EB | h-m EB | h-m EB |
---|---|---|---|---|
Number of tests | 3 | 3 | 3 | 3 |
Volume | 800 µL | 800 µL | 800 µL | 800 µL |
K562 DNA (final concentration) | 25 pg/µL | 25 pg/µL | 150 pg/µL | 150 pg/µL |
E. coli DNA (final concentration) | - | 250 pg/µL | - | 250 pg/µL |
LB | 400 µL | 400 µL | 400 µL | 400 µL |
Total volume | 1.200 µL | 1.200 µL | 1.200 µL | 1.200 µL |
% recovery (average ± st. dev.) | 71.1 ± 2 | 54.7 ± 9 | 70.2 ± 6 | 43.0 ± 14 |
p-value | 0.005 | 0.002 |
Appendix B
full-consensus STR profile | partial-consensus STR profile | unsuccessful STR typing | no Cq at qPCR | ||
skeleton | rigth femur | left femur | petrous bone | metacarpal | molar teeth |
#1 | 1.15bis * | 1.1 | 1.17 | ||
#2 | 2.3bis | 2.1 | 2.5 | ||
#3 | 3.2.1 | 3.2.2 * | 3.2 | 3.10 | |
#4 | 3.3.1 | 3.3.2 | |||
#5 | 4.16 | 4.1 | 4.12 | ||
#6 | 4.2.1 * | 4.3.4 * | |||
#7 | 5.7 | 5.1 | 5.3 * | ||
#8 | 5.2.1 | 5.2.2 * | |||
#9 | 6.12 * | 6.1 | 6.8 | ||
#10 | 7.9 | 8.14 | 7.3 | ||
#11 | 8.2.1 | 8.2.2 | 8.2 | 8.10 * | 8.9 |
#12 | 9.12 | 9.1 | 9.8 | 4.11 | |
#13 | 9.2.6 | 3.14 | 9.2.2 | 10.2 | |
#14 | 11.13 | 11.1 | 11.9 | 4.5 | |
#15 | 13.4 | 12.7* | 12.3 | 13.1 * | |
#16 | 14.3 | 11.14 | 11.2 | ||
#17 | 15.6 | 15.2 | 16.2 | ||
#18 | 16.7 | 16.1 | 16.3 | 16.2.2 * | |
#19 | 17.5 | 2.4* | |||
#20 | 18.5 | 1.16 | 18.4 | ||
#21 | 19.10 | 20.1 | 19.9* | ||
#22 | 21.15 | 21.1 | |||
#23 | 21.3.1 | 5.8 * | 22.1 | 20.4 | |
#24 | 23.11 * | 20.2.2 * | |||
#25 | 24.10 * | 24.1 | 21.5 | ||
#26 | 25.16 | 25.1 | |||
#27 | 25.2.1 | 4.17 | 21.12 | ||
#28 | 26.17 * | 26.1 | |||
#29 | 27.9 | 27.1 | 20.7 |
Appendix C
References
- Butler, J.M. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019–2022. Forensic Sci. Int. Synerg. 2023, 6, 100311. [Google Scholar] [CrossRef] [PubMed]
- Hagelberg, E.; Hofreiter, M.; Keyser, C. Introduction. Ancient DNA: The first three decades. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20130371. [Google Scholar] [CrossRef]
- Hofreiter, M.; Sneberger, J.; Pospisek, M.; Vanek, D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci. Int. Genet. 2021, 54, 102538. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.M.; Cave, C.A.; Holland, C.A.; Bille, T.W. Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat. Med. J. 2003, 44, 264–272. [Google Scholar] [PubMed]
- Andelinović, S.; Sutlović, D.; Erceg Ivkosić, I.; Skaro, V.; Ivkosić, A.; Paić, F.; Rezić, B.; Definis-Gojanović, M.; Primorac, D. Twelve-year experience in identification of skeletal remains from mass graves. Croat. Med. J. 2005, 46, 530–539. [Google Scholar]
- Lin, C.Y.; Huang, T.Y.; Shih, H.C.; Yuan, C.H.; Chen, L.J.; Tsai, H.S.; Pan, C.H.; Chiang, H.M.; Liu, H.L.; Su, W.C.; et al. The strategies to DVI challenges in Typhoon Morakot. Int. J. Leg. Med. 2011, 125, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Sozer, A.; Baird, M.; Beckwith, M.; Harmon, B.; Lee, D.; Riley, G.; Schmitt, S. Guidelines for Mass Fatality DNA Identification Operations; AABB, Ed.; AABB: Bethesda, MD, USA, 2010; p. 52. [Google Scholar]
- Prinz, M.; Carracedo, A.; Mayr, W.R.; Morling, N.; Parsons, T.J.; Sajantila, A.; Scheithauer, R.; Schmitter, H.; Schneider, P.M. DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci. Int. Genet. 2007, 1, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Emmons, A.L.; Davoren, J.; DeBruyn, J.M.; Mundorff, A.Z. Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci. Int. Genet. 2020, 44, 102193. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.J.; Huel, R.M.L.; Bajunovic, Z.; Rizvic, A. Large scale DNA identification: The ICMP experience. Forensic Sci. Int. Genet. 2019, 38, 236–244. [Google Scholar] [CrossRef]
- Antinick, T.C.; Foran, D.R. Intra- and Inter-Element Variability in Mitochondrial and Nuclear DNA from Fresh and Environmentally Exposed Skeletal Remains. J. Forensic Sci. 2019, 64, 88–97. [Google Scholar] [CrossRef]
- Hedges, R.E.M. Bone diagenesis: An overview of processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Benedik Bevc, T.; Bozic, L.; Podovsovnik, E.; Zupanc, T.; Zupanic Pajnic, I. Intra-bone nuclear DNA variability and STR typing success in Second World War 12th thoracic vertebrae. Forensic Sci. Int. Genet. 2021, 55, 102587. [Google Scholar] [CrossRef] [PubMed]
- Finaughty, C.; Heathfield, L.J.; Kemp, V.; Marquez-Grant, N. Forensic DNA extraction methods for human hard tissue: A systematic literature review and meta-analysis of technologies and sample type. Forensic Sci. Int. Genet. 2023, 63, 102818. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, D.; Fernandes, D.M.; Schmidt, R.; Cheronet, O.; Mazzarelli, D.; Mattia, M.; O’Keeffe, T.; Feeney, R.N.M.; Cattaneo, C.; Pinhasi, R. Genome-Wide DNA from Degraded Petrous Bones and the Assessment of Sex and Probable Geographic Origins of Forensic Cases. Sci. Rep. 2019, 9, 8226. [Google Scholar] [CrossRef]
- Gonzalez, A.; Cannet, C.; Zvenigorosky, V.; Geraut, A.; Koch, G.; Delabarde, T.; Ludes, B.; Raul, J.S.; Keyser, C. The petrous bone: Ideal substrate in legal medicine? Forensic Sci. Int. Genet. 2020, 47, 102305. [Google Scholar] [CrossRef] [PubMed]
- Kulstein, G.; Hadrys, T.; Wiegand, P. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int. J. Leg. Med. 2018, 132, 13–24. [Google Scholar] [CrossRef]
- Misner, L.M.; Halvorson, A.C.; Dreier, J.L.; Ubelaker, D.H.; Foran, D.R. The correlation between skeletal weathering and DNA quality and quantity. J. Forensic Sci. 2009, 54, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Pilli, E.; Vai, S.; Caruso, M.G.; D’Errico, G.; Berti, A.; Caramelli, D. Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci. Int. 2018, 283, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Inkret, J.; Zupanc, T.; Podovsovnik, E. Comparison of nuclear DNA yield and STR typing success in Second World War petrous bones and metacarpals III. Forensic Sci. Int. Genet. 2021, 55, 102578. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Sirak, K.A.; Cheronet, O.; Novak, M.; Bruck, F.; Zelger, E.; Llanos-Lizcano, A.; Wagner, A.; Zettl, A.; Mandl, K.; et al. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res. 2023, 33, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Brumfeld, V.; Addadi, Y.; Rubin, S.; Weiner, S.; Boaretto, E. The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PLoS ONE 2022, 17, e0269348. [Google Scholar] [CrossRef] [PubMed]
- Sirak, K.; Fernandes, D.; Cheronet, O.; Harney, E.; Mah, M.; Mallick, S.; Rohland, N.; Adamski, N.; Broomandkhoshbacht, N.; Callan, K.; et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 2020, 30, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Correa, H.; Cortellini, V.; Franceschetti, L.; Verzeletti, A. Large fragment demineralization: An alternative pretreatment for forensic DNA typing of bones. Int. J. Leg. Med. 2021, 135, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Calacal, G.C.; Gallardo, B.G.; Apaga, D.L.T.; De Ungria, M.C.A. Improved autosomal STR typing of degraded femur samples extracted using a custom demineralization buffer and DNA IQ. Forensic Sci. Int. Synerg. 2021, 3, 100131. [Google Scholar] [CrossRef]
- Duijs, F.E.; Sijen, T. A rapid and efficient method for DNA extraction from bone powder. Forensic Sci. Int. Rep. 2020, 2, 100099. [Google Scholar] [CrossRef]
- Haarkotter, C.; Galvez, X.; Vinueza-Espinosa, D.C.; Medina-Lozano, M.I.; Saiz, M.; Lorente, J.A.; Alvarez, J.C. A comparison of five DNA extraction methods from degraded human skeletal remains. Forensic Sci. Int. 2023, 348, 111730. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.; Eduardoff, M.; Bertoglio, B.; Amory, C.; Berger, C.; Casas-Vargas, A.; Pallua, J.; Parson, W. Evaluation of DNA Extraction Methods Developed for Forensic and Ancient DNA Applications Using Bone Samples of Different Age. Genes 2021, 12, 146. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Leskovar, T.; Zupanc, T.; Podovsovnik, E. A fast and highly efficient automated DNA extraction method from small quantities of bone powder from aged bone samples. Forensic Sci. Int. Genet. 2023, 65, 102882. [Google Scholar] [CrossRef]
- Fattorini, P.; Marrubini, G.; Ricci, U.; Gerin, F.; Grignani, P.; Cigliero, S.S.; Xamin, A.; Edalucci, E.; La Marca, G.; Previdere, C. Estimating the integrity of aged DNA samples by CE. Electrophoresis 2009, 30, 3986–3995. [Google Scholar] [CrossRef]
- Pajnic, I.Z. Extraction of DNA from Human Skeletal Material. Methods Mol. Biol. 2016, 1420, 89–108. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Fattorini, P. Strategy for STR typing of bones from the Second World War combining CE and NGS technology: A pilot study. Forensic Sci. Int. Genet. 2021, 50, 102401. [Google Scholar] [CrossRef]
- Zupanic Pajnic, I.; Zupanc, T.; Leskovar, T.; Cresnar, M.; Fattorini, P. Eye and Hair Color Prediction of Ancient and Second World War Skeletal Remains Using a Forensic PCR-MPS Approach. Genes 2022, 13, 1432. [Google Scholar] [CrossRef]
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic implications of genetic analyses from degraded DNA—A review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef]
- Llamas, B.; Valverde, G.; Fehren-Schmitz, L.; Weyrich, L.S.; Cooper, A.; Haak, W. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci. Technol. Archaeol. Res. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Paabo, S.; Poinar, H.; Serre, D.; Jaenicke-Despres, V.; Hebler, J.; Rohland, N.; Kuch, M.; Krause, J.; Vigilant, L.; Hofreiter, M. Genetic analyses from ancient DNA. Annu. Rev. Genet. 2004, 38, 645–679. [Google Scholar] [CrossRef]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Lee, S.B.; McCord, B.; Buel, E. Advances in forensic DNA quantification: A review. Electrophoresis 2014, 35, 3044–3052. [Google Scholar] [CrossRef]
- Thomas, J.T.; Cavagnino, C.; Kjelland, K.; Anderson, E.; Sturk-Andreaggi, K.; Daniels-Higginbotham, J.; Amory, C.; Spatola, B.; Moran, K.; Parson, W.; et al. Evaluating the Usefulness of Human DNA Quantification to Predict DNA Profiling Success of Historical Bone Samples. Genes 2023, 14, 994. [Google Scholar] [CrossRef]
- Haarkotter, C.; Vinueza-Espinosa, D.C.; Galvez, X.; Saiz, M.; Medina-Lozano, M.I.; Lorente, J.A.; Alvarez, J.C. A comparison between petrous bone and tooth, femur and tibia DNA analysis from degraded skeletal remains. Electrophoresis 2023, 44, 1559–1568. [Google Scholar] [CrossRef]
- Baeta, M.; Nunez, C.; Cardoso, S.; Palencia-Madrid, L.; Herrasti, L.; Etxeberria, F.; de Pancorbo, M.M. Digging up the recent Spanish memory: Genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship. Forensic Sci. Int. Genet. 2015, 19, 272–279. [Google Scholar] [CrossRef]
- Campos, P.F.; Craig, O.E.; Turner-Walker, G.; Peacock, E.; Willerslev, E.; Gilbert, M.T. DNA in ancient bone—Where is it located and how should we extract it? Ann. Anat. 2012, 194, 7–16. [Google Scholar] [CrossRef]
- Kendall, C.; Eriksen, A.M.H.; Kontopoulos, I.; Collins, M.J.; Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 491, 21–37. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Penkman, K.; Mullin, V.E.; Winkelbach, L.; Unterlander, M.; Scheu, A.; Kreutzer, S.; Hansen, H.B.; Margaryan, A.; Teasdale, M.D.; et al. Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS ONE 2020, 15, e0235146. [Google Scholar] [CrossRef]
- Mulligan, C. Anthropological Applications of Ancient DNA: Problems and Prospects. Am. Antiq. 2006, 71, 365. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Penkman, K.; McAllister, G.; Lynnerup, N.; Damgaard, P.; Hansen, H.; Allentoft, M.; Collins, M. Petrous bone diagenesis: A multi-analytical approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 518, 143–154. [Google Scholar] [CrossRef]
- de Boer, H.H.; Blau, S.; Delabarde, T.; Hackman, L. The role of forensic anthropology in disaster victim identification (DVI): Recent developments and future prospects. Forensic Sci. Res. 2019, 4, 303–315. [Google Scholar] [CrossRef]
- Tripp, J.A.; Squire, M.E.; Hedges, R.E.M.; Stevens, R.E. Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 511, 462–471. [Google Scholar] [CrossRef]
- Zupanič Pajnič, I.; Leskovar, T.; Jerman, I. ATR-FTIR spectroscopy and chemometric complexity: Unfolding the intra-skeleton variability. J. Chemom. 2022, 36, e3448. [Google Scholar] [CrossRef]
Bone Type | n | >LOD | >lLOQ | pg/µL | STR Typing | Markers | S.A. |
---|---|---|---|---|---|---|---|
Right femur | 29 | 21.7% | 3.4% | 5.9 ± 16.8 (0, 0, 88) | 10/16 (62.5%) | 20 | 13.9% |
Left femur | 12 | 25.0% | 0% | 1.2 ± 2.3 (0, 0, 7) | 2/7 (28.5%) | 18 | 8.3% |
Petrous bone | 19 | 100% | 100% | 440 ± 343 (401, 118, 1.179) | 38/38 (100%) | 16 | 1.9% |
Metacarpal | 12 | 58.3% | 16.6% | 5.0 ± 7.2 (0, 0, 27) | 10/12 (83.3%) | 18 | 2.3% |
Tooth | 16 | 15.6% | 0% | 1.0 ± 2.2 (0, 0, 9) | 1/5 (20.0%) | - | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, B.; Zupanič Pajnič, I.; Concato, M.; Bertoglio, B.; Calvano, M.G.; Sorçaburu Ciglieri, S.; Bosetti, A.; Grignani, P.; Addoum, Y.; Vetrini, R.; et al. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes 2024, 15, 672. https://doi.org/10.3390/genes15060672
Di Stefano B, Zupanič Pajnič I, Concato M, Bertoglio B, Calvano MG, Sorçaburu Ciglieri S, Bosetti A, Grignani P, Addoum Y, Vetrini R, et al. Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes. 2024; 15(6):672. https://doi.org/10.3390/genes15060672
Chicago/Turabian StyleDi Stefano, Barbara, Irena Zupanič Pajnič, Monica Concato, Barbara Bertoglio, Maria Grazia Calvano, Solange Sorçaburu Ciglieri, Alessandro Bosetti, Pierangela Grignani, Yasmine Addoum, Raffaella Vetrini, and et al. 2024. "Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave" Genes 15, no. 6: 672. https://doi.org/10.3390/genes15060672
APA StyleDi Stefano, B., Zupanič Pajnič, I., Concato, M., Bertoglio, B., Calvano, M. G., Sorçaburu Ciglieri, S., Bosetti, A., Grignani, P., Addoum, Y., Vetrini, R., Introna, F., Bonin, S., Previderè, C., & Fattorini, P. (2024). Evaluation of a New DNA Extraction Method on Challenging Bone Samples Recovered from a WWII Mass Grave. Genes, 15(6), 672. https://doi.org/10.3390/genes15060672